BLOOM
概述
BLOOM 模型及其各种版本已通过 BigScience 工作坊 提出。BigScience 受其他开放科学计划的启发,在这些计划中,研究人员共同投入时间和资源,以实现更高的影响力。BLOOM 的架构与 GPT3(用于下一个标记预测的自回归模型)基本相似,但已在 46 种不同的语言和 13 种编程语言上进行了训练。一些较小的模型版本已在同一数据集上进行了训练。BLOOM 提供以下版本
资源
一系列官方 Hugging Face 和社区(由 🌎 表示)资源,可帮助您开始使用 BLOOM。如果您有兴趣提交要在此处包含的资源,请随时打开一个 Pull Request,我们会对其进行审查!该资源理想情况下应展示一些新内容,而不是重复现有的资源。
- BloomForCausalLM 受此 因果语言建模示例脚本 和 笔记本 支持。
另请参阅
⚡️ 推理
- 一篇关于 优化故事:BLOOM 推理 的博客。
- 一篇关于 使用 DeepSpeed 和 Accelerate 实现极速 BLOOM 推理 的博客。
⚙️ 训练
- 一篇关于 BLOOM 训练背后的技术 的博客。
BloomConfig
class transformers.BloomConfig
< 源代码 >( vocab_size = 250880 hidden_size = 64 n_layer = 2 n_head = 8 layer_norm_epsilon = 1e-05 initializer_range = 0.02 use_cache = True bos_token_id = 1 eos_token_id = 2 apply_residual_connection_post_layernorm = False hidden_dropout = 0.0 attention_dropout = 0.0 pretraining_tp = 1 slow_but_exact = False **kwargs )
参数
- vocab_size (
int
, 可选,默认为 250880) — Bloom 模型的词汇量大小。定义了调用 BloomModel 时传递的inputs_ids
可以表示的不同标记的最大数量。查看 此讨论 以了解vocab_size
的定义方式。 - hidden_size (
int
, 可选,默认为 64) — 嵌入和隐藏状态的维度。 - n_layer (
int
, 可选,默认为 2) — Transformer 编码器中隐藏层的数量。 - initializer_range (
float
,可选,默认为 0.02) — 初始化所有权重矩阵的截断正态分布初始化器的标准差。 - apply_residual_connection_post_layernorm (
bool
,可选,默认为False
) — 如果启用,则在 Transformer 块中使用隐藏状态的层归一化作为残差 - hidden_dropout (
float
,可选,默认为 0.1) — 偏置 dropout 上的 dropout 函数的 dropout 率。 - attention_dropout (
float
,可选,默认为 0.1) — 应用于注意力概率的 dropout 率 - use_cache (
bool
,可选,默认为True
) — 模型是否应该返回最后的键/值注意力(并非所有模型都使用)。 - pretraining_tp (
int
,可选,默认为1
) — 实验性功能。使用 Megatron 进行预训练时使用的张量并行秩。请参阅 本文档 以了解更多信息。此值对于确保预训练结果的精确可重复性是必要的。请参阅 此问题。另请注意,仅当slow_but_exact=True
时才启用此功能。 - slow_but_exact (
bool
,可选,默认为False
) — 实验性功能。是否使用注意力机制的缓慢但精确的实现。在合并 TP 秩张量时,由于切片操作,在 Megatron 上训练的模型和我们的模型之间结果可能略有不同。请参阅 此问题。获得更准确结果的解决方案是启用此功能。启用此功能会影响推理的计算时间。一旦主模型使用 TP_rank=1 进行了微调,未来可能会解决此问题。
这是用于存储 BloomModel 配置的配置类。它用于根据指定的参数实例化 Bloom 模型,定义模型架构。使用默认值实例化配置将产生与 Bloom 架构 bigscience/bloom 类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以了解更多信息。
示例
>>> from transformers import BloomConfig, BloomModel
>>> # Initializing a Bloom configuration
>>> configuration = BloomConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = BloomModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
BloomTokenizerFast
类 transformers.BloomTokenizerFast
< 源代码 >( vocab_file = None merges_file = None tokenizer_file = None unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' pad_token = '<pad>' add_prefix_space = False clean_up_tokenization_spaces = False **kwargs )
参数
- vocab_file (
str
) — 词汇表文件路径。 - merges_file (
str
) — 合并文件路径。 - errors (
str
, 可选, 默认为"replace"
) — 解码字节到 UTF-8 时采用的策略。更多信息请参考 bytes.decode。 - unk_token (
str
, 可选, 默认为<|endoftext|>
) — 未知词元。不在词汇表中的词元无法转换为 ID,此时将设置为该词元。 - bos_token (
str
, 可选, 默认为<|endoftext|>
) — 序列开始词元。 - eos_token (
str
, 可选, 默认为<|endoftext|>
) — 序列结束词元。 - add_prefix_space (
bool
, 可选, 默认为False
) — 是否在输入的开头添加空格。这使得开头单词的处理方式与其他单词相同。(Bloom 分词器通过前导空格检测单词的开头)。 - trim_offsets (
bool
, 可选, 默认为True
) — 后处理步骤是否应修剪偏移量以避免包含空格。
构建一个“快速”Bloom 分词器(由 HuggingFace 的 tokenizers 库支持)。基于字节级字节对编码 (Byte-Pair-Encoding)。
该分词器经过训练,可以将空格视为词元的一部分(有点像 SentencePiece),因此一个单词
的编码方式会根据它是否位于句子的开头(没有空格)而有所不同。
>>> from transformers import BloomTokenizerFast
>>> tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom")
>>> tokenizer("Hello world")["input_ids"]
[59414, 8876]
>>> tokenizer(" Hello world")["input_ids"]
[86153, 8876]
可以通过在实例化该分词器时传递 add_prefix_space=True
来避免此行为,但由于模型不是以这种方式进行预训练的,因此可能会导致性能下降。
当与 is_split_into_words=True
一起使用时,需要使用 add_prefix_space=True
实例化此分词器。
此分词器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。有关这些方法的更多信息,用户应参考此超类。
BloomModel
类 transformers.BloomModel
< 源代码 >( config: BloomConfig )
参数
- config (BloomConfig) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
基本的 Bloom 模型转换器,输出原始隐藏状态,没有任何特定的头部。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有事项。
前向传播
