Transformers 文档

视频视觉Transformer (ViViT)

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

视频视觉Transformer (ViViT)

PyTorch FlashAttention SDPA

概述

Vivit 模型由 Anurag Arnab、Mostafa Dehghani、Georg Heigold、Chen Sun、Mario Lučić 和 Cordelia Schmid 在 ViViT: A Video Vision Transformer 中提出。该论文提出了一系列首次成功用于视频理解的纯 Transformer 模型。

论文摘要如下:

我们借鉴了此类模型在图像分类领域的最新成功经验,提出了用于视频分类的纯 Transformer 模型。我们的模型从输入视频中提取时空标记,然后通过一系列 Transformer 层进行编码。为了处理视频中遇到的长序列标记,我们提出了几种高效的模型变体,它们对输入的空间和时间维度进行分解。尽管 Transformer 模型已知仅在有大量训练数据集时才有效,但我们展示了如何有效地在训练期间对模型进行正则化,并利用预训练的图像模型以便在相对较小的数据集上进行训练。我们进行了彻底的消融研究,并在包括 Kinetics 400 和 600、Epic Kitchens、Something-Something v2 和 Moments in Time 在内的多个视频分类基准上取得了最先进的结果,优于之前基于深度 3D 卷积网络的方法。

该模型由 jegormeister 贡献。原始代码(用 JAX 编写)可在 此处 找到。

使用缩放点积注意力 (SDPA)

PyTorch 包含一个原生缩放点积注意力 (SDPA) 运算符,作为 torch.nn.functional 的一部分。此函数包含几种实现,可根据输入和所用硬件进行应用。更多信息请参阅 官方文档GPU 推理 页面。

当实现可用时,SDPA 默认用于 `torch>=2.1.1`,但你也可以在 `from_pretrained()` 中设置 `attn_implementation="sdpa"` 来明确请求使用 SDPA。

from transformers import VivitModel
model = VivitModel.from_pretrained("google/vivit-b-16x2-kinetics400", attn_implementation="sdpa", torch_dtype=torch.float16)
...

为了获得最佳加速效果,我们建议以半精度(例如 `torch.float16` 或 `torch.bfloat16`)加载模型。

在本地基准测试(A100-40GB,PyTorch 2.3.0,操作系统 Ubuntu 22.04)中,使用 float32google/vivit-b-16x2-kinetics400 模型,我们在推理过程中观察到以下加速。

训练

训练步数 批处理大小 是cuda 加速(%) Eager 峰值内存(MB) sdpa 峰值内存 (MB) 内存节省(%)
100 1 True 7.122 2575.28 5932.54 130.364

推理

批次数量 批处理大小 是cuda 是半精度 加速(%) 内存 Eager (MB) 内存 BT (MB) 内存节省 (%)
20 1 True 否 (False) 15.422 715.807 317.079 125.75
20 2 True 否 (False) 17.146 1234.75 447.175 176.122
20 4 True 否 (False) 18.093 2275.82 709.864 220.6
20 8 True 否 (False) 19.284 4358.19 1233.24 253.393

VivitConfig

class transformers.VivitConfig

< >

( image_size = 224 num_frames = 32 tubelet_size = [2, 16, 16] num_channels = 3 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu_fast' hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 initializer_range = 0.02 layer_norm_eps = 1e-06 qkv_bias = True **kwargs )

参数

  • image_size (int, 可选, 默认为 224) — 每张图片的大小(分辨率)。
  • num_frames (int, 可选, 默认为 32) — 每个视频中的帧数。
  • tubelet_size (list[int], 可选, 默认为 [2, 16, 16]) — 每个tubelet的大小(分辨率)。
  • num_channels (int, 可选, 默认为 3) — 输入通道数。
  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化器层的维度。
  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数量。
  • intermediate_size (int, 可选, 默认为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu_fast") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,支持 "gelu""relu""selu""gelu_fast""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.0) — 嵌入、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-06) — 层归一化层使用的 epsilon 值。
  • qkv_bias (bool, 可选, 默认为 True) — 是否为 queries、keys 和 values 添加偏置。

