// Programatically interact with the Hub
await createRepo({
repo: {type: "model", name: "my-user/nlp-model"},
accessToken: HF_TOKEN
});
await uploadFile({
repo: "my-user/nlp-model",
accessToken: HF_TOKEN,
// Can work with native File in browsers
file: {
path: "pytorch_model.bin",
content: new Blob(...)
}
});
// Use Inference API
await inference.chatCompletion({
model: "meta-llama/Llama-3.1-8B-Instruct",
messages: [
{
role: "user",
content: "Hello, nice to meet you!",
},
],
max_tokens: 512,
temperature: 0.5,
});
await inference.textToImage({
model: "black-forest-labs/FLUX.1-dev",
inputs: "a picture of a green bird",
});
// and much more…
Hugging Face JS 库
这是一组用于与 Hugging Face API 交互的 JS 库,包含 TS 类型。
- @huggingface/inference:使用推理端点(专用)和推理 API(无服务器)调用 100,000 多个机器学习模型
- @huggingface/hub:与 huggingface.co 交互以创建或删除存储库以及提交/下载文件
- @huggingface/agents:通过自然语言界面与 HF 模型交互
- @huggingface/gguf:一个适用于远程托管文件的 GGUF 解析器。
- @huggingface/tasks:中心主要原语(如管道任务、模型库等)的定义文件和真实来源。
- @huggingface/space-header:在 Hugging Face 之外使用 Space
mini_header
我们使用现代特性来避免 polyfill 和依赖项,因此这些库只能在现代浏览器/Node.js >= 18/Bun/Deno 上运行。
这些库还很年轻,请通过提出问题来帮助我们!
安装
从 NPM 安装
如需通过 NPM 安装,您可以根据需要下载库
npm install @huggingface/inference npm install @huggingface/hub npm install @huggingface/agents
然后在代码中导入库
import { HfInference } from "@huggingface/inference";
import { HfAgent } from "@huggingface/agents";
import { createRepo, commit, deleteRepo, listFiles } from "@huggingface/hub";
import type { RepoId } from "@huggingface/hub";
从 CDN 或静态托管安装
您可以使用 CDN 或静态托管,在不使用任何打包器的情况下,使用原生 JS 运行我们的软件包。使用 ES 模块,即 <script type="module">
,您可以在代码中导入库
<script type="module">
import { HfInference } from 'https://cdn.jsdelivr.net.cn/npm/@huggingface/[email protected]/+esm';
import { createRepo, commit, deleteRepo, listFiles } from "https://cdn.jsdelivr.net.cn/npm/@huggingface/[email protected]/+esm";
</script>
Deno
// esm.sh
import { HfInference } from "https://esm.sh/@huggingface/inference"
import { HfAgent } from "https://esm.sh/@huggingface/agents";
import { createRepo, commit, deleteRepo, listFiles } from "https://esm.sh/@huggingface/hub"
// or npm:
import { HfInference } from "npm:@huggingface/inference"
import { HfAgent } from "npm:@huggingface/agents";
import { createRepo, commit, deleteRepo, listFiles } from "npm:@huggingface/hub"
使用示例
在您的 帐户设置 中获取您的 HF 访问令牌。
@huggingface/inference 示例
import { HfInference } from "@huggingface/inference";
const HF_TOKEN = "hf_...";
const inference = new HfInference(HF_TOKEN);
// Chat completion API
const out = await inference.chatCompletion({
model: "meta-llama/Llama-3.1-8B-Instruct",
messages: [{ role: "user", content: "Hello, nice to meet you!" }],
max_tokens: 512
});
console.log(out.choices[0].message);
// Streaming chat completion API
for await (const chunk of inference.chatCompletionStream({
model: "meta-llama/Llama-3.1-8B-Instruct",
messages: [{ role: "user", content: "Hello, nice to meet you!" }],
max_tokens: 512
})) {
console.log(chunk.choices[0].delta.content);
}
// You can also omit "model" to use the recommended model for the task
await inference.translation({
inputs: "My name is Wolfgang and I live in Amsterdam",
parameters: {
src_lang: "en",
tgt_lang: "fr",
},
});
await inference.textToImage({
model: 'black-forest-labs/FLUX.1-dev',
inputs: 'a picture of a green bird',
})
await inference.imageToText({
data: await (await fetch('https://picsum.photos/300/300')).blob(),
model: 'nlpconnect/vit-gpt2-image-captioning',
})
// Using your own dedicated inference endpoint: https://hf.co/docs/inference-endpoints/
const gpt2 = inference.endpoint('https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2');
const { generated_text } = await gpt2.textGeneration({inputs: 'The answer to the universe is'});
//Chat Completion
const llamaEndpoint = inference.endpoint(
"https://api-inference.huggingface.co/models/meta-llama/Llama-3.1-8B-Instruct"
);
const out = await llamaEndpoint.chatCompletion({
model: "meta-llama/Llama-3.1-8B-Instruct",
messages: [{ role: "user", content: "Hello, nice to meet you!" }],
max_tokens: 512,
});
console.log(out.choices[0].message);
@huggingface/hub 示例
import { createRepo, uploadFile, deleteFiles } from "@huggingface/hub";
const HF_TOKEN = "hf_...";
await createRepo({
repo: "my-user/nlp-model", // or {type: "model", name: "my-user/nlp-test"},
accessToken: HF_TOKEN
});
await uploadFile({
repo: "my-user/nlp-model",
accessToken: HF_TOKEN,
// Can work with native File in browsers
file: {
path: "pytorch_model.bin",
content: new Blob(...)
}
});
await deleteFiles({
repo: {type: "space", name: "my-user/my-space"}, // or "spaces/my-user/my-space"
accessToken: HF_TOKEN,
paths: ["README.md", ".gitattributes"]
});
@huggingface/agents 示例
import {HfAgent, LLMFromHub, defaultTools} from '@huggingface/agents';
const HF_TOKEN = "hf_...";
const agent = new HfAgent(
HF_TOKEN,
LLMFromHub(HF_TOKEN),
[...defaultTools]
);
// you can generate the code, inspect it and then run it
const code = await agent.generateCode("Draw a picture of a cat wearing a top hat. Then caption the picture and read it out loud.");
console.log(code);
const messages = await agent.evaluateCode(code)
console.log(messages); // contains the data
// or you can run the code directly, however you can't check that the code is safe to execute this way, use at your own risk.
const messages = await agent.run("Draw a picture of a cat wearing a top hat. Then caption the picture and read it out loud.")
console.log(messages);
当然还有更多功能,请查看每个库的自述文件!
格式化和测试
sudo corepack enable pnpm install pnpm -r format:check pnpm -r lint:check pnpm -r test
构建
pnpm -r build
这将在 packages/*/dist
中生成 ESM 和 CJS JavaScript 文件,例如 packages/inference/dist/index.mjs
。