< 源代码 > ( input_ids: Optional = None past_key_values: Union = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None cache_position: Optional = None **deprecated_arguments ) → transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, input_ids_length)
) —input_ids_length
= 如果past_key_values
为None
则为sequence_length
,否则为past_key_values[0][0].shape[2]
(输入过去键值状态的sequence_length
)。词汇表中输入序列标记的索引。如果使用
past_key_values
,则只应将没有计算其过去的input_ids
作为input_ids
传递。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码的先前阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
,每个元组都有两个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也被称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回传统缓存格式。如果使用
past_key_values
,则用户可以选择仅输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有提供给此模型的过去键值状态的input_ids
),而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选择在[0, 1]
中:- 1 表示未掩盖的标记,
- 0 表示掩盖的标记。
- head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择在[0, 1]
中:- 1 表示未掩盖的头部,
- 0 表示掩盖的头部。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。如果使用了
past_key_values
,则可以选择仅输入最后一个inputs_embeds
(请参阅past_key_values
)。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
密钥值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
形状为(sequence_length)
,可选) — 描述输入序列令牌在序列中的位置的索引。与position_ids
相反,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整的序列长度。
返回
transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含根据配置 (BloomConfig) 和输入而变化的各种元素。
-
last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的输出处的隐藏状态序列。如果使用了
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组都有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,并且如果config.is_encoder_decoder=True
,则可选地还有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块中的键和值,以及如果
config.is_encoder_decoder=True
,则可选地在交叉注意力块中),可用于(请参阅past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入的输出,如果模型具有嵌入层,则加上每个层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
和config.add_cross_attention=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
BloomModel 正向方法,覆盖了 __call__
特殊方法。
虽然正向传递的配方需要在此函数内定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BloomModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomModel.from_pretrained("bigscience/bloom-560m")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
BloomForCausalLM
类 transformers.BloomForCausalLM
< 源代码 >( config: BloomConfig )
参数
- config (BloomConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
具有语言建模头的 Bloom 模型转换器(具有与输入嵌入绑定的权重的线性层)。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有事项。
前向传播
< 源代码 > ( input_ids: Optional = None past_key_values: Union = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None cache_position: Optional = None **deprecated_arguments ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, input_ids_length)
) —input_ids_length
= 如果past_key_values
为None
则为sequence_length
,否则为past_key_values[0][0].shape[2]
(输入过去键值状态的sequence_length
)。词汇表中输入序列标记的索引。如果使用
past_key_values
,则仅应将尚未计算其过去的input_ids
作为input_ids
传递。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包含模型在解码的先前阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也被称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回传统缓存格式。如果使用
past_key_values
,则用户可以选择仅输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有为此模型提供其过去键值状态的),而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选择在[0, 1]
中:- 1 表示未掩码的标记,
- 0 表示掩码的标记。
- head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择在[0, 1]
中:- 1 表示头部未掩码,
- 0 表示头部掩码。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。如果使用
past_key_values
,则可以选择仅输入最后一个inputs_embeds
(请参阅past_key_values
)。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
形状为(sequence_length)
,可选) — 描述输入序列令牌在序列中的位置的索引。与position_ids
相反,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (
torch.LongTensor
形状为(batch_size, sequence_length)
,可选) — 用于语言建模的标签。请注意,标签在模型内部已移位,即您可以设置labels = input_ids
。索引在[-100, 0, ..., config.vocab_size]
中选择。所有设置为-100
的标签都将被忽略(屏蔽),损失仅针对[0, ..., config.vocab_size]