这是用于存储 VivitModel 配置的配置类。它用于根据指定参数实例化 ViViT 模型,定义模型架构。使用默认值实例化配置将产生类似于 ViViT google/vivit-b-16x2-kinetics400 架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import VivitConfig, VivitModel

>>> # Initializing a ViViT google/vivit-b-16x2-kinetics400 style configuration
>>> configuration = VivitConfig()

>>> # Initializing a model (with random weights) from the google/vivit-b-16x2-kinetics400 style configuration
>>> model = VivitModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

VivitImageProcessor

class transformers.VivitImageProcessor

< >

( do_resize: bool = True size: typing.Optional[dict[str, int]] = None resample: Resampling = <Resampling.BILINEAR: 2> do_center_crop: bool = True crop_size: typing.Optional[dict[str, int]] = None do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.00784313725490196 offset: bool = True do_normalize: bool = True image_mean: typing.Union[float, list[float], NoneType] = None image_std: typing.Union[float, list[float], NoneType] = None **kwargs )

参数

  • do_resize (bool, 可选, 默认为 True) — 是否将图像的(高、宽)维度调整到指定的 size。可在 preprocess 方法中的 do_resize 参数覆盖。
  • size (dict[str, int] 可选, 默认为 {"shortest_edge" -- 256}): 调整大小后输出图像的大小。图像的最短边将被调整到 size["shortest_edge"],同时保持原始图像的宽高比。可在 preprocess 方法中的 size 覆盖。
  • resample (PILImageResampling, 可选, 默认为 Resampling.BILINEAR) — 如果调整图像大小,要使用的重采样滤镜。可在 preprocess 方法中的 resample 参数覆盖。
  • do_center_crop (bool, 可选, 默认为 True) — 是否将图像中心裁剪到指定的 crop_size。可在 preprocess 方法中的 do_center_crop 参数覆盖。
  • crop_size (dict[str, int], 可选, 默认为 {"height" -- 224, "width": 224}): 应用中心裁剪后图像的大小。可在 preprocess 方法中的 crop_size 参数覆盖。
  • do_rescale (bool, 可选, 默认为 True) — 是否通过指定的 rescale_factor 对图像进行重新缩放。可在 preprocess 方法中的 do_rescale 参数覆盖。
  • rescale_factor (intfloat, 可选, 默认为 1/127.5) — 如果 do_rescale 设置为 True,用于重新缩放图像的缩放因子。可在 preprocess 方法中的 rescale_factor 参数覆盖。
  • offset (bool, 可选, 默认为 True) — 是否在负向和正向都缩放图像。可在 preprocess 方法中的 offset 参数覆盖。
  • do_normalize (bool, 可选, 默认为 True) — 是否对图像进行归一化。可在 preprocess 方法中的 do_normalize 参数覆盖。
  • image_mean (floatlist[float], 可选, 默认为 IMAGENET_STANDARD_MEAN) — 如果对图像进行归一化,要使用的均值。这是一个浮点数或浮点数列表,其长度与图像中的通道数相同。可在 preprocess 方法中的 image_mean 参数覆盖。
  • image_std (floatlist[float], 可选, 默认为 IMAGENET_STANDARD_STD) — 如果对图像进行归一化,要使用的标准差。这是一个浮点数或浮点数列表,其长度与图像中的通道数相同。可在 preprocess 方法中的 image_std 参数覆盖。

构建一个 Vivit 图像处理器。

预处理

< >

( videos: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']] do_resize: typing.Optional[bool] = None size: typing.Optional[dict[str, int]] = None resample: Resampling = None do_center_crop: typing.Optional[bool] = None crop_size: typing.Optional[dict[str, int]] = None do_rescale: typing.Optional[bool] = None rescale_factor: typing.Optional[float] = None offset: typing.Optional[bool] = None do_normalize: typing.Optional[bool] = None image_mean: typing.Union[float, list[float], NoneType] = None image_std: typing.Union[float, list[float], NoneType] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: ChannelDimension = <ChannelDimension.FIRST: 'channels_first'> input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None )

