Transformers 文档

ALIGN

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

PyTorch Transformers

ALIGN

ALIGN 在一个包含18亿噪声文本-图像对的数据集上进行预训练,以证明规模可以弥补噪声。它采用双编码器架构,即用于图像的 EfficientNet 和用于文本的 BERT,并使用对比损失将相似的图像-文本嵌入对齐,同时将不同的嵌入推开。经过训练后,ALIGN 可以将任何图像和候选标题编码到共享向量空间中,用于零样本检索或分类,而无需额外标签。这种规模优先的方法降低了数据集整理成本,并为最先进的图像-文本检索和零样本 ImageNet 分类提供了支持。

您可以在 Kakao Brain 组织下找到所有原始 ALIGN 检查点。

点击右侧边栏中的 ALIGN 模型,查看更多关于如何将 ALIGN 应用于不同视觉和文本相关任务的示例。

以下示例演示了使用 PipelineAutoModel 类进行零样本图像分类。

流水线
自动模型
import torch
from transformers import pipeline

pipeline = pipeline(
    task="zero-shot-image-classification",
    model="kakaobrain/align-base",
    device=0,
    torch_dtype=torch.bfloat16
)

candidate_labels = [
    "a photo of a dog",
    "a photo of a cat",
    "a photo of a person"
]

pipeline("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", candidate_labels=candidate_labels)

注意事项

  • ALIGN 将文本和视觉特征投影到潜在空间中,投影后的图像和文本特征之间的点积用作相似度分数。以下示例演示了如何使用 AlignProcessorAlignModel 计算图像-文本相似度分数。

    # Example of using ALIGN for image-text similarity
    from transformers import AlignProcessor, AlignModel
    import torch
    from PIL import Image
    import requests
    from io import BytesIO
    
    # Load processor and model
    processor = AlignProcessor.from_pretrained("kakaobrain/align-base")
    model = AlignModel.from_pretrained("kakaobrain/align-base")
    
    # Download image from URL
    url = "https://huggingface.co/roschmid/dog-races/resolve/main/images/Golden_Retriever.jpg"
    response = requests.get(url)
    image = Image.open(BytesIO(response.content))  # Convert the downloaded bytes to a PIL Image
    
    texts = ["a photo of a cat", "a photo of a dog"]
    
    # Process image and text inputs
    inputs = processor(images=image, text=texts, return_tensors="pt")
    
    # Get the embeddings
    with torch.no_grad():
        outputs = model(**inputs)
    
    image_embeds = outputs.image_embeds
    text_embeds = outputs.text_embeds
    
    # Normalize embeddings for cosine similarity
    image_embeds = image_embeds / image_embeds.norm(dim=1, keepdim=True)
    text_embeds = text_embeds / text_embeds.norm(dim=1, keepdim=True)
    
    # Calculate similarity scores
    similarity_scores = torch.matmul(text_embeds, image_embeds.T)
    
    # Print raw scores
    print("Similarity scores:", similarity_scores)
    
    # Convert to probabilities
    probs = torch.nn.functional.softmax(similarity_scores, dim=0)
    print("Probabilities:", probs)
    
    # Get the most similar text
    most_similar_idx = similarity_scores.argmax().item()
    print(f"Most similar text: '{texts[most_similar_idx]}'")

资源

AlignConfig

class transformers.AlignConfig

< >

( text_config = None vision_config = None projection_dim = 640 temperature_init_value = 1.0 initializer_range = 0.02 **kwargs )

参数

  • text_config (dict, 可选) — 用于初始化 AlignTextConfig 的配置选项字典。
  • vision_config (dict, 可选) — 用于初始化 AlignVisionConfig 的配置选项字典。
  • projection_dim (int, 可选, 默认为 640) — 文本和视觉投影层的维度。
  • temperature_init_value (float, 可选, 默认为 1.0) — *温度* 参数的初始值。默认值与原始 ALIGN 实现中的一致。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • kwargs (可选) — 关键字参数字典。

AlignConfig 是用于存储 AlignModel 配置的配置类。它用于根据指定的参数实例化 ALIGN 模型,定义文本模型和视觉模型配置。使用默认值实例化配置将生成与 ALIGN kakaobrain/align-base 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import AlignConfig, AlignModel

>>> # Initializing a AlignConfig with kakaobrain/align-base style configuration
>>> configuration = AlignConfig()

>>> # Initializing a AlignModel (with random weights) from the kakaobrain/align-base style configuration
>>> model = AlignModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

>>> # We can also initialize a AlignConfig from a AlignTextConfig and a AlignVisionConfig
>>> from transformers import AlignTextConfig, AlignVisionConfig

