Transformers 文档
BERT
并获得增强的文档体验
开始使用
BERT
概述
BERT 模型在 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 这篇论文中被提出,作者是 Jacob Devlin、Ming-Wei Chang、Kenton Lee 和 Kristina Toutanova。它是一个双向 Transformer,经过预训练,使用了掩码语言建模目标和在大型语料库上的下一句预测,该语料库包括 Toronto Book Corpus 和维基百科。
论文摘要如下:
我们介绍了一种新的语言表示模型,名为 BERT,它是 Bidirectional Encoder Representations from Transformers 的缩写。与最近的语言表示模型不同,BERT 旨在通过在所有层中联合调节左右上下文,从无标签文本中预训练深度双向表示。因此,预训练的 BERT 模型只需一个额外的输出层即可进行微调,从而为各种任务(如问答和语言推理)创建最先进的模型,而无需进行大量的特定于任务的架构修改。
BERT 在概念上很简单,但在经验上很强大。它在 11 个自然语言处理任务上获得了新的最先进结果,包括将 GLUE 分数提高到 80.5%(绝对改进 7.7 个百分点),MultiNLI 准确率提高到 86.7%(绝对改进 4.6%),SQuAD v1.1 问答测试 F1 提高到 93.2(绝对改进 1.5 个百分点),SQuAD v2.0 测试 F1 提高到 83.1(绝对改进 5.1 个百分点)。
使用技巧
BERT 是一个具有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
BERT 使用掩码语言建模 (MLM) 和下一句预测 (NSP) 目标进行训练。它在预测掩码标记和 NLU 方面很有效,但对于文本生成来说不是最佳选择。
通过使用随机掩码来破坏输入,更准确地说,在预训练期间,给定百分比的标记(通常为 15%)会被掩码,方法是:
- 概率为 0.8 的特殊掩码标记
- 概率为 0.1 的与被掩码标记不同的随机标记
- 概率为 0.1 的相同标记
该模型必须预测原始句子,但还有第二个目标:输入是两个句子 A 和 B(中间用分隔符标记)。句子有 50% 的概率在语料库中是连续的,剩余 50% 的概率是不相关的。模型必须预测句子是否连续。
使用缩放点积注意力 (SDPA)
PyTorch 包含一个原生的缩放点积注意力 (SDPA) 运算符,作为 torch.nn.functional
的一部分。此函数包含多个实现,可以根据输入和使用的硬件应用。有关更多信息,请参阅官方文档或GPU 推理页面。
当实现可用时,torch>=2.1.1
默认使用 SDPA,但您也可以在 from_pretrained()
中设置 attn_implementation="sdpa"
以显式请求使用 SDPA。
from transformers import BertModel
model = BertModel.from_pretrained("bert-base-uncased", torch_dtype=torch.float16, attn_implementation="sdpa")
...
为了获得最佳加速效果,我们建议以半精度加载模型(例如 torch.float16
或 torch.bfloat16
)。
在一个本地基准测试(A100-80GB,CPUx12,RAM 96.6GB,PyTorch 2.2.0,OS Ubuntu 22.04)中使用 float16
,我们看到了以下训练和推理期间的加速效果。
训练
batch_size | seq_len | 每个批次的时间(eager - s) | 每个批次的时间(sdpa - s) | 加速 (%) | Eager 峰值内存 (MB) | sdpa 峰值内存 (MB) | 内存节省 (%) |
---|---|---|---|---|---|---|---|
4 | 256 | 0.023 | 0.017 | 35.472 | 939.213 | 764.834 | 22.800 |
4 | 512 | 0.023 | 0.018 | 23.687 | 1970.447 | 1227.162 | 60.569 |
8 | 256 | 0.023 | 0.018 | 23.491 | 1594.295 | 1226.114 | 30.028 |
8 | 512 | 0.035 | 0.025 | 43.058 | 3629.401 | 2134.262 | 70.054 |
16 | 256 | 0.030 | 0.024 | 25.583 | 2874.426 | 2134.262 | 34.680 |
16 | 512 | 0.064 | 0.044 | 46.223 | 6964.659 | 3961.013 | 75.830 |
推理
batch_size | seq_len | 每个 token 的延迟 eager (ms) | 每个 token 的延迟 SDPA (ms) | 加速 (%) | 内存 eager (MB) | 内存 BT (MB) | 内存节省 (%) |
---|---|---|---|---|---|---|---|
1 | 128 | 5.736 | 4.987 | 15.022 | 282.661 | 282.924 | -0.093 |
1 | 256 | 5.689 | 4.945 | 15.055 | 298.686 | 298.948 | -0.088 |
2 | 128 | 6.154 | 4.982 | 23.521 | 314.523 | 314.785 | -0.083 |
2 | 256 | 6.201 | 4.949 | 25.303 | 347.546 | 347.033 | 0.148 |
4 | 128 | 6.049 | 4.987 | 21.305 | 378.895 | 379.301 | -0.107 |
4 | 256 | 6.285 | 5.364 | 17.166 | 443.209 | 444.382 | -0.264 |
资源
以下是 Hugging Face 官方和社区(🌎 表示)资源的列表,可帮助您开始使用 BERT。如果您有兴趣提交资源以包含在此处,请随时打开 Pull Request,我们将对其进行审核!理想情况下,该资源应展示一些新内容,而不是重复现有资源。
- 一篇关于不同语言的 BERT 文本分类的博客文章。
- 一个关于微调 BERT(及其友元)用于多标签文本分类的 notebook。
- 一个关于如何使用 PyTorch 微调 BERT 用于多标签分类的 notebook。 🌎
- 一个关于如何使用 BERT 预热启动 EncoderDecoder 模型进行摘要的 notebook。
- BertForSequenceClassification 由此示例脚本和notebook支持。
- TFBertForSequenceClassification 由此示例脚本和notebook支持。
- FlaxBertForSequenceClassification 由此示例脚本和notebook支持。
- 文本分类任务指南
- 一篇关于如何使用 Hugging Face Transformers with Keras:微调非英语 BERT 用于命名实体识别 的博客文章。
- 一个 notebook,用于微调 BERT 用于命名实体识别,在 token 化期间仅使用每个单词的第一个 wordpiece 中的单词标签。要将单词的标签传播到所有 wordpiece,请参阅此 notebook 的版本。
- BertForTokenClassification 由此示例脚本和notebook支持。
- TFBertForTokenClassification 由此示例脚本和notebook支持。
- FlaxBertForTokenClassification 由此示例脚本支持。
- Token 分类章节,来自 🤗 Hugging Face 课程。
- Token 分类任务指南
- BertForMaskedLM 由此示例脚本和notebook支持。
- TFBertForMaskedLM 由此示例脚本和notebook支持。
- FlaxBertForMaskedLM 由此示例脚本和notebook支持。
- 掩码语言建模章节,来自 🤗 Hugging Face 课程。
- 掩码语言建模任务指南
- BertForQuestionAnswering 由此示例脚本和notebook支持。
- TFBertForQuestionAnswering 由此示例脚本和notebook支持。
- FlaxBertForQuestionAnswering 由此示例脚本支持。
- 问题解答章节,来自 🤗 Hugging Face 课程。
- 问题解答任务指南
多项选择
⚡️ 推理
- 一篇关于如何使用 Hugging Face Transformers 和 AWS Inferentia 加速 BERT 推理的博客文章。
- 一篇关于如何在 GPU 上使用 DeepSpeed-Inference 加速 BERT 推理的博客文章。
⚙️ 预训练
🚀 部署
- 一篇关于如何使用 Hugging Face Optimum 将 Transformers 转换为 ONNX的博客文章。
- 一篇关于如何为 AWS 上 Habana Gaudi 的 Hugging Face Transformers 设置深度学习环境的博客文章。
- 一篇关于使用 Hugging Face Transformers、Amazon SageMaker 和 Terraform 模块自动缩放 BERT的博客文章。
- 一篇关于使用 HuggingFace、AWS Lambda 和 Docker 的无服务器 BERT的博客文章。
- 一篇关于使用 Amazon SageMaker 和 Training Compiler 微调 Hugging Face Transformers BERT的博客文章。
- 一篇关于使用 Transformers 和 Amazon SageMaker 为 BERT 进行特定任务的知识蒸馏的博客文章。
BertConfig
class transformers.BertConfig
< source >( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 30522) — BERT 模型的词汇表大小。定义了在调用 BertModel 或 TFBertModel 时,可以通过inputs_ids
传递的不同 token 的数量。 - hidden_size (
int
, 可选, 默认为 768) — 编码器层和池化器层的维度。 - num_hidden_layers (
int
, 可选, 默认为 12) — Transformer 编码器中隐藏层的数量。 - num_attention_heads (
int
, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头的数量。 - intermediate_size (
int
, 可选, 默认为 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。 - hidden_act (
str
或Callable
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, 可选, 默认为 0.1) — 嵌入、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。 - max_position_embeddings (
int
, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - type_vocab_size (
int
, 可选, 默认为 2) — 在调用 BertModel 或 TFBertModel 时,可以通过token_type_ids
传递的词汇表大小。 - initializer_range (
float
, optional, defaults to 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, optional, defaults to 1e-12) — layer normalization 层使用的 epsilon 值。 - position_embedding_type (
str
, optional, defaults to"absolute"
) — 位置嵌入类型。 从"absolute"
,"relative_key"
,"relative_key_query"
中选择一个。 对于位置嵌入,请使用"absolute"
。 有关"relative_key"
的更多信息,请参考 Self-Attention with Relative Position Representations (Shaw et al.)。 有关"relative_key_query"
的更多信息,请参考 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的 *Method 4*。 - is_decoder (
bool
, optional, defaults toFalse
) — 模型是否用作解码器。 如果为False
,则模型用作编码器。 - use_cache (
bool
, optional, defaults toTrue
) — 模型是否应该返回最后的键/值注意力(并非所有模型都使用)。 仅当config.is_decoder=True
时相关。 - classifier_dropout (
float
, optional) — 分类头的 dropout 比率。
这是用于存储 BertModel 或 TFBertModel 配置的配置类。 它用于根据指定的参数实例化 BERT 模型,定义模型架构。 使用默认值实例化配置将产生与 BERT google-bert/bert-base-uncased 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 中的文档。
示例
>>> from transformers import BertConfig, BertModel
>>> # Initializing a BERT google-bert/bert-base-uncased style configuration
>>> configuration = BertConfig()
>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
>>> model = BertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
BertTokenizer
class transformers.BertTokenizer
< source >( vocab_file do_lower_case = True do_basic_tokenize = True never_split = None unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None clean_up_tokenization_spaces = True **kwargs )
参数
- vocab_file (
str
) — 包含词汇表的文件。 - do_lower_case (
bool
, optional, defaults toTrue
) — 是否在分词时将输入转换为小写。 - do_basic_tokenize (
bool
, optional, defaults toTrue
) — 是否在 WordPiece 分词之前进行基本分词。 - never_split (
Iterable
, optional) — 在分词期间永远不会被分割的 token 集合。 仅当do_basic_tokenize=True
时有效。 - unk_token (
str
, optional, defaults to"[UNK]"
) — 未知 token。 词汇表中没有的 token 无法转换为 ID,而是设置为此 token。 - sep_token (
str
, optional, defaults to"[SEP]"
) — 分隔符 token,用于从多个序列构建序列时,例如,用于序列分类的两个序列或用于问答的文本和问题。 它也用作使用特殊 token 构建的序列的最后一个 token。 - pad_token (
str
, optional, defaults to"[PAD]"
) — 用于填充的 token,例如,当批量处理不同长度的序列时。 - cls_token (
str
, optional, defaults to"[CLS]"
) — 分类器 token,用于进行序列分类(对整个序列而不是每个 token 进行分类)。 当使用特殊 token 构建时,它是序列的第一个 token。 - mask_token (
str
, optional, defaults to"[MASK]"
) — 用于屏蔽值的 token。 这是使用 masked language modeling 训练此模型时使用的 token。 这是模型将尝试预测的 token。 - tokenize_chinese_chars (
bool
, optional, defaults toTrue
) — 是否对中文字符进行分词。对于日语,这可能应该被禁用(参见此 issue)。
- strip_accents (
bool
, optional) — 是否去除所有重音符号。 如果未指定此选项,则将由lowercase
的值确定(与原始 BERT 中一样)。 - clean_up_tokenization_spaces (
bool
, optional, defaults toTrue
) — 是否在解码后清理空格,清理包括删除潜在的伪像,如多余的空格。
构建 BERT 分词器。 基于 WordPiece。
此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。 用户应参考此超类以获取有关这些方法的更多信息。
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
参数
- token_ids_0 (
List[int]
) — 将向其添加特殊 token 的 ID 列表。 - token_ids_1 (
List[int]
, optional) — 序列对的可选的第二个 ID 列表。
返回
List[int]
带有适当特殊 token 的 输入 ID 列表。
通过连接并添加特殊 token,从序列或序列对构建模型输入,以用于序列分类任务。 BERT 序列具有以下格式:
- 单个序列:
[CLS] X [SEP]
- 序列对:
[CLS] A [SEP] B [SEP]
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → List[int]
从一个没有添加特殊 token 的 token 列表中检索序列 ID。当使用 tokenizer 的 prepare_for_model
方法添加特殊 token 时,会调用此方法。
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
从传递的两个序列创建一个 mask,用于序列对分类任务。 BERT 序列
如果 token_ids_1
为 None
,则此方法仅返回 mask 的第一部分(0)。
BertTokenizerFast
class transformers.BertTokenizerFast
< source >( vocab_file = None tokenizer_file = None do_lower_case = True unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )
参数
- vocab_file (
str
) — 包含词汇表的文件。 - do_lower_case (
bool
, 可选, 默认为True
) — 是否在 token 化时将输入转换为小写。 - unk_token (
str
, 可选, 默认为"[UNK]"