中的标签计算。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含取决于配置 (BloomConfig) 和输入的各种元素。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个标记预测)。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入的输出,如果模型具有嵌入层,则加上每个层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每个层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 Softmax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的torch.FloatTensor
元组,每个元组包含自注意力和交叉注意力层的缓存键值状态(如果模型用于编码器-解码器设置)。仅当config.is_decoder = True
时才相关。包含预计算的隐藏状态(注意力块中的键和值),可用于(请参阅
past_key_values
输入)加速顺序解码。
BloomForCausalLM 正向方法,覆盖 __call__
特殊方法。
虽然正向传递的配方需要在此函数内定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> import torch
>>> from transformers import AutoTokenizer, BloomForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForCausalLM.from_pretrained("bigscience/bloom-560m")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits
BloomForSequenceClassification
类 transformers.BloomForSequenceClassification
< 源代码 >( config: BloomConfig )
参数
- 配置 (BloomConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有序列分类头的 Bloom 模型转换器(线性层)。
BloomForSequenceClassification 使用最后一个 token 进行分类,就像其他因果模型(例如 GPT-1)一样。
由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。如果在配置中定义了 pad_token_id
,则它会在每一行中找到最后一个非填充 token。如果未定义 pad_token_id
,则它仅获取批次中每一行的最后一个值。由于它无法在传递 inputs_embeds
而不是 input_ids
时猜测填充 token,因此它执行相同的操作(获取批次中每一行的最后一个值)。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有事项。
前向传播
< 源代码 > ( input_ids: Optional = None past_key_values: Union = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **deprecated_arguments ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, input_ids_length)
) —input_ids_length
= 如果past_key_values
为None
则为sequence_length
,否则为past_key_values[0][0].shape[2]
(输入过去键值状态的sequence_length
)。词汇表中输入序列 token 的索引。如果使用
past_key_values
,则应仅将未计算其过去的input_ids
作为input_ids
传递。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码的先前阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也被称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入形状为(batch_size, 1)
的最后一个input_ids
(那些未将其过去键值状态提供给此模型的)而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
,可选) — 用于避免对填充 token 索引执行注意力的掩码。在[0, 1]
中选择掩码值:- 1 表示未掩盖的 token,
- 0 表示已掩盖的 token。
- head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定 head 无效的掩码。在[0, 1]
中选择掩码值:- 1 表示未掩盖的 head,
- 0 表示已掩盖的 head。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这将很有用。如果使用
past_key_values
,则可以选择仅输入最后一个inputs_embeds
(请参阅past_key_values
)。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
形状为(sequence_length)
,可选) — 表示输入序列标记在序列中的位置的索引。与position_ids
相反,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (
torch.LongTensor
形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方误差损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutputWithPast
或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含取决于配置(BloomConfig)和输入的各种元素。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,在提供labels
时返回) — 分类(或如果 config.num_labels==1 则为回归)损失。 -
logits (
torch.FloatTensor
形状为(batch_size, config.num_labels)
) — 分类(或如果 config.num_labels==1 则为回归)分数(在 SoftMax 之前)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,在传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入的输出,如果模型具有嵌入层,则加上每个层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BloomForSequenceClassification 的前向方法覆盖了 __call__
特殊方法。
虽然正向传递的配方需要在此函数内定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, BloomForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForSequenceClassification.from_pretrained("bigscience/bloom-560m")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BloomForSequenceClassification.from_pretrained("bigscience/bloom-560m", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, BloomForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForSequenceClassification.from_pretrained("bigscience/bloom-560m", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BloomForSequenceClassification.from_pretrained(