>>> # Initializing ALIGN Text and Vision configurations
>>> config_text = AlignTextConfig()
>>> config_vision = AlignVisionConfig()

>>> config = AlignConfig.from_text_vision_configs(config_text, config_vision)

from_text_vision_configs

< >

( text_config: AlignTextConfig vision_config: AlignVisionConfig **kwargs ) AlignConfig

返回

AlignConfig

一个配置对象的实例

从 Align 文本模型配置和 Align 视觉模型配置实例化 AlignConfig (或其派生类)。

AlignTextConfig

class transformers.AlignTextConfig

< >

( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' use_cache = True **kwargs )

参数

  • vocab_size (int, 可选, 默认为 30522) — Align 文本模型的词汇表大小。定义了调用 AlignTextModel 时传入的 inputs_ids 可以表示的不同词符的数量。
  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数量。
  • intermediate_size (int, 可选, 默认为 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。
  • hidden_act (strCallable, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu", "relu", "silu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入、编码器和池化器中所有全连接层的丢弃概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的丢弃比率。
  • max_position_embeddings (int, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常设置为较大值以防万一(例如,512、1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 2) — 调用 AlignTextModel 时传入的 token_type_ids 的词汇表大小。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon。
  • pad_token_id (int, 可选, 默认为 0) — 填充词符 ID。
  • position_embedding_type (str, 可选, 默认为 "absolute") — 位置嵌入的类型。选择 "absolute", "relative_key", "relative_key_query" 之一。对于位置嵌入,使用 "absolute"。有关 "relative_key" 的更多信息,请参阅 Self-Attention with Relative Position Representations (Shaw et al.)。有关 "relative_key_query" 的更多信息,请参阅 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的 *方法 4*。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅当 config.is_decoder=True 时相关。

这是用于存储 AlignTextModel 配置的配置类。它用于根据指定的参数实例化 ALIGN 文本编码器,定义模型架构。使用默认值实例化配置将生成与 ALIGN kakaobrain/align-base 架构的文本编码器类似的配置。这里的默认值复制自 BERT。

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import AlignTextConfig, AlignTextModel

>>> # Initializing a AlignTextConfig with kakaobrain/align-base style configuration
>>> configuration = AlignTextConfig()

>>> # Initializing a AlignTextModel (with random weights) from the kakaobrain/align-base style configuration
>>> model = AlignTextModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

AlignVisionConfig

class transformers.AlignVisionConfig

< >

( num_channels: int = 3 image_size: int = 600 width_coefficient: float = 2.0 depth_coefficient: float = 3.1 depth_divisor: int = 8 kernel_sizes: list = [3, 3, 5, 3, 5, 5, 3] in_channels: list = [32, 16, 24, 40, 80, 112, 192] out_channels: list = [16, 24, 40, 80, 112, 192, 320] depthwise_padding: list = [] strides: list = [1, 2, 2, 2, 1, 2, 1] num_block_repeats: list = [1, 2, 2, 3, 3, 4, 1] expand_ratios: list = [1, 6, 6, 6, 6, 6, 6] squeeze_expansion_ratio: float = 0.25 hidden_act: str = 'swish' hidden_dim: int = 2560 pooling_type: str = 'mean' initializer_range: float = 0.02 batch_norm_eps: float = 0.001 batch_norm_momentum: float = 0.99 drop_connect_rate: float = 0.2 **kwargs )