) — 未知 token。词汇表中不存在的 token 无法转换为 ID,而是设置为此 token。 - sep_token (
str
, 可选, 默认为"[SEP]"
) — 分隔符 token,用于从多个序列构建一个序列时,例如,用于序列分类的两个序列,或者用于问答的文本和问题。它也用作使用特殊 token 构建的序列的最后一个 token。 - pad_token (
str
, 可选, 默认为"[PAD]"
) — 用于 padding 的 token,例如在对不同长度的序列进行批处理时。 - cls_token (
str
, 可选, 默认为"[CLS]"
) — 分类器 token,用于进行序列分类(对整个序列而不是每个 token 进行分类)。当使用特殊 token 构建时,它是序列的第一个 token。 - mask_token (
str
, 可选, 默认为"[MASK]"
) — 用于 mask 值的 token。这是使用 masked 语言建模训练此模型时使用的 token。这是模型将尝试预测的 token。 - clean_text (
bool
, 可选, 默认为True
) — 是否在 token 化之前清理文本,方法是删除任何控制字符并将所有空格替换为经典空格。 - tokenize_chinese_chars (
bool
, 可选, 默认为True
) — 是否 token 化中文字符。对于日语,这可能应该被禁用(参见 此 issue)。 - strip_accents (
bool
, 可选) — 是否去除所有重音符号。如果未指定此选项,则将由lowercase
的值确定(与原始 BERT 中一样)。 - wordpieces_prefix (
str
, 可选, 默认为"##"
) — 子词的前缀。
构建一个“快速” BERT tokenizer(由 HuggingFace 的 tokenizers 库支持)。基于 WordPiece。
此 tokenizer 继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此类以获取有关这些方法的更多信息。
build_inputs_with_special_tokens
< source >( token_ids_0 token_ids_1 = None ) → List[int]
通过连接并添加特殊 token,从序列或序列对构建模型输入,以用于序列分类任务。 BERT 序列具有以下格式:
- 单个序列:
[CLS] X [SEP]
- 序列对:
[CLS] A [SEP] B [SEP]
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
从传递的两个序列创建一个 mask,用于序列对分类任务。 BERT 序列
如果 token_ids_1
为 None
,则此方法仅返回 mask 的第一部分(0)。
TFBertTokenizer
class transformers.TFBertTokenizer
< source >( vocab_list: typing.List do_lower_case: bool cls_token_id: int = None sep_token_id: int = None pad_token_id: int = None padding: str = 'longest' truncation: bool = True max_length: int = 512 pad_to_multiple_of: int = None return_token_type_ids: bool = True return_attention_mask: bool = True use_fast_bert_tokenizer: bool = True **tokenizer_kwargs )
参数
- vocab_list (
list
) — 包含词汇表的列表。 - do_lower_case (
bool
, 可选, 默认为True
) — 在分词时是否将输入转换为小写。 - cls_token_id (
str
, 可选, 默认为"[CLS]"
) — 分类器 token,用于进行序列分类(对整个序列而不是每个 token 进行分类)。当使用特殊 token 构建序列时,它是序列的第一个 token。 - sep_token_id (
str
, 可选, 默认为"[SEP]"
) — 分隔符 token,用于从多个序列构建一个序列时,例如序列分类的两个序列或问答的文本和问题。它也用作使用特殊 token 构建的序列的最后一个 token。 - pad_token_id (
str
, 可选, 默认为"[PAD]"
) — 用于填充的 token,例如在对不同长度的序列进行批处理时。 - padding (
str
, 默认为"longest"
) — 要使用的填充类型。可以是"longest"
,仅填充到批次中最长样本的长度,或者“max_length”
,将所有输入填充到 tokenizer 支持的最大长度。 - truncation (
bool
, 可选, 默认为True
) — 是否将序列截断到最大长度。 - max_length (
int
, 可选, 默认为512
) — 序列的最大长度,用于填充(如果padding
为 “max_length”)和/或截断(如果truncation
为True
)。 - pad_to_multiple_of (
int
, 可选, 默认为None
) — 如果设置,序列将被填充到此值的倍数。 - return_token_type_ids (
bool
, 可选, 默认为True
) — 是否返回 token_type_ids。 - return_attention_mask (
bool
, 可选, 默认为True
) — 是否返回 attention_mask。 - use_fast_bert_tokenizer (
bool
, 可选, 默认为True
) — 如果为 True,将使用 Tensorflow Text 的 FastBertTokenizer 类。 如果为 False,将使用 BertTokenizer 类。 BertTokenizer 支持一些额外的选项,但速度较慢,并且无法导出到 TFLite。
这是一个用于 BERT 的图内 tokenizer。 它应该像其他 tokenizer 一样初始化,使用 from_pretrained()
方法。 它也可以使用 from_tokenizer()
方法初始化,该方法从现有的标准 tokenizer 对象导入设置。
与其他 Hugging Face tokenizer 不同,图内 tokenizer 实际上是 Keras 层,旨在在调用模型时运行,而不是在预处理期间运行。 因此,它们比标准 tokenizer 类具有更有限的选项。 当您想要创建一个端到端的模型,该模型直接从 tf.string
输入到输出时,它们最有用。
from_pretrained
< source >( pretrained_model_name_or_path: typing.Union[str, os.PathLike] *init_inputs **kwargs )
从预训练的 tokenizer 实例化一个 TFBertTokenizer
。
from_tokenizer
< source >( tokenizer: PreTrainedTokenizerBase **kwargs )
从现有的 Tokenizer
初始化一个 TFBertTokenizer
。
Bert 特定的输出
class transformers.models.bert.modeling_bert.BertForPreTrainingOutput
< source >( loss: typing.Optional[torch.FloatTensor] = None prediction_logits: FloatTensor = None seq_relationship_logits: FloatTensor = None hidden_states: typing.Optional[typing.Tuple[torch.FloatTensor]] = None attentions: typing.Optional[typing.Tuple[torch.FloatTensor]] = None )
参数
- loss (可选, 当提供
labels
时返回,形状为(1,)
的torch.FloatTensor
) — 总损失,作为 masked language modeling 损失和下一个序列预测(分类)损失的总和。 - prediction_logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头的预测分数(SoftMax 之前每个词汇表 token 的分数)。 - seq_relationship_logits (形状为
(batch_size, 2)
的torch.FloatTensor
) — 下一个序列预测(分类)头的预测分数(SoftMax 之前 True/False 延续的分数)。 - hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(embeddings 的输出一个,每层的输出一个)。模型在每一层输出以及初始 embedding 输出的 hidden states。
- attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。attention softmax 之后的 attention 权重,用于计算 self-attention 头中的加权平均值。
BertForPreTraining 的输出类型。
class transformers.models.bert.modeling_tf_bert.TFBertForPreTrainingOutput
< source >( loss: tf.Tensor | None = None prediction_logits: tf.Tensor = None seq_relationship_logits: tf.Tensor = None hidden_states: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None attentions: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None )
参数
- prediction_logits (形状为
(batch_size, sequence_length, config.vocab_size)
的tf.Tensor
) — 语言建模头的预测分数(SoftMax 之前每个词汇表 token 的分数)。 - seq_relationship_logits (形状为
(batch_size, 2)
的tf.Tensor
) — 下一个序列预测(分类)头的预测分数(SoftMax 之前 True/False 延续的分数)。 - hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(每个层的输出以及初始嵌入输出各有一个)。模型在每一层输出的隐藏状态,加上初始嵌入输出。
- attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每一层各有一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
Output type of TFBertForPreTraining.
class transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput
< source >( prediction_logits: Array = None seq_relationship_logits: Array = None hidden_states: typing.Optional[typing.Tuple[jax.Array]] = None attentions: typing.Optional[typing.Tuple[jax.Array]] = None )
参数
- prediction_logits (
jnp.ndarray
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测得分(SoftMax 之前的每个词汇标记的得分)。 - seq_relationship_logits (
jnp.ndarray
of shape(batch_size, 2)
) — 下一句预测(分类)头的预测得分(SoftMax 之前的 True/False 连续性得分)。 - hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(每个层的输出以及初始嵌入输出各有一个)。模型在每一层输出的隐藏状态,加上初始嵌入输出。
- attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每一层各有一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BertForPreTraining 的输出类型。
“Returns a new object replacing the specified fields with new values.
BertModel
class transformers.BertModel
< source >( config add_pooling_layer = True )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
裸 Bert 模型 Transformer,输出原始隐藏状态,顶部没有任何特定的 head。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
该模型可以充当编码器(仅具有自注意力),也可以充当解码器,在后一种情况下,自注意力层之间会添加一个交叉注意力层,遵循 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin 在 Attention is all you need 中描述的架构。
要充当解码器,需要使用配置的 is_decoder
参数设置为 True
来初始化模型。要在 Seq2Seq 模型中使用,需要使用 is_decoder
参数和 add_cross_attention
都设置为 True
来初始化模型;然后,需要将 encoder_hidden_states
作为前向传递的输入。
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
or(batch_size, sequence_length, target_length)
, optional) — 用于避免在 padding 标记索引上执行注意力的掩码。在[0, 1]
中选择的掩码值:- 1 表示标记未被掩蔽,
- 0 表示标记被掩蔽。
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 分段标记索引,用于指示输入的第一部分和第二部分。在[0, 1]
中选择索引:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于使自注意力模块的选定 head 无效的掩码。在[0, 1]
中选择的掩码值:- 1 表示 head 未被掩蔽,
- 0 表示 head 被掩蔽。
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回的张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回的张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是普通元组。 - encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 编码器最后一层输出端的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
或(batch_size, sequence_length, target_length)
,可选) — 用于避免在编码器输入的填充 token 索引上执行注意力的掩码。如果模型配置为解码器,则此掩码用于交叉注意力。掩码值在[0, 1]
中选择:- 1 表示 未被掩码 的 token,
- 0 表示 被掩码 的 token。
- past_key_values (
tuple(tuple(torch.FloatTensor))
,长度为config.n_layers
,每个元组包含 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
的张量) — 包含注意力模块的预计算的键和值隐藏状态。可用于加速解码。如果使用
past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。
返回
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的输出处的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
,形状为(batch_size, hidden_size)
) — 序列的第一个 token(分类 token)的最后一层隐藏状态,在通过用于辅助预训练任务的层进一步处理之后。例如,对于 BERT 系列模型,这返回通过线性层和 tanh 激活函数处理后的分类 token。线性层权重是从下一句预测(分类)目标在预训练期间训练的。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则为嵌入的输出 + 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
和config.add_cross_attention=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) —tuple(torch.FloatTensor)
的元组,长度为config.n_layers
,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,并且如果config.is_encoder_decoder=True
,则可选地包含 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外张量。包含预计算的隐藏状态(自注意力模块中的键和值,以及可选地,如果
config.is_encoder_decoder=True
,则在交叉注意力模块中),这些状态可以用于(请参阅past_key_values
输入)加速顺序解码。
BertModel 前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BertModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = BertModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
BertForPreTraining
class transformers.BertForPreTraining
< source >( config )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有两个头的 Bert 模型,如预训练期间所做的那样:一个 masked language modeling
头和一个 next sentence prediction (classification)
头。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None next_sentence_label: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.bert.modeling_bert.BertForPreTrainingOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。索引可以使用 AutoTokenizer 获得。请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