... "bigscience/bloom-560m", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
BloomForTokenClassification
类 transformers.BloomForTokenClassification
< 源代码 >( config: BloomConfig )
参数
- config (BloomConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
在顶部具有标记分类头的 Bloom 模型(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有事项。
前向传播
< 源代码 > ( input_ids: Optional = None past_key_values: Union = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **deprecated_arguments ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
如果past_key_values
为None
,否则为past_key_values[0][0].shape[2]
(输入过去键值状态的sequence_length
)。词汇表中输入序列标记的索引。如果使用
past_key_values
,则仅应将尚未计算其过去的input_ids
作为input_ids
传递。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码的先前阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回传统缓存格式。如果使用
past_key_values
,则用户可以选择仅输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有提供给此模型的过去键值状态的input_ids
),而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。在[0, 1]
中选择掩码值:- 1 表示未掩盖的标记,
- 0 表示掩盖的标记。
- head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部无效的掩码。在[0, 1]
中选择掩码值:- 1 表示头部未掩盖,
- 0 表示头部掩盖。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵对如何将input_ids
索引转换为关联向量有更多控制权,这将非常有用。如果使用
past_key_values
,则可以选择仅输入最后一个inputs_embeds
(请参阅past_key_values
)。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
形状为(sequence_length)
, 可选) — 描述输入序列标记在序列中的位置的索引。与position_ids
相反,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (
torch.LongTensor
形状为(batch_size,)
, 可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方误差损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个torch.FloatTensor
的元组(如果传递了return_dict=False
或当config.return_dict=False
时),包含取决于配置(BloomConfig)和输入的各种元素。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.num_labels)
) — 分类分数(在SoftMax之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入的输出,如果模型具有嵌入层,则加上每个层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BloomForTokenClassification 的前向方法,覆盖了__call__
特殊方法。
虽然正向传递的配方需要在此函数内定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BloomForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForTokenClassification.from_pretrained("bigscience/bloom-560m")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
BloomForQuestionAnswering
类 transformers.BloomForQuestionAnswering
< 源代码 >( config )
参数
- config (BloomConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
BLOOM 模型转换器,顶部带有跨度分类头部,用于提取式问答任务,例如 SQuAD(在隐藏状态输出之上添加线性层以计算跨度开始 logits
和跨度结束 logits
)。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有事项。
前向传播
< 源代码 > ( input_ids: Optional = None attention_mask: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
参数
- input_ids (
torch.LongTensor
形状为(batch_size, input_ids_length)
) —input_ids_length
= 如果past_key_values
为None
则为sequence_length
,否则为past_key_values[0][0].shape[2]
(输入过去键值状态的sequence_length
)。词汇表中输入序列标记的索引。如果使用
past_key_values
,则只应将尚未计算其过去的input_ids
作为input_ids
传递。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码的先前阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组都有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为传统缓存格式。
模型将输出与作为输入馈送的相同的缓存格式。如果未传递
past_key_values
,则将返回传统缓存格式。如果使用
past_key_values
,则用户可以选择仅输入形状为(batch_size, 1)
的最后一个input_ids
(其过去键值状态未提供给此模型)而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。在[0, 1]
中选择掩码值:- 1 表示未屏蔽的标记,
- 0 表示屏蔽的标记。
- head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部无效的掩码。在[0, 1]
中选择掩码值:- 1 表示头部未屏蔽,
- 0 表示头部屏蔽。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这将很有用。如果使用
past_key_values
,则可以选择仅输入最后一个inputs_embeds
(请参阅past_key_values
)。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput 而不是一个普通元组。 - cache_position (
torch.LongTensor
形状为(sequence_length)
, 可选) — 表示输入序列标记在序列中的位置的索引。与position_ids
相反,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整的序列长度。 - start_positions (
torch.LongTensor
形状为(batch_size,)
, 可选) — 用于计算标记分类损失的标记跨度的起始位置(索引)的标签。位置被限制在序列长度(sequence_length
)内。序列之外的位置不会被考虑用于计算损失。 - end_positions (