参数

  • num_channels (int, 可选, 默认为 3) — 输入通道的数量。
  • image_size (int, 可选, 默认为 600) — 输入图像大小。
  • width_coefficient (float, 可选, 默认为 2.0) — 每个阶段网络宽度的缩放系数。
  • depth_coefficient (float, 可选, 默认为 3.1) — 每个阶段网络深度的缩放系数。
  • depth_divisor int, 可选, 默认为 8) — 网络宽度的单位。
  • kernel_sizes (list[int], 可选, 默认为 [3, 3, 5, 3, 5, 5, 3]) — 每个块中使用的核大小列表。
  • in_channels (list[int], 可选, 默认为 [32, 16, 24, 40, 80, 112, 192]) — 卷积层在每个块中使用的输入通道大小列表。
  • out_channels (list[int], 可选, 默认为 [16, 24, 40, 80, 112, 192, 320]) — 卷积层在每个块中使用的输出通道大小列表。
  • depthwise_padding (list[int], 可选, 默认为 []) — 带有方形填充的块索引列表。
  • strides (list[int], 可选, 默认为 [1, 2, 2, 2, 1, 2, 1]) — 卷积层在每个块中使用的步幅大小列表。
  • num_block_repeats (list[int], 可选, 默认为 [1, 2, 2, 3, 3, 4, 1]) — 每个块重复的次数列表。
  • expand_ratios (list[int], 可选, 默认为 [1, 6, 6, 6, 6, 6, 6]) — 每个块的缩放系数列表。
  • squeeze_expansion_ratio (float, 可选, 默认为 0.25) — 压缩扩展比。
  • hidden_act (strfunction, 可选, 默认为 "silu") — 每个块中的非线性激活函数(函数或字符串)。如果为字符串,支持 "gelu", "relu", "selu", "gelu_new", "silu""mish"
  • hidden_dim (int, 可选, 默认为 1280) — 分类头之前的层的隐藏维度。
  • pooling_type (strfunction, 可选, 默认为 "mean") — 在密集分类头之前应用的最终池化类型。可用选项为 [`"mean"`, `"max"`]。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • batch_norm_eps (float, 可选, 默认为 1e-3) — 批量归一化层使用的 epsilon。
  • batch_norm_momentum (float, 可选, 默认为 0.99) — 批量归一化层使用的动量。
  • drop_connect_rate (float, 可选, 默认为 0.2) — 跳过连接的丢弃率。

这是一个配置类,用于存储 AlignVisionModel 的配置。它用于根据指定的参数实例化 ALIGN 视觉编码器,定义模型架构。使用默认值实例化配置将生成与 ALIGN kakaobrain/align-base 架构的视觉编码器类似的配置。默认值复制自 EfficientNet (efficientnet-b7)

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import AlignVisionConfig, AlignVisionModel

>>> # Initializing a AlignVisionConfig with kakaobrain/align-base style configuration
>>> configuration = AlignVisionConfig()

>>> # Initializing a AlignVisionModel (with random weights) from the kakaobrain/align-base style configuration
>>> model = AlignVisionModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

AlignProcessor

class transformers.AlignProcessor

< >

( image_processor tokenizer )

参数

  • image_processor (EfficientNetImageProcessor) — 图像处理器是必需的输入。
  • tokenizer ([BertTokenizer, BertTokenizerFast]) — 分词器是必需的输入。

构建一个 ALIGN 处理器,它将 EfficientNetImageProcessorBertTokenizer/BertTokenizerFast 封装成一个单一的处理器,该处理器继承了图像处理器和分词器功能。有关更多信息,请参阅 __call__()decode()。传递 kwargs 的首选方式是每个模态一个字典,请参阅下面的用法示例。

from transformers import AlignProcessor
from PIL import Image
model_id = "kakaobrain/align-base"
processor = AlignProcessor.from_pretrained(model_id)

processor(
    images=your_pil_image,
    text=["What is that?"],
    images_kwargs = {"crop_size": {"height": 224, "width": 224}},
    text_kwargs = {"padding": "do_not_pad"},
    common_kwargs = {"return_tensors": "pt"},
)

batch_decode

< >

( *args **kwargs )

此方法将其所有参数转发至 BertTokenizerFast 的 batch_decode()。有关更多信息,请参阅此方法的文档字符串。

decode

< >

( *args **kwargs )

此方法将其所有参数转发给 BertTokenizerFast 的 decode()。请参阅此方法的文档字符串以获取更多信息。

AlignModel

class transformers.AlignModel

< >

( config: AlignConfig )

参数

  • config (AlignConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。要加载模型权重,请查看 from_pretrained() 方法。

裸 Align 模型,输出原始隐藏状态,顶部没有任何特定头部。

此模型继承自 PreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档中有关一般用法和行为的所有内容。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None pixel_values: typing.Optional[torch.FloatTensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None return_loss: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.align.modeling_align.AlignOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 词汇表中输入序列 token 的索引。默认情况下会忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • pixel_values (torch.FloatTensor 形状为 (batch_size, num_channels, image_size, image_size), 可选) — 对应于输入图像的张量。像素值可以使用 {image_processor_class} 获取。有关详细信息,请参阅 {image_processor_class}.__call__{processor_class} 使用 {image_processor_class} 处理图像)。
  • attention_mask (torch.Tensor 形状为 (batch_size, sequence_length), 可选) — 用于避免对填充 token 索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 token 未被掩盖
    • 0 表示 token 已被掩盖

    什么是注意力掩码?

  • token_type_ids (torch.Tensor 形状为 (batch_size, sequence_length), 可选) — 段落 token 索引,用于指示输入的第一个和第二个部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 ID?