或(batch_size, sequence_length, target_length)
,可选) — 用于避免在填充 token 索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示 未被掩码 的 token,
- 0 表示 被掩码 的 token。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选定的 head 失效的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩码,
- 0 表示 head 被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是纯元组。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(请参阅input_ids
文档字符串)。索引设置为-100
的 token 将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的 token 计算。 - next_sentence_label (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算下一序列预测(分类)损失的标签。输入应为序列对(请参阅input_ids
文档字符串)。索引应在[0, 1]
中:- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是随机序列。
- kwargs (
Dict[str, any]
,可选,默认为{}
) — 用于隐藏已弃用的旧参数。
返回
transformers.models.bert.modeling_bert.BertForPreTrainingOutput 或 tuple(torch.FloatTensor)
一个 transformers.models.bert.modeling_bert.BertForPreTrainingOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (可选,当提供
labels
时返回,torch.FloatTensor
,形状为(1,)
) — 总损失,作为掩码语言建模损失和下一序列预测(分类)损失的总和。 -
prediction_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇 token 的分数)。 -
seq_relationship_logits (
torch.FloatTensor
,形状为(batch_size, 2)
) — 下一序列预测(分类)头的预测分数(SoftMax 之前 True/False 延续的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(嵌入的输出一个 + 每个层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BertForPreTraining 前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BertForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = BertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
BertLMHeadModel
类 transformers.BertLMHeadModel
< 源码 >( config )
参数
- config (BertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法以加载模型权重。
Bert 模型,顶部带有用于 CLM 微调的语言建模头。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< 源码 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.List[torch.Tensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **loss_kwargs ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
或(batch_size, sequence_length, target_length)
, 可选) — 用于避免对 padding token 索引执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩码,
- 0 表示 tokens 已被掩码。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — Segment token 索引,用于指示输入的第一个和第二个部分。索引在[0, 1]
中选择:- 0 对应于句子 A token,
- 1 对应于句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于 nullify self-attention 模块中选定 heads 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型的内部 embedding lookup matrix 更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attention tensors。 有关更多详细信息,请参阅返回 tensors 下的 attentions。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。有关更多详细信息,请参阅返回 tensors 下的 hidden_states。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是 plain tuple。 - encoder_hidden_states (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 编码器最后一层输出的 hidden-states 序列。如果模型配置为解码器,则在 cross-attention 中使用。 - encoder_attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对编码器输入的 padding token 索引执行 attention 的掩码。如果模型配置为解码器,则此掩码在 cross-attention 中使用。掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩码,
- 0 表示 tokens 已被掩码。
- labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于计算从左到右的语言建模损失(下一个单词预测)的标签。索引应在[-100, 0, ..., config.vocab_size]
中(参见input_ids
文档字符串)。索引设置为-100
的 tokens 将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的 tokens 计算。 - past_key_values (
tuple(tuple(torch.FloatTensor))
,长度为config.n_layers
,每个 tuple 包含 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
的 tensors) — 包含 attention blocks 的预计算 key 和 value hidden states。可用于加速解码。如果使用
past_key_values
,则用户可以选择仅输入最后一个decoder_input_ids
(那些没有提供给此模型的 past key value states 的 decoder_input_ids),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
key value states,并且可以用于加速解码(请参阅past_key_values
)。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 torch.FloatTensor 的 tuple(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
, 可选, 当labels
被提供时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则为嵌入的输出 + 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的 tuple(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。Attention softmax 之后的 Cross attentions 权重,用于计算 cross-attention heads 中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) —torch.FloatTensor
tuples 的 tuple,长度为config.n_layers
,每个 tuple 包含 self-attention 和 cross-attention 层的缓存 key、value states(如果模型在 encoder-decoder 设置中使用)。仅当config.is_decoder = True
时相关。包含预计算的 hidden-states(attention blocks 中的 key 和 values),可以用于加速顺序解码(参见
past_key_values
输入)。
BertLMHeadModel forward 方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> import torch
>>> from transformers import AutoTokenizer, BertLMHeadModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = BertLMHeadModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits
BertForMaskedLM
类 transformers.BertForMaskedLM
< 源码 >( config )
参数
- config (BertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法以加载模型权重。
Bert 模型,顶部带有语言建模头。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< 源码 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
或(batch_size, sequence_length, target_length)
, 可选) — 掩码以避免对 padding token 索引执行 attention。 掩码值在[0, 1]
中选择:1
表示 未被掩码 的 tokens,0
表示 已被掩码 的 tokens。
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, 可选) — 段 token 索引,用于指示输入的第一个和第二个部分。 索引在[0, 1]
中选择:0
对应于 句子 A token,1
对应于 句子 B token。
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, 可选) — 位置 embeddings 中每个输入序列 token 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
of shape(num_heads,)
或(num_layers, num_heads)
, 可选) — 掩码以使 self-attention 模块的选定 head 无效。 掩码值在[0, 1]
中选择:1
表示 head 未被掩码,0
表示 head 已被掩码。
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部 embedding 查找矩阵更精确地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attention tensors。 有关更多详细信息,请参阅返回的 tensors 下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, 可选) — 用于计算 masked language modeling 损失的标签。 索引应在[-100, 0, ..., config.vocab_size]
中(参见input_ids
文档字符串)。 索引设置为-100
的 Tokens 将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的 tokens 计算。
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或 torch.FloatTensor
的元组(如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (
torch.FloatTensor
of shape(1,)
, 可选, 当提供labels
时返回) — Masked language modeling (MLM) 损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则为嵌入的输出 + 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BertForMaskedLM forward 方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BertForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = BertForMaskedLM.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.88
BertForNextSentencePrediction
class transformers.BertForNextSentencePrediction
< source >( config )
参数
- config (BertConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
带有 next sentence prediction (classification)
head 的 Bert 模型。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.NextSentencePredictorOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
或(batch_size, sequence_length, target_length)
, 可选) — 掩码以避免对 padding token 索引执行 attention。 掩码值在[0, 1]
中选择:1
表示 未被掩码 的 tokens,0
表示 已被掩码 的 tokens。
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, 可选) — 段 token 索引,用于指示输入的第一个和第二个部分。 索引在[0, 1]
中选择:0
对应于 句子 A token,1
对应于 句子 B token。
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, 可选) — 位置 embeddings 中每个输入序列 token 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
of shape(num_heads,)
或(num_layers, num_heads)
, 可选) — 掩码以使 self-attention 模块的选定 head 无效。 掩码值在[0, 1]
中选择:1
表示 head 未被掩码,0
表示 head 已被掩码。
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部 embedding 查找矩阵更精确地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attention tensors。 有关更多详细信息,请参阅返回的 tensors 下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯粹的元组。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算下一句预测(分类)损失的标签。输入应为序列对(参见input_ids
文档字符串)。索引应为[0, 1]
:- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是一个随机序列。
返回
transformers.modeling_outputs.NextSentencePredictorOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.NextSentencePredictorOutput 或者一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或者当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供next_sentence_label
时返回) — 下一句预测(分类)损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, 2)
) — 下一句预测(分类)头的预测分数(SoftMax 之前的 True/False 延续的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则为嵌入的输出 + 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BertForNextSentencePrediction 前向方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BertForNextSentencePrediction
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = BertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
BertForSequenceClassification
class transformers.BertForSequenceClassification
< 源代码 >( config )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有序列分类/回归头的 Bert 模型 Transformer(池化输出之上的线性层),例如用于 GLUE 任务。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< 源代码 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