参数

  • videos (ImageInput) — 要预处理的视频帧。期望单个或批处理的视频帧,像素值范围为 0 到 255。如果传入像素值在 0 到 1 之间的帧,请设置 do_rescale=False
  • do_resize (bool, 可选, 默认为 self.do_resize) — 是否调整图像大小。
  • size (dict[str, int], 可选, 默认为 self.size) — 应用调整大小后图像的大小。
  • resample (PILImageResampling, 可选, 默认为 self.resample) — 如果调整图像大小,要使用的重采样滤镜。这可以是枚举 PILImageResampling 之一,仅在 do_resize 设置为 True 时有效。
  • do_center_crop (bool, 可选, 默认为 self.do_centre_crop) — 是否中心裁剪图像。
  • crop_size (dict[str, int], 可选, 默认为 self.crop_size) — 应用中心裁剪后图像的大小。
  • do_rescale (bool, 可选, 默认为 self.do_rescale) — 如果 offsetTrue,是否将图像值重新缩放到 [-1 - 1],否则重新缩放到 [0, 1]
  • rescale_factor (float, 可选, 默认为 self.rescale_factor) — 如果 do_rescale 设置为 True,按此缩放因子对图像进行重新缩放。
  • offset (bool, 可选, 默认为 self.offset) — 是否在负向和正向都缩放图像。
  • do_normalize (bool, 可选, 默认为 self.do_normalize) — 是否归一化图像。
  • image_mean (floatlist[float], 可选, 默认为 self.image_mean) — 图像均值。
  • image_std (floatlist[float], 可选, 默认为 self.image_std) — 图像标准差。
  • return_tensors (strTensorType, 可选) — 返回张量的类型。可以是以下之一:
    • 未设置: 返回 np.ndarray 列表。
    • TensorType.TENSORFLOW'tf': 返回类型为 tf.Tensor 的批次。
    • TensorType.PYTORCH'pt': 返回类型为 torch.Tensor 的批次。
    • TensorType.NUMPY'np': 返回类型为 np.ndarray 的批次。
    • TensorType.JAX'jax': 返回类型为 jax.numpy.ndarray 的批次。
  • data_format (ChannelDimensionstr, 可选, 默认为 ChannelDimension.FIRST) — 输出图像的通道维度格式。可以是以下之一:
    • ChannelDimension.FIRST: 图像格式为 (num_channels, height, width)。
    • ChannelDimension.LAST: 图像格式为 (height, width, num_channels)。
    • 未设置: 使用输入图像推断的通道维度格式。
  • input_data_format (ChannelDimensionstr, 可选) — 输入图像的通道维度格式。如果未设置,则从输入图像推断通道维度格式。可以是以下之一:
    • "channels_first"ChannelDimension.FIRST: 图像格式为 (num_channels, height, width)。
    • "channels_last"ChannelDimension.LAST: 图像格式为 (height, width, num_channels)。
    • "none"ChannelDimension.NONE: 图像格式为 (height, width)。

预处理一张或一批图像。

VivitModel

class transformers.VivitModel

< >

( config add_pooling_layer = True )

参数

  • config (VivitModel) — 模型配置类,包含模型的所有参数。用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • add_pooling_layer (bool, 可选, 默认为 True) — 是否添加池化层

裸 Vivit 模型,输出原始隐藏状态,顶部没有任何特定头部。

此模型继承自 PreTrainedModel。请查看超类文档,了解库为其所有模型实现的一般方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解所有与一般用法和行为相关的事项。

forward

< >

( pixel_values: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

参数

  • pixel_values (形状为 (batch_size, num_channels, image_size, image_size)torch.FloatTensor, 可选) — 对应输入图像的张量。像素值可以使用 {image_processor_class} 获取。有关详细信息,请参阅 {image_processor_class}.__call__{processor_class} 使用 {image_processor_class} 处理图像)。
  • head_mask (形状为 (num_heads,)(num_layers, num_heads)torch.FloatTensor, 可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择在 [0, 1] 之间:

    • 1 表示头部未被掩盖
    • 0 表示头部被掩盖
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多详情请参阅返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多详情请参阅返回张量中的 hidden_states
  • interpolate_pos_encoding (bool, 默认为 False) — 是否插值预训练的位置编码。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingtorch.FloatTensor 的元组(如果传入 return_dict=False 或当 config.return_dict=False 时),包含根据配置(VivitConfig)和输入而变化的各种元素。

  • last_hidden_state (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (形状为 (batch_size, hidden_size)torch.FloatTensor) — 序列的第一个令牌(分类令牌)的最后一层隐藏状态,经过用于辅助预训练任务的层进一步处理。例如,对于 BERT 家族模型,这将在预训练期间经过线性层和 tanh 激活函数处理后返回分类令牌。线性层权重是在预训练期间从下一个句子预测(分类)目标中训练出来的。

  • hidden_states (tuple(torch.FloatTensor), 可选, 在传入 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层输出,如果模型有嵌入层,+ 一个用于每一层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 在传入 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

VivitModel 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管前向传播的配方需要在此函数中定义,但在此之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默忽略它们。

示例

>>> import av
>>> import numpy as np

>>> from transformers import VivitImageProcessor, VivitModel
>>> from huggingface_hub import hf_hub_download

>>> np.random.seed(0)


>>> def read_video_pyav(container, indices):
...     '''
...     Decode the video with PyAV decoder.
...     Args:
...         container (`av.container.input.InputContainer`): PyAV container.
...         indices (`list[int]`): List of frame indices to decode.
...     Returns:
...         result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
...     '''
...     frames = []
...     container.seek(0)
...     start_index = indices[0]
...     end_index = indices[-1]
...     for i, frame in enumerate(container.decode(video=0)):
...         if i > end_index:
...             break
...         if i >= start_index and i in indices:
...             frames.append(frame)
...     return np.stack([x.to_ndarray(format="rgb24") for x in frames])


>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
...     '''
...     Sample a given number of frame indices from the video.
...     Args:
...         clip_len (`int`): Total number of frames to sample.
...         frame_sample_rate (`int`): Sample every n-th frame.
...         seg_len (`int`): Maximum allowed index of sample's last frame.
...     Returns:
...         indices (`list[int]`): List of sampled frame indices
...     '''
...     converted_len = int(clip_len * frame_sample_rate)
...     end_idx = np.random.randint(converted_len, seg_len)
...     start_idx = end_idx - converted_len
...     indices = np.linspace(start_idx, end_idx, num=clip_len)
...     indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
...     return indices


>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
...     repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)

>>> # sample 32 frames
>>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container=container, indices=indices)

>>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400")
>>> model = VivitModel.from_pretrained("google/vivit-b-16x2-kinetics400")

>>> # prepare video for the model
>>> inputs = image_processor(list(video), return_tensors="pt")

>>> # forward pass
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 3137, 768]

VivitForVideoClassification

class transformers.VivitForVideoClassification

< >

( config )

参数

  • config (VivitForVideoClassification) — 模型配置类,包含模型的所有参数。用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法来加载模型权重。

ViViT Transformer 模型,顶部带有一个视频分类头(在 [CLS] token 的最终隐藏状态之上添加一个线性层),例如用于 Kinetics-400。

请注意,通过在模型的 forward 中将 interpolate_pos_encoding 设置为 True,可以在比其训练图像更高分辨率的图像上微调 ViT。这将把预训练的位置嵌入插值到更高分辨率。

