社区计算机视觉课程文档
Swin Transformer
并获得增强的文档体验
开始使用
Swin Transformer
Swin Transformer 架构在 2021 年的论文 Swin Transformer: Hierarchical Vision Transformer using Shifted Windows 中被提出,它使用移位窗口(而非滑动窗口)方法优化延迟和性能,从而减少所需的操作次数。Swin 被认为是计算机视觉的分层骨干网络。Swin 可以用于图像分类等任务。
在深度学习中,骨干网络是神经网络中执行特征提取的部分。可以在骨干网络上添加额外的层来执行各种视觉任务。分层骨干网络具有分层结构,有时具有不同的分辨率。这与 VitDet 模型中的非分层普通骨干网络形成对比。
主要亮点
移位窗口
在原始的 ViT 中,注意力机制是在每个图像块和所有其他图像块之间进行的,这在计算上变得非常密集。Swin 通过将通常为二次复杂度的 ViT 优化为线性复杂度(相对于图像大小)来优化此过程。Swin 通过使用类似于 CNN 的技术来实现这一点,其中图像块仅关注同一窗口中的其他图像块,而不是所有其他图像块,然后逐渐与相邻图像块合并。这就是使 Swin 成为分层模型的原因。
图片取自 Swin Transformer 论文
优势
计算效率
Swin 比完全基于图像块的方法(如 ViT)性能更高。
大型数据集
SwinV2 是首批 3B 参数模型之一。随着训练规模的扩大,Swin 的性能优于 CNN。大量的参数使得模型能够提高学习能力和更复杂的表征能力。
Swin Transformer V2(论文)
Swin Transformer V2 是一个大型视觉模型,可以支持高达 3B 的参数,并且能够使用高分辨率图像进行训练。它通过稳定训练,将使用低分辨率图像预训练的模型迁移到高分辨率任务,并使用 SimMIM(一种自监督训练方法,可减少训练所需的标记图像数量)来改进原始的 Swin Transformer。
在图像恢复中的应用
SwinIR(论文)
SwinIR 是一个基于 Swin Transformer 的模型,用于将低分辨率图像转换为高分辨率图像。
Swin2SR(论文)
Swin2SR 是另一个图像恢复模型。它是 SwinIR 的改进版本,它结合了 Swin Transformer V2,应用了 Swin V2 的优势,如训练稳定性和更高的图像分辨率容量。
Swin 的 PyTorch 实现概述
下面概述了 原始论文中 Swin 实现 的关键部分
Swin Transformer 类
初始化参数。在各种其他 dropout 和归一化参数中,这些参数包括
window_size
:局部自注意力窗口的大小。ape (bool)
:如果为 True,则将绝对位置嵌入添加到图像块嵌入中。fused_window_process
:可选的硬件优化。
应用图像块嵌入:与 ViT 类似,图像被分割成非重叠的图像块,并使用
Conv2D
线性嵌入。应用位置嵌入:
SwinTransformer
可选择使用绝对位置嵌入 (ape
),添加到图像块嵌入中。绝对位置嵌入通常有助于模型学习使用有关每个图像块的位置信息来做出更明智的预测。应用深度衰减:深度衰减有助于正则化和防止过拟合。深度衰减通常通过在训练期间跳过层来完成。在此 Swin 实现中,使用了随机深度衰减,这意味着层越深,被跳过的机会就越高。
层构建:
- 该模型由多个
SwinTransformerBlock
的层 (BasicLayer
) 组成,每个层都使用PatchMerging
对特征图进行下采样以进行分层处理。 - 特征的维度和特征图的分辨率在各层之间变化。
- 该模型由多个
分类头:与 ViT 类似,它使用多层感知器 (MLP) 头作为最后一步进行分类任务,如
self.head
中定义的那样。
class SwinTransformer(nn.Module):
def __init__(
self,
img_size=224,
patch_size=4,
in_chans=3,
num_classes=1000,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
use_checkpoint=False,
fused_window_process=False,
**kwargs,
):
super().__init__()
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
self.mlp_ratio = mlp_ratio
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None,
)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=0.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(embed_dim * 2**i_layer),
input_resolution=(
patches_resolution[0] // (2**i_layer),
patches_resolution[1] // (2**i_layer),
),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
fused_window_process=fused_window_process,
)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = (
nn.Linear(self.num_features, num_classes)
if num_classes > 0
else nn.Identity()
)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {"absolute_pos_embed"}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {"relative_position_bias_table"}
def forward_features(self, x):
x = self.patch_embed(x)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x)
x = self.norm(x) # B L C
x = self.avgpool(x.transpose(1, 2)) # B C 1
x = torch.flatten(x, 1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
Swin Transformer Block
SwinTransformerBlock
封装了 Swin Transformer 的核心操作:局部窗口注意力和后续的 MLP 处理。它在使 Swin Transformer 能够通过关注局部图像块同时保持学习全局表示的能力来高效处理大型图像方面发挥着关键作用。
层组件:
- 归一化层 1 (
self.norm1
):在注意力机制之前应用。 - 窗口注意力 (
self.attn
):计算局部窗口内的自注意力。 - Drop Path (
self.drop_path
):实现随机深度以进行正则化。 - 归一化层 2 (
self.norm2
):在 MLP 层之前应用。 - MLP (
mlp
):用于处理注意力后特征的多层感知器。 - 注意力掩码 (
self.register_buffer
):注意力掩码在自注意力计算期间使用,以控制窗口化输入中的哪些元素可以相互交互(即,相互关注)。移位窗口方法通过允许一些跨窗口交互来帮助模型捕获更广泛的上下文信息。
Swin Transformer Block 的初始化
class SwinTransformerBlock(nn.Module):
r"""Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False
"""
def __init__(
self,
dim,
input_resolution,
num_heads,
window_size=7,
shift_size=0,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
fused_window_process=False,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim,
window_size=to_2tuple(self.window_size),
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