或(batch_size, sequence_length, target_length)
,可选) — 掩码,用于避免对填充标记索引执行 attention。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 分段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码,用于使自注意力模块的选定 head 失效。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩码,
- 0 表示 head 被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯粹的元组。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。 索引应为[0, ..., config.num_labels - 1]
。 如果config.num_labels == 1
,则计算回归损失(均方误差损失);如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或者一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或者当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则为嵌入的输出 + 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BertForSequenceClassification 前向方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, BertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("textattack/bert-base-uncased-yelp-polarity")
>>> model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-yelp-polarity")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_1'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-yelp-polarity", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.01
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, BertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("textattack/bert-base-uncased-yelp-polarity")
>>> model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-yelp-polarity", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BertForSequenceClassification.from_pretrained(
... "textattack/bert-base-uncased-yelp-polarity", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
BertForMultipleChoice
class transformers.BertForMultipleChoice
< 源代码 >( config )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有多个选择分类头的 Bert 模型(池化输出之上的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< 源代码 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length)
或(batch_size, sequence_length, target_length)
,可选) — 掩码,用于避免对填充标记索引执行 attention。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 分段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 位置嵌入中每个输入序列令牌的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被掩蔽,
- 0 表示头被掩蔽。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是纯元组。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
中,其中num_choices
是输入张量的第二个维度的大小。(请参阅上面的input_ids
)
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为 (1,),可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二个维度。(请参阅上面的 input_ids)。分类得分(在 SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则为嵌入的输出 + 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BertForMultipleChoice 前向方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BertForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = BertForMultipleChoice.from_pretrained("google-bert/bert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
BertForTokenClassification
class transformers.BertForTokenClassification
< source >( config )
参数
- config (BertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
Bert 模型,顶部带有一个令牌分类头(隐藏状态输出之上的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列令牌的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
或(batch_size, sequence_length, target_length)
,可选) — 掩码,以避免在填充令牌索引上执行注意力机制。掩码值在[0, 1]
中选择:- 1 表示令牌未被掩蔽,
- 0 表示令牌被掩蔽。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段令牌索引,用于指示输入的第一个和第二个部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 令牌,
- 1 对应于 句子 B 令牌。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列令牌的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被掩蔽,
- 0 表示头被掩蔽。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是纯元组。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算令牌分类损失的标签。索引应在[0, ..., config.num_labels - 1]
中。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则为嵌入的输出 + 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BertForTokenClassification 前向方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BertForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
>>> model = BertForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.01
BertForQuestionAnswering
class transformers.BertForQuestionAnswering
< source >( config )
参数
- config (BertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有跨度分类头的 Bert 模型,用于抽取式问答任务,例如 SQuAD(在 hidden-states 输出之上添加线性层以计算 span start logits
和 span end logits
)。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None start_positions: typing.Optional[torch.Tensor] = None end_positions: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
或(batch_size, sequence_length, target_length)
,可选) — 掩码,用于避免在 padding token 索引上执行 attention。Mask values selected in[0, 1]
:- 1 表示 tokens 未被掩码,
- 0 表示 tokens 已被掩码。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。索引从[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 tokens 在位置 embeddings 中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于 nullify self-attention 模块中选定 head 的掩码。Mask values selected in[0, 1]
:- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部 embedding lookup matrix 更好地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的 tuple。 - start_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算 token 分类损失的已标记跨度开始位置(索引)的标签。位置被限制在序列的长度 (sequence_length
) 内。序列之外的位置不计入损失计算。 - end_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算 token 分类损失的已标记跨度结束位置(索引)的标签。位置被限制在序列的长度 (sequence_length
) 内。序列之外的位置不计入损失计算。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor
的 tuple(如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度起始得分(在 SoftMax 之前)。 -
end_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度结束得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则为嵌入的输出 + 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BertForQuestionAnswering forward 方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BertForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("deepset/bert-base-cased-squad2")
>>> model = BertForQuestionAnswering.from_pretrained("deepset/bert-base-cased-squad2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
'a nice puppet'
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
7.41
TFBertModel
class transformers.TFBertModel
< source >( config: BertConfig add_pooling_layer: bool = True *inputs **kwargs )
参数
- config (BertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
裸 Bert 模型 Transformer,输出原始隐藏状态,顶部没有任何特定的 head。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 head 等)。
此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、tuple 或 dict 放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。 由于这种支持,当使用 model.fit()
等方法时,事情应该对您“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签! 但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
且不包含其他任何内容的单个张量:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 subclassing 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或 tuple(tf.Tensor)
参数
- input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
、Dict[str, tf.Tensor]
或Dict[str, np.ndarray]
,并且每个示例都必须具有形状(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,用于避免在 padding token 索引上执行 attention。Mask values selected in[0, 1]
:- 1 表示 tokens 未被掩码,
- 0 表示 tokens 已被掩码。
- token_type_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一部分和第二部分的分段 token 索引。索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
np.ndarray
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定 head 的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 head 不被 Mask,
- 0 表示 head 被 Mask。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 此参数只能在即时模式下使用,在图模式下将使用配置中的值。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 此参数只能在即时模式下使用,在图模式下将使用配置中的值。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 此参数可以在即时模式下使用,在图模式下该值将始终设置为 True。 - training (
bool
,可选,默认为 `False`) — 是否在训练模式下使用模型(某些模块(如 dropout 模块)在训练和评估之间具有不同的行为)。 - encoder_hidden_states (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对编码器输入的 padding token 索引执行注意力的 Mask。如果模型配置为解码器,则此 Mask 在交叉注意力中使用。Mask 值在[0, 1]
中选择:- 1 表示 token 不被 Mask,
- 0 表示 token 被 Mask。
- past_key_values (
Tuple[Tuple[tf.Tensor]]
,长度为config.n_layers
) — 包含注意力块的预计算 key 和 value 隐藏状态。 可用于加速解码。 如果使用past_key_values
,则用户可以选择仅输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去的 key value 状态提供给此模型的),而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - use_cache (
bool
,可选,默认为True
) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。在训练期间设置为False
,在生成期间设置为True
返回
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或 tf.Tensor
的元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
last_hidden_state (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
tf.Tensor
,形状为(batch_size, hidden_size)
) — 序列的第一个 token(分类 token)的最后一层隐藏状态,通过线性层和 Tanh 激活函数进一步处理。 线性层权重通过预训练期间的下一句预测(分类)目标进行训练。此输出通常不是输入的语义内容的良好摘要,对于整个输入序列,您通常最好使用隐藏状态序列的平均或池化。
-
past_key_values (
List[tf.Tensor]
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含预计算的 hidden-states(attention blocks 中的 key 和 values),可以用于加速顺序解码(参见
past_key_values
输入)。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —tf.Tensor
的元组(嵌入的输出一个,每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