  • position_ids (torch.Tensor 形状为 (batch_size, sequence_length), 可选) — 每个输入序列 token 在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.Tensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被掩盖
    • 0 表示头部已被掩盖
  • inputs_embeds (torch.Tensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 input_ids。如果你想对如何将 input_ids 索引转换为关联向量有比模型内部嵌入查找矩阵更多的控制,这很有用。
  • return_loss (bool, 可选) — 是否返回对比损失。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是纯元组。

返回

transformers.models.align.modeling_align.AlignOutputtuple(torch.FloatTensor)

一个 transformers.models.align.modeling_align.AlignOutput 或一个 torch.FloatTensor 元组(如果传递 return_dict=Falseconfig.return_dict=False 时),包含根据配置(AlignConfig)和输入的不同元素。

  • loss (torch.FloatTensor,形状为 (1,), 可选, 当 return_lossTrue 时返回) — 图像-文本相似度的对比损失。
  • logits_per_image (torch.FloatTensor 形状为 (image_batch_size, text_batch_size)) — image_embedstext_embeds 之间的缩放点积分数。这表示图像-文本相似性分数。
  • logits_per_text (torch.FloatTensor 形状为 (text_batch_size, image_batch_size)) — text_embedsimage_embeds 之间的缩放点积分数。这表示文本-图像相似性分数。
  • text_embeds (torch.FloatTensor 形状为 (batch_size, output_dim) — 通过将投影层应用于 AlignTextModel 的池化输出而获得的文本嵌入。
  • image_embeds (torch.FloatTensor 形状为 (batch_size, output_dim) — AlignVisionModel 的输出。
  • text_model_output (<class '~modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions'>.text_model_output, 默认为 None) — AlignTextModel 的输出。
  • vision_model_output (<class '~modeling_outputs.BaseModelOutputWithPoolingAndNoAttention'>.vision_model_output, 默认为 None) — AlignVisionModel 的输出。

AlignModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传播的配方需要在该函数中定义,但此后应调用 Module 实例,而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则默默忽略它们。

示例

>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AlignModel

>>> model = AlignModel.from_pretrained("kakaobrain/align-base")
>>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> inputs = processor(
...     images=image, text=["a photo of a cat", "a photo of a dog"], return_tensors="pt", padding=True
... )

>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1)  # we can take the softmax to get the label probabilities

get_text_features

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) text_features (torch.FloatTensor 形状为 (batch_size, output_dim)

参数

  • input_ids (torch.Tensor 形状为 (batch_size, sequence_length), 可选) — 词汇表中输入序列 token 的索引。默认情况下会忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor 形状为 (batch_size, sequence_length), 可选) — 用于避免对填充 token 索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 token 未被掩盖
    • 0 表示 token 已被掩盖

    什么是注意力掩码?

  • token_type_ids (torch.Tensor 形状为 (batch_size, sequence_length), 可选) — 段落 token 索引,用于指示输入的第一个和第二个部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 ID?

  • position_ids (torch.Tensor 形状为 (batch_size, sequence_length), 可选) — 每个输入序列 token 在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.Tensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被掩盖
    • 0 表示头部已被掩盖
  • inputs_embeds (torch.Tensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 input_ids。如果你想对如何将 input_ids 索引转换为关联向量有比模型内部嵌入查找矩阵更多的控制,这很有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 对象而不是一个普通元组。

返回

text_features (torch.FloatTensor, 形状为 (batch_size, output_dim)

通过将投影层应用于 AlignTextModel 的池化输出而获得的文本嵌入。

示例

>>> from transformers import AutoTokenizer, AlignModel

>>> model = AlignModel.from_pretrained("kakaobrain/align-base")
>>> tokenizer = AutoTokenizer.from_pretrained("kakaobrain/align-base")

>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)

get_image_features

< >

( pixel_values: typing.Optional[torch.FloatTensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) image_features (torch.FloatTensor of shape (batch_size, output_dim)

参数

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, image_size, image_size), optional) — 对应于输入图像的张量。像素值可以使用 {image_processor_class} 获取。有关详细信息,请参见 {image_processor_class}.__call__{processor_class} 使用 {image_processor_class} 处理图像)。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 对象而不是一个普通元组。

返回

image_features (torch.FloatTensor, 形状为 (batch_size, output_dim)

通过将投影层应用于 AlignVisionModel 的池化输出而获得的图像嵌入。

示例

>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AlignModel

>>> model = AlignModel.from_pretrained("kakaobrain/align-base")
>>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> inputs = processor(images=image, return_tensors="pt")

>>> image_features = model.get_image_features(**inputs)