torch.LongTensor
形状为(batch_size,)
, 可选) — 用于计算标记分类损失的标记跨度的结束位置(索引)的标签。位置被限制在序列长度(sequence_length
)内。序列之外的位置不会被考虑用于计算损失。
BloomForQuestionAnswering 的前向方法覆盖了__call__
特殊方法。
虽然正向传递的配方需要在此函数内定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
FlaxBloomModel
类 transformers.FlaxBloomModel
< 源代码 >( config: BloomConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (BloomConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, 可选,默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在GPU上)和jax.numpy.bfloat16
(在TPU上)。这可以用于启用混合精度训练或在GPU或TPU上的半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的dtype,不会影响模型参数的dtype。
基本的 Bloom 模型转换器,输出原始隐藏状态,没有任何特定的头部。
此模型继承自FlaxPreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入的大小、修剪 head 等)。
此模型也是一个 Flax Linen flax.nn.Module 的子类。将其作为常规的 Flax 模块使用,并参考 Flax 文档以了解所有与一般用法和行为相关的事项。
最后,此模型支持 JAX 的固有特性,例如:
__call__
< 源代码 > ( input_ids attention_mask = None past_key_values: dict = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
。词汇表中输入序列标记的索引。可以使用
BloomTokenizer
获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。 - attention_mask (
numpy.ndarray
形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选择在[0, 1]
中:- 1 表示未被掩盖的标记,
- 0 表示被掩盖的标记。
- past_key_values (
Dict[str, np.ndarray]
,可选,由init_cache
返回或在传递先前的past_key_values
时返回) — 预计算隐藏状态的字典(注意力块中的键和值),可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length]。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 torch.FloatTensor
的元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含取决于配置 (BloomConfig) 和输入的各种元素。
-
last_hidden_state (
jnp.ndarray
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的输出处的隐藏状态序列。 -
hidden_states (
tuple(jnp.ndarray)
,可选,在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个用于嵌入的输出,一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态以及初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
,可选,在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBloomPreTrainedModel
的前向方法覆盖了 __call__
特殊方法。
虽然正向传递的配方需要在此函数内定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBloomModel
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom")
>>> model = FlaxBloomModel.from_pretrained("bigscience/bloom")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxBloomForCausalLM
类 transformers.FlaxBloomForCausalLM
< 源代码 >( config: BloomConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (BloomConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选,默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
具有语言建模头的 Bloom 模型转换器(具有与输入嵌入绑定的权重的线性层)。
此模型继承自FlaxPreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入的大小、修剪 head 等)。
此模型也是一个 Flax Linen flax.nn.Module 的子类。将其作为常规的 Flax 模块使用,并参考 Flax 文档以了解所有与一般用法和行为相关的事项。
最后,此模型支持 JAX 的固有特性,例如:
__call__
< 源代码 > ( input_ids attention_mask = None past_key_values: dict = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
。词汇表中输入序列标记的索引。可以使用
BloomTokenizer
获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。 - attention_mask (
numpy.ndarray
形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选择在[0, 1]
中:- 1 表示未掩码的标记,
- 0 表示掩码的标记。
- past_key_values (
Dict[str, np.ndarray]
, 可选,由init_cache
返回或在传递以前的past_key_values
时返回) — 预计算隐藏状态的字典(注意力块中的键和值),可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length]。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 torch.FloatTensor
的元组(如果传递了return_dict=False
或当config.return_dict=False
时),包含根据配置 (BloomConfig) 和输入而变化的各种元素。
-
logits (
jnp.ndarray
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个用于嵌入的输出,一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态以及初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
,可选,在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBloomPreTrainedModel
的前向方法覆盖了 __call__
特殊方法。
虽然正向传递的配方需要在此函数内定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBloomForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom")
>>> model = FlaxBloomForCausalLM.from_pretrained("bigscience/bloom")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]