TFBertModel 前向方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFBertModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFBertModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFBertForPreTraining
class transformers.TFBertForPreTraining
< source >( config: BertConfig *inputs **kwargs )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
带有两个头的 Bert 模型,如预训练期间所做的那样:一个 masked language modeling
头和一个 next sentence prediction (classification)
头。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 head 等)。
此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、tuple 或 dict 放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。 由于这种支持,当使用 model.fit()
等方法时,事情应该对您“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签! 但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
且不包含其他任何内容的单个张量:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 subclassing 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None next_sentence_label: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.models.bert.modeling_tf_bert.TFBertForPreTrainingOutput 或 tuple(tf.Tensor)
参数
- input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
或Dict[str, np.ndarray]
,并且每个示例都必须具有形状(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — Mask,以避免在 padding token 索引上执行注意力机制。Mask 值在[0, 1]
中选择:- 1 表示 token 不被 Mask,
- 0 表示 token 被 Mask。
- token_type_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一部分和第二部分的分段 token 索引。索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
np.ndarray
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定 head 的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 head 不被 Mask,
- 0 表示 head 被 Mask。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 此参数只能在即时模式下使用,在图模式下将使用配置中的值。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 详见返回张量下的hidden_states
以获取更多细节。 此参数只能在即时模式下使用,在图模式下将使用配置中的值。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是纯粹的元组。 此参数可以在即时模式下使用,在图模式下该值将始终设置为 True。 - training (
bool
, optional, defaults to `False“) — 是否在训练模式下使用模型(某些模块如 dropout 模块在训练和评估之间具有不同的行为)。 - labels (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于计算遮蔽语言模型损失的标签。 索引应在[-100, 0, ..., config.vocab_size]
中(请参阅input_ids
文档字符串)。索引设置为-100
的 tokens 将被忽略(遮蔽),损失仅针对标签在[0, ..., config.vocab_size]
中的 tokens 计算。 - next_sentence_label (
tf.Tensor
of shape(batch_size,)
, optional) — 用于计算下一句预测(分类)损失的标签。 输入应为句子对(请参阅input_ids
文档字符串)。 索引应在[0, 1]
中:- 0 表示句子 B 是句子 A 的延续,
- 1 表示句子 B 是一个随机序列。
- kwargs (
Dict[str, any]
, optional, defaults to{}
) — 用于隐藏已被弃用的旧参数。
返回
transformers.models.bert.modeling_tf_bert.TFBertForPreTrainingOutput 或 tuple(tf.Tensor)
一个 transformers.models.bert.modeling_tf_bert.TFBertForPreTrainingOutput 或一个 tf.Tensor
元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
prediction_logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言模型头的预测得分(SoftMax 之前每个词汇表 token 的得分)。 -
seq_relationship_logits (
tf.Tensor
of shape(batch_size, 2)
) — 下一句预测(分类)头的预测得分(SoftMax 之前 True/False 延续的得分)。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —tf.Tensor
的元组(嵌入的输出一个,每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFBertForPreTraining
前向方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFBertForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFBertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
>>> input_ids = tokenizer("Hello, my dog is cute", add_special_tokens=True, return_tensors="tf")
>>> # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_logits, seq_relationship_logits = outputs[:2]
TFBertModelLMHeadModel
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False **kwargs ) → transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或 tuple(tf.Tensor)
返回
transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或一个 tf.Tensor
元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (
tf.Tensor
of shape(n,)
, optional, where n is the number of non-masked labels, returned whenlabels
is provided) — 语言建模损失(用于预测下一个 token)。 -
logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言模型头的预测得分(SoftMax 之前每个词汇表 token 的得分)。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —tf.Tensor
的元组(嵌入的输出一个,每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
List[tf.Tensor]
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含预计算的 hidden-states(attention blocks 中的 key 和 values),可以用于加速顺序解码(参见
past_key_values
输入)。
encoder_hidden_states (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional): 编码器最后一层的输出处的隐藏状态序列。 如果模型配置为解码器,则在交叉注意力中使用。 encoder_attention_mask (tf.Tensor
of shape (batch_size, sequence_length)
, optional): 用于避免对编码器输入的 padding token 索引执行注意力的掩码。 如果模型配置为解码器,则此掩码在交叉注意力中使用。 在 [0, 1]
中选择的掩码值
- 1 表示 未被掩蔽的 token,
- 0 表示 被掩蔽的 token。
past_key_values (Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) 包含注意力块的预计算的键和值隐藏状态。 可用于加速解码。 如果使用 past_key_values
,则用户可以选择仅输入最后一个 decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)形状为 (batch_size, 1)
而不是所有形状为 (batch_size, sequence_length)
的 decoder_input_ids
。 use_cache (bool
, optional, defaults to True
): 如果设置为 True
,则返回 past_key_values
键值状态,并且可以用于加速解码(请参阅 past_key_values
)。 在训练期间设置为 False
,在生成期间设置为 True
。 labels (tf.Tensor
或 np.ndarray
of shape (batch_size, sequence_length)
, optional): 用于计算交叉熵分类损失的标签。 索引应在 [0, ..., config.vocab_size - 1]
中。
示例
>>> from transformers import AutoTokenizer, TFBertLMHeadModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFBertLMHeadModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits
TFBertForMaskedLM
class transformers.TFBertForMaskedLM
< source >( config: BertConfig *inputs **kwargs )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
Bert 模型,顶部带有语言建模头。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 head 等)。
此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、tuple 或 dict 放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。 由于这种支持,当使用 model.fit()
等方法时,事情应该对您“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签! 但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
且不包含其他任何内容的单个张量:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 subclassing 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFMaskedLMOutput 或 tuple(tf.Tensor)
参数
- input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
或Dict[str, np.ndarray]
并且每个示例都必须具有形状(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获取。 有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
np.ndarray
或tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在 padding token 索引上执行注意力的掩码。 在[0, 1]
中选择的掩码值:- 1 表示 未被掩蔽的 tokens,
- 0 表示 被掩蔽的 tokens。
- token_type_ids (
np.ndarray
或tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
np.ndarray
或tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列 token 在位置嵌入中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
np.ndarray
或tf.Tensor
of shape(num_heads,)
或(num_layers, num_heads)
, optional) — 用于置零自注意力模块的选定头的掩码。 在[0, 1]
中选择的掩码值:- 1 表示头 未被掩蔽,
- 0 表示头 被掩蔽。
- inputs_embeds (
np.ndarray
或tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。 详见返回张量下的attentions
以获取更多细节。 此参数只能在即时模式下使用,在图模式下将使用配置中的值。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 详见返回张量下的hidden_states
以了解更多细节。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - return_dict (
bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。 此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。 - training (
bool
, optional, defaults to `False“) — 是否在训练模式下使用模型(某些模块,如 dropout 模块,在训练和评估之间有不同的行为)。 - labels (
tf.Tensor
或np.ndarray
,形状为(batch_size, sequence_length)
, optional) — 用于计算 masked language modeling 损失的标签。 索引应在[-100, 0, ..., config.vocab_size]
中(请参阅input_ids
文档字符串)。 索引设置为-100
的 token 将被忽略(masked),损失仅针对标签在[0, ..., config.vocab_size]
中的 token 计算。
返回
transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个 tf.Tensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (
tf.Tensor
,形状为(n,)
, optional, 其中 n 是非 masked 标签的数量,当提供labels
时返回) — Masked language modeling (MLM) 损失。 -
logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言模型头的预测得分(SoftMax 之前每个词汇表 token 的得分)。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —tf.Tensor
的元组(嵌入的输出一个,每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFBertForMaskedLM
前向方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFBertForMaskedLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFBertForMaskedLM.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> tokenizer.decode(predicted_token_id)
'paris'
TFBertForNextSentencePrediction
class transformers.TFBertForNextSentencePrediction
< source >( config: BertConfig *inputs **kwargs )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法来加载模型权重。
带有 next sentence prediction (classification)
head 的 Bert 模型。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 head 等)。
此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、tuple 或 dict 放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。 由于这种支持,当使用 model.fit()
等方法时,事情应该对您“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签! 但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