此模型继承自 PreTrainedModel。请查看超类文档,了解库为其所有模型实现的一般方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解所有与一般用法和行为相关的事项。

forward

< >

( pixel_values: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.ImageClassifierOutputtuple(torch.FloatTensor)

参数

  • pixel_values (形状为 (batch_size, num_channels, image_size, image_size)torch.FloatTensor, 可选) — 对应输入图像的张量。像素值可以使用 {image_processor_class} 获取。有关详细信息,请参阅 {image_processor_class}.__call__{processor_class} 使用 {image_processor_class} 处理图像)。
  • head_mask (形状为 (num_heads,)(num_layers, num_heads)torch.FloatTensor, 可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择在 [0, 1] 之间:

    • 1 表示头部未被掩盖
    • 0 表示头部被掩盖
  • labels (形状为 (batch_size,)torch.LongTensor, 可选) — 用于计算图像分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 之间。如果 config.num_labels == 1,则计算回归损失(均方损失);如果 config.num_labels > 1,则计算分类损失(交叉熵)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多详情请参阅返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多详情请参阅返回张量中的 hidden_states
  • interpolate_pos_encoding (bool, 默认为 False) — 是否插值预训练的位置编码。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通的元组。

返回

transformers.modeling_outputs.ImageClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.ImageClassifierOutputtorch.FloatTensor 的元组(如果传入 return_dict=False 或当 config.return_dict=False 时),包含根据配置(VivitConfig)和输入而变化的各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。

  • logits (形状为 (batch_size, config.num_labels)torch.FloatTensor) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 在传入 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层输出,如果模型有嵌入层,+ 一个用于每个阶段的输出),形状为 (batch_size, sequence_length, hidden_size)。模型在每个阶段输出的隐藏状态(也称为特征图)。

  • attentions (tuple(torch.FloatTensor), 可选, 在传入 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每一层一个),形状为 (batch_size, num_heads, patch_size, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

VivitForVideoClassification 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管前向传播的配方需要在此函数中定义,但在此之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默忽略它们。

示例

>>> import av
>>> import numpy as np
>>> import torch

>>> from transformers import VivitImageProcessor, VivitForVideoClassification
>>> from huggingface_hub import hf_hub_download

>>> np.random.seed(0)


>>> def read_video_pyav(container, indices):
...     '''
...     Decode the video with PyAV decoder.
...     Args:
...         container (`av.container.input.InputContainer`): PyAV container.
...         indices (`list[int]`): List of frame indices to decode.
...     Returns:
...         result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
...     '''
...     frames = []
...     container.seek(0)
...     start_index = indices[0]
...     end_index = indices[-1]
...     for i, frame in enumerate(container.decode(video=0)):
...         if i > end_index:
...             break
...         if i >= start_index and i in indices:
...             frames.append(frame)
...     return np.stack([x.to_ndarray(format="rgb24") for x in frames])


>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
...     '''
...     Sample a given number of frame indices from the video.
...     Args:
...         clip_len (`int`): Total number of frames to sample.
...         frame_sample_rate (`int`): Sample every n-th frame.
...         seg_len (`int`): Maximum allowed index of sample's last frame.
...     Returns:
...         indices (`list[int]`): List of sampled frame indices
...     '''
...     converted_len = int(clip_len * frame_sample_rate)
...     end_idx = np.random.randint(converted_len, seg_len)
...     start_idx = end_idx - converted_len
...     indices = np.linspace(start_idx, end_idx, num=clip_len)
...     indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
...     return indices


>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
...     repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)

>>> # sample 32 frames
>>> indices = sample_frame_indices(clip_len=32, frame_sample_rate=4, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container=container, indices=indices)

>>> image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400")
>>> model = VivitForVideoClassification.from_pretrained("google/vivit-b-16x2-kinetics400")

>>> inputs = image_processor(list(video), return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)
...     logits = outputs.logits

>>> # model predicts one of the 400 Kinetics-400 classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
LABEL_116
< > 在 GitHub 上更新