强强联合:将 Hugging Face 与 Langchain 集成以增强自然语言处理能力

引言
在自然语言处理(NLP)领域,不同框架和库之间的协同作用可以显著增强能力。Hugging Face 以其基于 Transformer 的模型而闻名,而 Langchain 是一种多功能语言工具包,它们代表了 NLP 领域的两大强大工具。将这些资源结合起来可以为语言理解、生成和分析提供一个强大而动态的解决方案。
定义:
Hugging Face:它是一个领先的平台,提供用于自然语言理解的预训练模型和库。Hugging Face 以其 Transformers 库而闻名,提供了大量的预训练模型,可以针对特定的 NLP 任务进行微调。
Langchain:一个强大的语言工具包,旨在促进各种 NLP 任务。Langchain 包含分词、词形还原、词性标注和句法分析等功能,提供了一套全面的语言分析工具。
集成优势:
1. 增强语言分析:Langchain 的语言工具包与 Hugging Face 的 Transformer 模型的结合,可以更深入地分析文本,利用句法和语义理解。
2. 扩展功能:将 Langchain 与 Hugging Face 集成,可以访问高级分词、词形还原和其他语言处理方法,从而对语言结构有更细致的理解。
3. 优化 NLP 管道:通过利用两个平台的优势,用户可以构建优化的 NLP 管道,有效地处理从文本分类到机器翻译的各种任务。
4. 模型部署灵活性:集成实现了组合模型的无缝部署,允许在统一框架内更灵活地处理各种 NLP 任务。
集成过程:
将 Hugging Face 与 Langchain 集成涉及通过它们各自 API 之间的简化通信来利用这两个平台的优势。以下是集成过程的高级概述:
1. 安装和设置:安装 Hugging Face 和 Langchain 所需的库。
2. 数据预处理:根据数据预处理的需要,利用 Langchain 的工具进行分词、词形还原或其他语言分析。
3. 模型利用:使用 Hugging Face 基于 Transformer 的模型,通过预训练或微调模型执行文本生成、情感分析或问答等任务。
4. 结果组合:将 Langchain 语言分析的输出与 Hugging Face 模型处理过的数据合并,以全面理解文本。
代码实现
此代码展示了 Hugging Face 的 Transformer 模型与 Langchain 语言工具包在自然语言处理 (NLP) 任务中的简单集成。
步骤 1:安装库
!pip install langchain openai tiktoken transformers accelerate cohere --quiet
步骤 2:导入库和基于提示的摘要
customer_email = """
I hope this email finds you amidst an aura of understanding, despite the tangled mess of emotions swirling within me as I write to you. I am writing to pour my heart out about the recent unfortunate experience I had with one of your coffee machines that arrived ominously broken, evoking a profound sense of disbelief and despair.
To set the scene, let me paint you a picture of the moment I anxiously unwrapped the box containing my highly anticipated coffee machine. The blatant excitement coursing through my veins could rival the vigorous flow of coffee through its finest espresso artistry. However, what I discovered within broke not only my spirit but also any semblance of confidence I had placed in your esteemed brand.
Imagine, if you can, the utter shock and disbelief that took hold of me as I laid eyes on a disheveled and mangled coffee machine. Its once elegant exterior was marred by the scars of travel, resembling a war-torn soldier who had fought valiantly on the fields of some espresso battlefield. This heartbreaking display of negligence shattered my dreams of indulging in daily coffee perfection, leaving me emotionally distraught and inconsolable
""" # created by GPT-3.5
from langchain import HuggingFaceHub
summarizer = HuggingFaceHub(
repo_id="facebook/bart-large-cnn",
model_kwargs={"temperature":0, "max_length":180}
)
def summarize(llm, text) -> str:
return llm(f"Summarize this: {text}!")
summarize(summarizer, customer_email)
A customer\'s coffee machine arrived ominously broken, evoking a profound sense of disbelief and despair. "This heartbreaking display of negligence shattered my dreams of indulging in daily coffee perfection, leaving me emotionally distraught and inconsolable," the customer writes. "I hope this email finds you amidst an aura of understanding, despite the tangled mess of emotions swirling within me as I write to you," he adds.
步骤 3:使用 Vertex AI 提供基于提示的客户服务协助
from langchain.llms import VertexAI
from langchain import PromptTemplate, LLMChain
template = """Given this text, decide what is the issue the customer is concerned about. Valid categories are these:
* product issues
* delivery problems
* missing or late orders
* wrong product
* cancellation request
* refund or exchange
* bad support experience
* no clear reason to be upset
Text: {email}
Category:
"""
prompt = PromptTemplate(template=template, input_variables=["email"])
llm = VertexAI()
llm_chain = LLMChain(prompt=prompt, llm=llm, verbose=True)
print(llm_chain.run(customer_email))
输出
> Entering new LLMChain chain...
Prompt after formatting:
Given this text, decide what is the issue the customer is concerned about. Valid categories are these:
* product issues
* delivery problems
* missing or late orders
* wrong product
* cancellation request
* refund or exchange
* bad support experience
* no clear reason to be upset
Text:
I hope this email finds you amidst an aura of understanding, despite the tangled mess of emotions swirling within me as I write to you. I am writing to pour my heart out about the recent unfortunate experience I had with one of your coffee machines that arrived ominously broken, evoking a profound sense of disbelief and despair.
To set the scene, let me paint you a picture of the moment I anxiously unwrapped the box containing my highly anticipated coffee machine. The blatant excitement coursing through my veins could rival the vigorous flow of coffee through its finest espresso artistry. However, what I discovered within broke not only my spirit but also any semblance of confidence I had placed in your esteemed brand.
Imagine, if you can, the utter shock and disbelief that took hold of me as I laid eyes on a disheveled and mangled coffee machine. Its once elegant exterior was marred by the scars of travel, resembling a war-torn soldier who had fought valiantly on the fields of some espresso battlefield. This heartbreaking display of negligence shattered my dreams of indulging in daily coffee perfection, leaving me emotionally distraught and inconsolable
Category:
> Finished chain.
product issues
结论
Hugging Face 的 Transformer 模型与 Langchain 语言工具包的集成,在自然语言处理 (NLP) 领域展现了引人注目的协同效应。这种协作利用了 Hugging Face 强大的 Transformer 模型(以其在各种 NLP 任务中的多功能性而闻名),并将其与 Langchain 精密的语言功能相结合。
通过整合这些资源,开发者可以获得一套广泛的工具包,能够执行深入的语言分析、分词、词形还原等操作,同时还能利用最先进的 Transformer 模型来完成情感分析、文本生成和问答等任务。
这种集成不仅简化了 NLP 管道的开发,还增强了语言理解和生成的深度和准确性。它代表着在创建更全面、更细致的自然语言处理解决方案方面迈出了重要一步,使开发者能够在统一且强大的框架下应对多样化的 NLP 挑战。
Hugging Face 和 Langchain 之间的协同作用为 NLP 的创新进步铺平了道路,有望在各种应用和行业中实现更复杂的语言模型和改进的语言理解。
“保持联系,并通过各种平台支持我的工作
Huggingface:对于自然语言处理和人工智能相关项目,您可以在 https://huggingface.co/Andyrasika 查看我的 Huggingface 个人资料。
LinkedIn:要及时了解我的最新项目和帖子,您可以在 LinkedIn 上关注我。这是我的个人资料链接:https://www.linkedin.com/in/ankushsingal/。"
请求和问题:如果您有想要我参与的项目,或者对我的解释有任何疑问,请随时告诉我。我一直在寻找未来 Notebook 的新想法,并且很乐意帮助解决您可能有的任何疑问。
资源