且不包含其他任何内容的单个张量:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 subclassing 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None next_sentence_label: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFNextSentencePredictorOutput or tuple(tf.Tensor)
参数
- input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
或Dict[str, np.ndarray]
,并且每个示例都必须具有形状(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode() 了解详情。
- attention_mask (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
, optional) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 token 未被 masked,
- 0 表示 token 已被 masked。
- token_type_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
, optional) — 用于指示输入的第一部分和第二部分的片段 token 索引。 索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
, optional) — 位置嵌入中每个输入序列 token 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
np.ndarray
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
, optional) — 用于 nullify self-attention 模块中选定 head 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 head 未被 masked,
- 0 表示 head 已被 masked。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
, optional) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
, optional) — 是否返回所有 attention 层的 attention 张量。 详见返回张量下的attentions
以了解更多细节。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 详见返回张量下的hidden_states
以了解更多细节。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - return_dict (
bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。 此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。 - training (
bool
, optional, defaults to `False“) — 是否在训练模式下使用模型(某些模块,如 dropout 模块,在训练和评估之间有不同的行为)。
返回
transformers.modeling_tf_outputs.TFNextSentencePredictorOutput or tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFNextSentencePredictorOutput 或一个 tf.Tensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (
tf.Tensor
,形状为(n,)
, optional, 其中 n 是非 masked 标签的数量,当提供next_sentence_label
时返回) — 下一句预测损失。 -
logits (
tf.Tensor
,形状为(batch_size, 2)
) — 下一句预测(分类)头的预测分数(SoftMax 之前的 True/False 延续的分数)。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —tf.Tensor
的元组(嵌入的输出一个,每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFBertForNextSentencePrediction
前向方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFBertForNextSentencePrediction
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFBertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf")
>>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0]
>>> assert logits[0][0] < logits[0][1] # the next sentence was random
TFBertForSequenceClassification
class transformers.TFBertForSequenceClassification
< source >( config: BertConfig *inputs **kwargs )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法来加载模型权重。
带有序列分类/回归头的 Bert 模型 Transformer(池化输出之上的线性层),例如用于 GLUE 任务。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 head 等)。
此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、tuple 或 dict 放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。 由于这种支持,当使用 model.fit()
等方法时,事情应该对您“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签! 但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
且不包含其他任何内容的单个张量:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 subclassing 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)
参数
- input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
或Dict[str, np.ndarray]
,并且每个示例都必须具有形状(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode() 了解详情。
- attention_mask (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被 mask,
- 0 表示 tokens 已被 mask。
- token_type_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — Segment token indices 用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
np.ndarray
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于 nullify self-attention 模块中选定 head 的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 head 未被 mask,
- 0 表示 head 已被 mask。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的attentions
。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是 plain tuple。 此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。 - training (
bool
, 可选, 默认为 `False`) — 是否在 training 模式下使用模型(某些模块(如 dropout 模块)在 training 和 evaluation 之间具有不同的行为)。 - labels (
tf.Tensor
或np.ndarray
,形状为(batch_size,)
, 可选) — 用于计算序列分类/回归损失的标签。索引应为[0, ..., config.num_labels - 1]
。如果config.num_labels == 1
,则计算回归损失(均方误差损失),如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个 tf.Tensor
的 tuple (如果传递了 return_dict=False
或当 config.return_dict=False
时),包括各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (
tf.Tensor
,形状为(batch_size, )
, 可选, 当提供labels
时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。 -
logits (
tf.Tensor
,形状为(batch_size, config.num_labels)
) — 分类得分(如果 config.num_labels==1,则为回归得分)(在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —tf.Tensor
的元组(嵌入的输出一个,每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFBertForSequenceClassification forward 方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFBertForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/bert-base-uncased-yelp-polarity")
>>> model = TFBertForSequenceClassification.from_pretrained("ydshieh/bert-base-uncased-yelp-polarity")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'LABEL_1'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFBertForSequenceClassification.from_pretrained("ydshieh/bert-base-uncased-yelp-polarity", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(float(loss), 2)
0.01
TFBertForMultipleChoice
class transformers.TFBertForMultipleChoice
< source >( config: BertConfig *inputs **kwargs )
参数
- config (BertConfig) — 模型配置类,其中包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有多个选择分类头的 Bert 模型(池化输出之上的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 head 等)。
此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、tuple 或 dict 放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。 由于这种支持,当使用 model.fit()
等方法时,事情应该对您“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签! 但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
且不包含其他任何内容的单个张量:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 subclassing 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)
参数
- input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
或Dict[str, np.ndarray]
并且每个示例都必须具有形状(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode() 。
- attention_mask (
np.ndarray
或tf.Tensor
,形状为(batch_size, num_choices, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被 mask,
- 0 表示 tokens 已被 mask。
- token_type_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, num_choices, sequence_length)
, 可选) — Segment token indices 用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, num_choices, sequence_length)
, 可选) — 位置嵌入中每个输入序列 tokens 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
np.ndarray
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于 nullify self-attention 模块中选定 head 的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 head 未被 mask,
- 0 表示 head 已被 mask。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形状为(batch_size, num_choices, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的attentions
。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是 plain tuple。 此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。 - training (
bool
, 可选, 默认为 `False`) — 是否在训练模式下使用模型(某些模块,如 dropout 模块,在训练和评估之间有不同的行为)。 - labels (
tf.Tensor
或np.ndarray
,形状为(batch_size,)
, 可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices]
范围内,其中num_choices
是输入张量第二维的大小。(参见上面的input_ids
)
返回
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一个 tf.Tensor
元组 (如果传递了 return_dict=False
或者当 config.return_dict=False
时),其中包含取决于配置 (BertConfig) 和输入的各种元素。
-
loss (
tf.Tensor
,形状为 (batch_size, ), 可选, 当提供labels
时返回) — 分类损失。 -
logits (
tf.Tensor
,形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二维。(参见上面的 input_ids)。分类得分(在 SoftMax 之前)。
-
hidden_states (
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —tf.Tensor
的元组(嵌入的输出一个,每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
The TFBertForMultipleChoice forward 方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFBertForMultipleChoice
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFBertForMultipleChoice.from_pretrained("google-bert/bert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits
TFBertForTokenClassification
class transformers.TFBertForTokenClassification
< source >( config: BertConfig *inputs **kwargs )
参数
- config (BertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
Bert 模型,顶部带有一个令牌分类头(隐藏状态输出之上的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 head 等)。
此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、tuple 或 dict 放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。 由于这种支持,当使用 model.fit()
等方法时,事情应该对您“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签! 但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
且不包含其他任何内容的单个张量:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 subclassing 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)
参数
- input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
、`Dict[str, tf.Tensor]
或Dict[str, np.ndarray]
,并且每个示例必须具有形状(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对 padding token 索引执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
