示例动物园
以下包含 Accelerate 教程和脚本的非详尽列表。
Accelerate 官方示例:
基础示例
这些示例展示了 Accelerate 的基本功能,是很好的起点
- 简易 NLP 示例
- Jupyter Notebook 中的简易分布式 NLP 示例
- 简易计算机视觉示例
- Jupyter Notebook 中的简易分布式计算机视觉示例
- 在 Kaggle 中使用 Accelerate
特定功能示例
这些示例展示了 Accelerate 框架提供的特定功能
- 自动感知内存的梯度累积
- 检查点状态
- 交叉验证
- DeepSpeed
- 完全分片数据并行 (Fully Sharded Data Parallelism)
- 梯度累积
- 内存感知批大小查找器
- 指标计算
- 使用跟踪器
- 使用 Megatron-LM
完整示例
这些示例一次性展示了 Accelerate 中的所有功能,这些功能在“特定功能示例”中已展示过
- 完整 NLP 示例
- 完整计算机视觉示例
- 非常完整和可扩展的视觉示例,展示了 SLURM、hydra 以及框架的非常可扩展的用法
- 因果语言模型微调示例
- 掩码语言模型微调示例
- 语音预训练示例
- 翻译微调示例
- 文本分类微调示例
- 语义分割微调示例
- 问答微调示例
- 集束搜索问答微调示例
- 多项选择问答微调示例
- 命名实体识别微调示例
- 图像分类微调示例
- 摘要微调示例
- 关于如何使用 Accelerate 的 AWS SageMaker 集成的端到端示例
- Megatron-LM 在各种 NLP 任务中的示例
集成示例
这些是来自与 Accelerate 集成的库的教程
在这里找不到你的集成?请提交 PR 以包含它!
Amphion
Catalyst
DALLE2-pytorch
Diffusers
fastai
GradsFlow
imagen-pytorch
Kornia
PyTorch Accelerated
PyTorch3D
Stable-Dreamfusion
Tez
trlx
Comfy-UI
In Science
以下是非详尽的使用 Accelerate 的论文列表。
在此处找不到您的论文?请提交 PR 以将其收录!
- Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, Omer Levy: “Pick-a-Pic:用于文本到图像生成的用户偏好开放数据集”,2023 年; arXiv:2305.01569。
- Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, Ee-Peng Lim: “Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models”,2023 年; arXiv:2305.04091。
- Arthur Câmara, Claudia Hauff: “Moving Stuff Around:用于神经 IR 模型的将文档移动到内存的效率研究”,2022 年; arXiv:2205.08343。
- Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang, Christopher Ré, Ion Stoica, Ce Zhang: “High-throughput Generative Inference of Large Language Models with a Single GPU”,2023 年; arXiv:2303.06865。
- Peter Melchior, Yan Liang, ChangHoon Hahn, Andy Goulding: “Autoencoding Galaxy Spectra I: Architecture”,2022 年; arXiv:2211.07890。
- Jiaao Chen, Aston Zhang, Mu Li, Alex Smola, Diyi Yang: “A Cheaper and Better Diffusion Language Model with Soft-Masked Noise”,2023 年; arXiv:2304.04746。
- Ayaan Haque, Matthew Tancik, Alexei A. Efros, Aleksander Holynski, Angjoo Kanazawa: “Instruct-NeRF2NeRF:使用指令编辑 3D 场景”,2023 年; arXiv:2303.12789。
- Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, Andrea Vedaldi: “RealFusion:从单张图像进行任何物体的 360° 重建”,2023 年; arXiv:2302.10663。
- Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, Hongsheng Li: “Better Aligning Text-to-Image Models with Human Preference”,2023 年; arXiv:2303.14420。
- Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, Yueting Zhuang: “HuggingGPT:使用 ChatGPT 及其 HuggingFace 中的朋友解决 AI 任务”,2023 年; arXiv:2303.17580。
- Yue Yang, Wenlin Yao, Hongming Zhang, Xiaoyang Wang, Dong Yu, Jianshu Chen: “Z-LaVI:由视觉想象驱动的零样本语言求解器”,2022 年; arXiv:2210.12261。
- Sheng-Yen Chou, Pin-Yu Chen, Tsung-Yi Ho: “How to Backdoor Diffusion Models?”,2022 年; arXiv:2212.05400。
- Junyoung Seo, Wooseok Jang, Min-Seop Kwak, Jaehoon Ko, Hyeonsu Kim, Junho Kim, Jin-Hwa Kim, Jiyoung Lee, Seungryong Kim: “Let 2D Diffusion Model Know 3D-Consistency for Robust Text-to-3D Generation”,2023 年; arXiv:2303.07937。
- Or Patashnik, Daniel Garibi, Idan Azuri, Hadar Averbuch-Elor, Daniel Cohen-Or: “Localizing Object-level Shape Variations with Text-to-Image Diffusion Models”,2023 年; arXiv:2303.11306。
- Dídac Surís, Sachit Menon, Carl Vondrick: “ViperGPT:通过 Python 执行进行视觉推理”,2023 年; arXiv:2303.08128。
- Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, Qifeng Chen: “FateZero:融合注意力以实现零样本基于文本的视频编辑”,2023 年; arXiv:2303.09535。
- Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, Yejin Choi: “NaturalProver:使用语言模型进行基于基础的数学证明生成”,2022 年; arXiv:2205.12910。
- Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, Daniel Cohen-Or: “TEXTure:3D 形状的文本引导纹理化”,2023 年; arXiv:2302.01721。
- Puijin Cheng, Li Lin, Yijin Huang, Huaqing He, Wenhan Luo, Xiaoying Tang: “Learning Enhancement From Degradation: A Diffusion Model For Fundus Image Enhancement”,2023 年; arXiv:2303.04603。
- Shun Shao, Yftah Ziser, Shay Cohen: “Erasure of Unaligned Attributes from Neural Representations”,2023 年; arXiv:2302.02997。
- Seonghyeon Ye, Hyeonbin Hwang, Sohee Yang, Hyeongu Yun, Yireun Kim, Minjoon Seo: “In-Context Instruction Learning”,2023 年; arXiv:2302.14691。
- Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei Xiao, Anima Anandkumar: “Prismer:具有专家集成的视觉语言模型”,2023 年; arXiv:2303.02506。
- Haoyu Chen, Zhihua Wang, Yang Yang, Qilin Sun, Kede Ma: “Learning a Deep Color Difference Metric for Photographic Images”,2023 年; arXiv:2303.14964。
- Van-Hoang Le, Hongyu Zhang: “Log Parsing with Prompt-based Few-shot Learning”,2023 年; arXiv:2302.07435。
- Keito Kudo, Yoichi Aoki, Tatsuki Kuribayashi, Ana Brassard, Masashi Yoshikawa, Keisuke Sakaguchi, Kentaro Inui: “Do Deep Neural Networks Capture Compositionality in Arithmetic Reasoning?”,2023 年; arXiv:2302.07866。
- Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, Prithviraj Ammanabrolu: “Behavior Cloned Transformers are Neurosymbolic Reasoners”,2022 年; arXiv:2210.07382。
- Martin Wessel, Tomáš Horych, Terry Ruas, Akiko Aizawa, Bela Gipp, Timo Spinde: “Introducing MBIB — the first Media Bias Identification Benchmark Task and Dataset Collection”,2023 年; arXiv:2304.13148. DOI: [https://dx.doi.org/10.1145/3539618.3591882 10.1145/3539618.3591882].
- Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, Daniel Cohen-Or: “Attend-and-Excite:用于文本到图像扩散模型的基于注意力的语义引导”,2023 年; arXiv:2301.13826。
- Marcio Fonseca, Yftah Ziser, Shay B. Cohen: “Factorizing Content and Budget Decisions in Abstractive Summarization of Long Documents”,2022 年; arXiv:2205.12486。
- Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, Daniel Cohen-Or: “TEXTure:3D 形状的文本引导纹理化”,2023 年; arXiv:2302.01721。
- Tianxing He, Jingyu Zhang, Tianle Wang, Sachin Kumar, Kyunghyun Cho, James Glass, Yulia Tsvetkov: “On the Blind Spots of Model-Based Evaluation Metrics for Text Generation”,2022 年; arXiv:2212.10020。
- Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, Yoav Shoham: “In-Context Retrieval-Augmented Language Models”,2023 年; arXiv:2302.00083。
- Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P. Xing, Hao Zhang: “MPCFormer:使用 MPC 的快速、高性能和私有的 Transformer 推理”,2022 年; arXiv:2211.01452。
- Baolin Peng, Michel Galley, Pengcheng He, Chris Brockett, Lars Liden, Elnaz Nouri, Zhou Yu, Bill Dolan, Jianfeng Gao: “GODEL:用于目标导向对话的大规模预训练”,2022 年; arXiv:2206.11309。
- Egil Rønningstad, Erik Velldal, Lilja Øvrelid: “Entity-Level Sentiment Analysis (ELSA): An exploratory task survey”,2023 年,第 29 届国际计算语言学会议论文集,2022 年,第 6773-6783 页; arXiv:2304.14241。
- Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, Sergey Levine: “Offline RL for Natural Language Generation with Implicit Language Q Learning”,2022 年; arXiv:2206.11871。
- Zhiruo Wang, Shuyan Zhou, Daniel Fried, Graham Neubig: “Execution-Based Evaluation for Open-Domain Code Generation”,2022 年; arXiv:2212.10481。
- Minh-Long Luu, Zeyi Huang, Eric P. Xing, Yong Jae Lee, Haohan Wang: “Expeditious Saliency-guided Mix-up through Random Gradient Thresholding”,2022 年; arXiv:2212.04875。
- Jun Hao Liew, Hanshu Yan, Daquan Zhou, Jiashi Feng: “MagicMix:使用扩散模型的语义混合”,2022 年; arXiv:2210.16056。
- Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao: “LiST:轻量级提示自训练使参数高效的小样本学习器”,2021 年; arXiv:2110.06274。