AlignTextModel

class transformers.AlignTextModel

< >

( config: AlignTextConfig add_pooling_layer: bool = True )

参数

  • config (AlignTextConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • add_pooling_layer (bool, optional, 默认为 True) — 是否添加池化层

没有头部或投影层的 ALIGN 文本模型。

此模型继承自 PreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档中有关一般用法和行为的所有内容。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor of shape (batch_size, sequence_length), optional) — 输入序列标记在词汇表中的索引。默认情况下将忽略填充。

    索引可以使用 AutoTokenizer 获取。有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — 避免对填充标记索引执行注意力操作的掩码。掩码值选择在 [0, 1] 之间:

    • 1 表示未被掩盖的标记,
    • 0 表示被掩盖的标记。

    什么是注意力掩码?

  • token_type_ids (torch.Tensor of shape (batch_size, sequence_length), optional) — 分段标记索引,用于指示输入的第一个和第二个部分。索引选择在 [0, 1] 之间:

    • 0 对应于*句子 A* 标记,
    • 1 对应于*句子 B* 标记。

    什么是标记类型 ID?

  • position_ids (torch.Tensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • head_mask (torch.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择在 [0, 1] 之间:

    • 1 表示头部未被掩盖
    • 0 表示头部被掩盖
  • inputs_embeds (torch.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,除了传递 input_ids 之外,您还可以选择直接传递嵌入表示。如果您希望对如何将 input_ids 索引转换为关联向量(而不是模型的内部嵌入查找矩阵)有更多控制,这会很有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 对象而不是一个普通元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个 torch.FloatTensor 元组(如果传递 return_dict=False 或当 config.return_dict=False 时),包含根据配置 (AlignConfig) 和输入的不同元素。

  • last_hidden_state (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (torch.FloatTensor of shape (batch_size, hidden_size)) — 序列中第一个标记(分类标记)的最后一层隐藏状态,经过用于辅助预训练任务的层进一步处理。例如,对于 BERT 家族的模型,这返回经过线性层和 tanh 激活函数处理后的分类标记。线性层权重在预训练期间通过下一个句子预测(分类)目标进行训练。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个用于嵌入层的输出,加上一个用于每个层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), optional, 当传递 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • past_key_values (Cache, optional, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南

    包含预计算的隐藏状态(自注意力块中的键和值,如果 config.is_encoder_decoder=True,则可选地在交叉注意力块中),可用于(参见 past_key_values 输入)加速顺序解码。

AlignTextModel 前向方法,覆盖了 __call__ 特殊方法。

虽然前向传播的配方需要在该函数中定义,但此后应调用 Module 实例,而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则默默忽略它们。

示例

>>> from transformers import AutoTokenizer, AlignTextModel

>>> model = AlignTextModel.from_pretrained("kakaobrain/align-base")
>>> tokenizer = AutoTokenizer.from_pretrained("kakaobrain/align-base")

>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")

>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output  # pooled (EOS token) states

AlignVisionModel

class transformers.AlignVisionModel

< >

( config: AlignVisionConfig )

参数

  • config (AlignVisionConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。

没有头部或投影层的 ALIGN 视觉模型。

此模型继承自 PreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档中有关一般用法和行为的所有内容。

forward

< >

( pixel_values: typing.Optional[torch.FloatTensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention or tuple(torch.FloatTensor)

参数

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, image_size, image_size), optional) — 对应于输入图像的张量。像素值可以使用 {image_processor_class} 获取。有关详细信息,请参见 {image_processor_class}.__call__{processor_class} 使用 {image_processor_class} 处理图像)。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 对象而不是一个普通元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttentiontuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention 或一个 torch.FloatTensor 元组(如果传递 return_dict=False 或当 config.return_dict=False 时),包含根据配置 (AlignConfig) 和输入的不同元素。

  • last_hidden_state (torch.FloatTensor, 形状为 (batch_size, num_channels, height, width)) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (torch.FloatTensor, 形状为 (batch_size, hidden_size)) — 经过空间维度池化操作后的最后一层隐藏状态。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个用于嵌入层的输出,加上一个用于每个层的输出),形状为 (batch_size, num_channels, height, width)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

AlignVisionModel 前向方法,覆盖了 __call__ 特殊方法。

虽然前向传播的配方需要在该函数中定义,但此后应调用 Module 实例,而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则默默忽略它们。

示例

>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AlignVisionModel

>>> model = AlignVisionModel.from_pretrained("kakaobrain/align-base")
>>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> inputs = processor(images=image, return_tensors="pt")

>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output  # pooled CLS states
< > 在 GitHub 上更新