- token_type_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 分段 token 索引,用于指示输入的第一个和第二个部分。索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
np.ndarray
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于使 self-attention 模块的选定 head 无效的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的attentions
。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯元组。 此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。 - training (
bool
, 可选, 默认为 `False`) — 是否在训练模式下使用模型(某些模块,如 dropout 模块,在训练和评估之间有不同的行为)。 - labels (
tf.Tensor
或np.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 用于计算 token 分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。
返回
transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个 tf.Tensor
元组 (如果传递了 return_dict=False
或者当 config.return_dict=False
时),其中包含取决于配置 (BertConfig) 和输入的各种元素。
-
loss (
tf.Tensor
,形状为(n,)
, 可选, 其中 n 是未掩盖标签的数量,当提供labels
时返回) — 分类损失。 -
logits (
tf.Tensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分 (在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —tf.Tensor
的元组(嵌入的输出一个,每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
The TFBertForTokenClassification forward 方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFBertForTokenClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
>>> model = TFBertForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )
>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_tokens_classes
['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']
TFBertForQuestionAnswering
class transformers.TFBertForQuestionAnswering
< source >( config: BertConfig *inputs **kwargs )
参数
- config (BertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
Bert 模型,顶部带有 span 分类头,用于抽取式问答任务,如 SQuAD(hidden-states 输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 head 等)。
此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、tuple 或 dict 放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。 由于这种支持,当使用 model.fit()
等方法时,事情应该对您“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签! 但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
且不包含其他任何内容的单个张量:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 subclassing 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)
参数
- input_ids (
np.ndarray
,tf.Tensor
,List[tf.Tensor]
`Dict[str, tf.Tensor]
或Dict[str, np.ndarray]
,并且每个示例必须具有形状(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
- token_type_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — Segment token 索引,用于指示输入的第一个和第二个部分。 索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
np.ndarray
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于 nullify self-attention 模块中选定 head 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回 tensors 下的attentions
。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回 tensors 下的hidden_states
。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通 tuple。 此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。 - training (
bool
,可选,默认为 `False`) — 是否在训练模式下使用模型(某些模块(如 dropout 模块)在训练和评估之间具有不同的行为)。 - start_positions (
tf.Tensor
或np.ndarray
,形状为(batch_size,)
,可选) — 用于计算 token 分类损失的标签跨度的起始位置(索引)的标签。 位置被限制为序列的长度 (sequence_length
)。 序列之外的位置不计入损失计算。 - end_positions (
tf.Tensor
或np.ndarray
,形状为(batch_size,)
,可选) — 用于计算 token 分类损失的标签跨度的结束位置(索引)的标签。 位置被限制为序列的长度 (sequence_length
)。 序列之外的位置不计入损失计算。
返回
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tf.Tensor
的 tuple(如果传递 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
loss (
tf.Tensor
,形状为(batch_size, )
,可选,当提供start_positions
和end_positions
时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵损失之和。 -
start_logits (
tf.Tensor
,形状为(batch_size, sequence_length)
) — 跨度起始得分(在 SoftMax 之前)。 -
end_logits (
tf.Tensor
,形状为(batch_size, sequence_length)
) — 跨度结束得分(在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —tf.Tensor
的元组(嵌入的输出一个,每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFBertForQuestionAnswering forward 方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFBertForQuestionAnswering
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/bert-base-cased-squad2")
>>> model = TFBertForQuestionAnswering.from_pretrained("ydshieh/bert-base-cased-squad2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
'a nice puppet'
FlaxBertModel
class transformers.FlaxBertModel
< source >( config: BertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,而只会加载配置。 查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
,可选,默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,则所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
- dtype (
jax.numpy.dtype
,可选,默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,则所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
裸 Bert 模型 Transformer,输出原始隐藏状态,顶部没有任何特定的 head。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
- token_type_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
,可选) — Segment token 索引,用于指示输入的第一个和第二个部分。 索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
,可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
,optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是纯粹的元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型最后一层的输出处的隐藏状态序列。 -
pooler_output (形状为
(batch_size, hidden_size)
的jnp.ndarray
) — 序列的第一个 token(分类 token)的最后一层隐藏状态,通过线性层和 Tanh 激活函数进一步处理。线性层权重从预训练期间的下一句预测(分类)目标中训练而来。 -
hidden_states (
tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBertPreTrainedModel
的前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBertModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = FlaxBertModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxBertForPreTraining
class transformers.FlaxBertForPreTraining
< source >( config: BertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, optional, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
- dtype (
jax.numpy.dtype
, optional, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
带有两个头的 Bert 模型,如预训练期间所做的那样:一个 masked language modeling
头和一个 next sentence prediction (classification)
头。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) → transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
) — 输入序列 token 在词汇表中的索引。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 了解详情。
- attention_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
, optional) — 掩码,以避免在 padding token 索引上执行 attention。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
- token_type_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, optional) — 分段 token 索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, optional) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
,optional) -- 用于置空 attention 模块中选定 head 的掩码。掩码值在
[0, 1]` 中选择:- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是纯粹的元组。
返回
transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput 或 tuple(torch.FloatTensor)
一个 transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput 或一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
prediction_logits (形状为
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 语言建模 head 的预测得分(SoftMax 之前每个词汇表 token 的得分)。 -
seq_relationship_logits (形状为
(batch_size, 2)
的jnp.ndarray
) — 下一句预测(分类)head 的预测得分(SoftMax 之前 True/False 延续的得分)。 -
hidden_states (
tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBertPreTrainedModel
的前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBertForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = FlaxBertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
FlaxBertForCausalLM
class transformers.FlaxBertForCausalLM
< source >( config: BertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, optional, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
- dtype (
jax.numpy.dtype
, optional, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
带有语言建模 head 的 Bert 模型(隐藏状态输出顶部的线性层),例如用于自回归任务。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
) — 输入序列 token 在词汇表中的索引。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 了解详情。
- attention_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
, optional) — 掩码,以避免在 padding token 索引上执行 attention。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
- token_type_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, optional) — 分段 token 索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, optional) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
,optional) -- 用于置空 attention 模块中选定 head 的掩码。掩码值在
[0, 1]` 中选择:- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是纯粹的元组。
返回
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
的元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 语言建模头的预测分数 (SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。Attention softmax 之后的 Cross attentions 权重,用于计算 cross-attention heads 中的加权平均值。
-
past_key_values (
tuple(tuple(jnp.ndarray))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的jnp.ndarray
元组的元组,每个元组包含自注意力机制和交叉注意力机制层的缓存键、值状态 (如果模型用于编码器-解码器设置中)。仅当config.is_decoder = True
时相关。包含预计算的 hidden-states(attention blocks 中的 key 和 values),可以用于加速顺序解码(参见
past_key_values
输入)。
FlaxBertPreTrainedModel