w_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(
img_mask, self.window_size
) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
attn_mask == 0, float(0.0)
)
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
self.fused_window_process = fused_window_process
### New cell ###
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
if not self.fused_window_process:
shifted_x = torch.roll(
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
)
# partition windows
x_windows = window_partition(
shifted_x, self.window_size
) # nW*B, window_size, window_size, C
else:
x_windows = WindowProcess.apply(
x, B, H, W, C, -self.shift_size, self.window_size
)
else:
shifted_x = x
# partition windows
x_windows = window_partition(
shifted_x, self.window_size
) # nW*B, window_size, window_size, C
x_windows = x_windows.view(
-1, self.window_size * self.window_size, C
) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(
x_windows, mask=self.attn_mask
) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
# reverse cyclic shift
if self.shift_size > 0:
if not self.fused_window_process:
shifted_x = window_reverse(
attn_windows, self.window_size, H, W
) # B H' W' C
x = torch.roll(
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
)
else:
x = WindowProcessReverse.apply(
attn_windows, B, H, W, C, self.shift_size, self.window_size
)
else:
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
x = shifted_x
x = x.view(B, H * W, C)
x = shortcut + self.drop_path(x)
# Feed-forward network (FFN)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
Swin Transformer Block 的前向传播
有 4 个关键步骤
- 循环移位:特征图通过
window_partition
分区为窗口。然后对分区应用循环移位。循环移位是通过将序列中的元素(在本例中为分区)向左或向右移动,并将从一端移出的元素环绕回到另一端来完成的。此过程更改了元素相对于彼此的位置,但保持序列的其他部分完整。例如,如果将序列A、B、C、D
循环向右移动一个位置,则变为D、A、B、C
。
循环移位允许模型捕获相邻窗口之间的关系,从而增强其学习超出单个窗口局部范围的空间上下文的能力。
窗口注意力:使用基于窗口的多头自注意力 (W-MSA) 模块执行注意力。
合并图像块:图像块通过
PatchMerging
合并。反向循环移位:在注意力完成后,通过
reverse_window
撤消窗口分区,并反转循环移位操作,以便特征图保留其原始形式。
class WindowAttention(nn.Module):
"""
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(
self,
dim,
window_size,
num_heads,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=0.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = q @ k.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1,
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
1
).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
窗口注意力
WindowAttention
是一个基于窗口的多头自注意力 (W-MSA) 模块,具有相对位置偏差。这可以用于移位和非移位窗口。
class PatchMerging(nn.Module):
r"""Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
图像块合并层
图像块合并方法用于下采样。它用于减小特征图的空间维度,类似于传统卷积神经网络 (CNN) 中的池化。它通过逐步增加感受野和降低空间分辨率来帮助构建分层特征表示。
from datasets import load_dataset
from transformers import AutoImageProcessor, SwinForImageClassification
import torch
model = SwinForImageClassification.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224"
)
image_processor = AutoImageProcessor.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224"
)
dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]
inputs = image_processor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label_id = logits.argmax(-1).item()
predicted_label_text = model.config.id2label[predicted_label_id]
print(predicted_label_text)
试用
您可以在此处找到 Swin 的 🤗 文档。
使用预训练的 Swin 模型进行分类
以下是如何使用 Swin 模型将猫图像分类为 1,000 个 ImageNet 类之一
from datasets import load_dataset
from transformers import AutoImageProcessor, SwinForImageClassification
import torch
model = SwinForImageClassification.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224"
)
image_processor = AutoImageProcessor.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224"
)
dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]
inputs = image_processor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label_id = logits.argmax(-1).item()
predicted_label_text = model.config.id2label[predicted_label_id]
print(predicted_label_text)