Lighteval 文档
在服务器或容器上评估模型
加入 Hugging Face 社区
并获得增强的文档体验
开始入门
在服务器或容器上评估模型
本地启动评估的替代方案是在 TGI 兼容的服务器/容器上部署模型,然后通过向服务器发送请求来运行评估。命令与之前相同,只是您需要指定 yaml 配置文件的路径(详见下文)
lighteval endpoint {tgi,inference-endpoint} \
"/path/to/config/file"\
<task parameters>
有两种类型的配置文件可以用于在服务器上运行
Hugging Face 推理端点
要使用 Hugging Face 的推理端点启动模型,您需要提供以下文件:endpoint_model.yaml。Lighteval 将自动部署端点、运行评估,并在最后删除端点(除非您指定已启动的端点,在这种情况下,端点之后不会被删除)。
配置文件示例
model:
base_params:
# Pass either model_name, or endpoint_name and true reuse_existing
# endpoint_name: "llama-2-7B-lighteval" # needs to be lower case without special characters
# reuse_existing: true # defaults to false; if true, ignore all params in instance, and don't delete the endpoint after evaluation
model_name: "meta-llama/Llama-2-7b-hf"
# revision: "main" # defaults to "main"
dtype: "float16" # can be any of "awq", "eetq", "gptq", "4bit' or "8bit" (will use bitsandbytes), "bfloat16" or "float16"
instance:
accelerator: "gpu"
region: "eu-west-1"
vendor: "aws"
instance_type: "nvidia-a10g"
instance_size: "x1"
framework: "pytorch"
endpoint_type: "protected"
namespace: null # The namespace under which to launch the endpoint. Defaults to the current user's namespace
image_url: null # Optionally specify the docker image to use when launching the endpoint model. E.g., launching models with later releases of the TGI container with support for newer models.
env_vars:
null # Optional environment variables to include when launching the endpoint. e.g., `MAX_INPUT_LENGTH: 2048`
文本生成推理 (TGI)
要使用已部署在 TGI 服务器上的模型,例如在 Hugging Face 的无服务器推理上。
配置文件示例
model:
instance:
inference_server_address: ""
inference_server_auth: null
model_id: null # Optional, only required if the TGI container was launched with model_id pointing to a local directory
OpenAI API
Lighteval 也支持在 OpenAI API 上评估模型。为此,您需要在环境变量中设置您的 OpenAI API 密钥。
export OPENAI_API_KEY={your_key}
然后运行以下命令
lighteval endpoint openai \ {model-name} \ <task parameters>