的前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBertForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = FlaxBertForCausalLM.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]
FlaxBertForMaskedLM
class transformers.FlaxBertForMaskedLM
< source >( config: BertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
Bert 模型,顶部带有语言建模头。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 了解详细信息。
- attention_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 掩码,用于避免在填充标记索引上执行注意力机制。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- token_type_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 分段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- position_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
,可选
) -- 用于置空注意力模块中选定头的掩码。掩码值在 [0, 1]` 中选择:- 1 表示头未被掩码,
- 0 表示头被掩码。
- return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个 torch.FloatTensor
的元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 语言建模头的预测分数 (SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBertPreTrainedModel
的前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBertForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = FlaxBertForMaskedLM.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxBertForNextSentencePrediction
class transformers.FlaxBertForNextSentencePrediction
< source >( config: BertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
带有 next sentence prediction (classification)
head 的 Bert 模型。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxNextSentencePredictorOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 了解详细信息。
- attention_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 掩码,用于避免在填充标记索引上执行注意力机制。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- token_type_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 分段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
,optional) --
用于置空注意力模块中选定 head 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head **不被掩盖**,
- 0 表示 head **被掩盖**。
- return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是纯粹的元组。
返回
transformers.modeling_flax_outputs.FlaxNextSentencePredictorOutput or tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxNextSentencePredictorOutput 或一个 torch.FloatTensor
元组 (如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
logits (形状为
(batch_size, 2)
的jnp.ndarray
) — 下一句预测(分类)头的预测得分(SoftMax 之前的 True/False 延续得分)。 -
hidden_states (
tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBertPreTrainedModel
的前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBertForNextSentencePrediction
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = FlaxBertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="jax")
>>> outputs = model(**encoding)
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
FlaxBertForSequenceClassification
class transformers.FlaxBertForSequenceClassification
< 源代码 >( config: BertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
- dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
带有序列分类/回归头的 Bert 模型 Transformer(池化输出之上的线性层),例如用于 GLUE 任务。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
) — 词汇表中输入序列 token 的索引。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的 `numpy.ndarray`,*可选*) — 用于避免对 padding token 索引执行注意力的掩码。掩码值在 `[0, 1]` 中选择:- 1 表示 token **不被掩盖**,
- 0 表示 token **被掩盖**。
- token_type_ids (形状为
(batch_size, sequence_length)
的 `numpy.ndarray`,*可选*) — 分段 token 索引,用于指示输入的第一个和第二个部分。索引在 `[0, 1]` 中选择:- 0 对应于 *句子 A* token,
- 1 对应于 *句子 B* token。
- position_ids (形状为
(batch_size, sequence_length)
的 `numpy.ndarray`,*可选*) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (形状为
(batch_size, sequence_length)
的 `numpy.ndarray`,optional) --
用于置空注意力模块中选定 head 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head **不被掩盖**,
- 0 表示 head **被掩盖**。
- return_dict (`bool`,*可选*) — 是否返回 ModelOutput 而不是纯粹的元组。
返回
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个 torch.FloatTensor
元组 (如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
logits (形状为
(batch_size, config.num_labels)
的 `jnp.ndarray`) — 分类(或回归,如果 config.num_labels==1)得分(SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBertPreTrainedModel
的前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = FlaxBertForSequenceClassification.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxBertForMultipleChoice
class transformers.FlaxBertForMultipleChoice
< 源代码 >( config: BertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
- dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
带有多个选择分类头的 Bert 模型(池化输出之上的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, num_choices, sequence_length)
的 `numpy.ndarray`) — 词汇表中输入序列 token 的索引。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
, 形状为(batch_size, num_choices, sequence_length)
, 可选) — 用于避免在填充 token 索引上执行 attention 的掩码。 掩码值选自[0, 1]
:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
- token_type_ids (
numpy.ndarray
, 形状为(batch_size, num_choices, sequence_length)
, 可选) — 用于指示输入的第一部分和第二部分的片段 token 索引。 索引选自[0, 1]
:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
numpy.ndarray
, 形状为(batch_size, num_choices, sequence_length)
, 可选) — 每个输入序列 token 在位置嵌入中的位置索引。 选自范围[0, config.max_position_embeddings - 1]
。 - head_mask (
numpy.ndarray
, 形状为(batch_size, num_choices, sequence_length)
,optional) -- 用于置空 attention 模块中选定 head 的掩码。 掩码值选自
[0, 1]`:- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯元组。
返回
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
logits (
jnp.ndarray
, 形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二个维度。(参见上面的 input_ids)。分类得分(在 SoftMax 之前)。
-
hidden_states (
tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBertPreTrainedModel
的前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBertForMultipleChoice
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = FlaxBertForMultipleChoice.from_pretrained("google-bert/bert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})
>>> logits = outputs.logits
FlaxBertForTokenClassification
class transformers.FlaxBertForTokenClassification
< source >( config: BertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
,jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
,jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
Bert 模型,顶部带有一个令牌分类头(隐藏状态输出之上的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
, 形状为(batch_size, sequence_length)
) — 输入序列 token 在词汇表中的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
, 形状为(batch_size, sequence_length)
, 可选) — 用于避免在填充 token 索引上执行 attention 的掩码。 掩码值选自[0, 1]
:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
- token_type_ids (
numpy.ndarray
, 形状为(batch_size, sequence_length)
, 可选) — 用于指示输入的第一部分和第二部分的片段 token 索引。 索引选自[0, 1]
:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
numpy.ndarray
, 形状为(batch_size, sequence_length)
, 可选) — 每个输入序列 token 在位置嵌入中的位置索引。 选自范围[0, config.max_position_embeddings - 1]
。 - head_mask (
numpy.ndarray
, 形状为(batch_size, sequence_length)
,optional) -- 用于置空 attention 模块中选定 head 的掩码。 掩码值选自
[0, 1]`:- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯元组。
返回
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
logits (
jnp.ndarray
, 形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分 (在 SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBertPreTrainedModel
的前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBertForTokenClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = FlaxBertForTokenClassification.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxBertForQuestionAnswering
class transformers.FlaxBertForQuestionAnswering
< source >( config: BertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BertConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
,jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
,jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
带有跨度分类头的 Bert 模型,用于抽取式问答任务,例如 SQuAD(在 hidden-states 输出之上添加线性层以计算 span start logits
和 span end logits
)。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
, 形状为(batch_size, sequence_length)
) — 输入序列 token 在词汇表中的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
, 形状为(batch_size, sequence_length)
, 可选) — 用于避免在填充 token 索引上执行 attention 的掩码。 掩码值选自[0, 1]
:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 片段 token 索引,用于指示输入的第一个和第二个部分。索引从[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。从范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,optional) -- 用于 nullify 所选注意力模块的 head 的 Mask。Mask 值从
[0, 1]` 中选择:- 1 表示 head 不被 mask,
- 0 表示 head 被 mask。
- return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BertConfig) 和输入。
-
start_logits (
jnp.ndarray
,形状为(batch_size, sequence_length)
) — 跨度起始位置得分(SoftMax 之前)。 -
end_logits (
jnp.ndarray
,形状为(batch_size, sequence_length)
) — 跨度结束位置得分(SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBertPreTrainedModel
的前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应在此之后调用 Module
实例,而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBertForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = FlaxBertForQuestionAnswering.from_pretrained("google-bert/bert-base-uncased")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits