Transformers 文档

FNet

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

FNet

PyTorch

概述

FNet 模型由 James Lee-Thorp、Joshua Ainslie、Ilya Eckstein 和 Santiago Ontanon 在论文 FNet: Mixing Tokens with Fourier Transforms 中提出。该模型用傅里叶变换替换了 BERT 模型中的自注意力层,并且只返回变换的实部。由于参数更少且内存效率更高,该模型比 BERT 模型快得多。在 GLUE 基准测试中,该模型达到了 BERT 对应模型约 92-97% 的准确率,并且训练速度远快于 BERT 模型。论文摘要如下:

我们表明,通过用简单的线性变换来“混合”输入标记(token),可以在有限的准确率损失下加速 Transformer 编码器架构。这些线性混合器,与前馈层中的标准非线性函数一起,证明了在多个文本分类任务中能够有效地建模语义关系。最令人惊讶的是,我们发现用标准的、无参数的傅里叶变换替换 Transformer 编码器中的自注意力子层,在 GLUE 基准测试中能达到 BERT 对应模型 92-97% 的准确率,但在标准 512 输入长度下,其在 GPU 上的训练速度快 80%,在 TPU 上的训练速度快 70%。在更长的输入长度下,我们的 FNet 模型速度明显更快:与 Long Range Arena 基准测试中的“高效”Transformer 相比,FNet 的准确率与最准确的模型相当,同时在所有序列长度的 GPU 上(以及在 TPU 上的相对较短长度上)都超过了最快的模型。最后,FNet 的内存占用小,在较小的模型尺寸下尤其高效;在固定的速度和准确率预算下,小型 FNet 模型优于其 Transformer 对应模型。

此模型由 gchhablani 贡献。原始代码可以在这里找到。

使用技巧

该模型是基于傅里叶变换的,因此在训练时没有使用注意力掩码(attention mask)。模型训练时使用的最大序列长度为 512,其中包括填充标记(pad tokens)。因此,强烈建议在微调和推理时使用相同的最大序列长度。

资源

FNetConfig

class transformers.FNetConfig

< >

( vocab_size = 32000 hidden_size = 768 num_hidden_layers = 12 intermediate_size = 3072 hidden_act = 'gelu_new' hidden_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 4 initializer_range = 0.02 layer_norm_eps = 1e-12 use_tpu_fourier_optimizations = False tpu_short_seq_length = 512 pad_token_id = 3 bos_token_id = 1 eos_token_id = 2 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 32000) — FNet 模型的词汇表大小。定义了调用 FNetModelTFFNetModel 时传递的 `inputs_ids` 可以表示的不同标记的数量。
  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中隐藏层的数量。
  • intermediate_size (int, 可选, 默认为 3072) — Transformer 编码器中“中间”层(即前馈层)的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu_new") — 编码器和池化层中的非线性激活函数(函数或字符串)。如果为字符串,支持 "gelu", "relu", "selu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入层、编码器和池化层中所有全连接层的丢弃概率。
  • max_position_embeddings (int, 可选, 默认为 512) — 该模型可能使用的最大序列长度。通常将其设置为一个较大的值以备不时之需(例如 512、1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 4) — 调用 FNetModelTFFNetModel 时传递的 `token_type_ids` 的词汇表大小。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。
  • use_tpu_fourier_optimizations (bool, 可选, 默认为 `False`) — 决定是否使用 TPU 优化的 FFT。如果为 `True`,模型将倾向于使用轴向 FFT 变换。对于 GPU/CPU 硬件,请设置为 `False`,此时将使用 n 维 FFT。
  • tpu_short_seq_length (int, 可选, 默认为 512) — 使用 TPU 时模型期望的序列长度。仅当 *use_tpu_fourier_optimizations* 设置为 `True` 且输入序列短于或等于 4096 个标记时,此参数才会用于初始化 DFT 矩阵。

这是用于存储 FNetModel 配置的配置类。它用于根据指定的参数实例化一个 FNet 模型,定义模型架构。使用默认值实例化配置将产生与 FNet google/fnet-base 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import FNetConfig, FNetModel

>>> # Initializing a FNet fnet-base style configuration
>>> configuration = FNetConfig()

>>> # Initializing a model (with random weights) from the fnet-base style configuration
>>> model = FNetModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

FNetTokenizer

class transformers.FNetTokenizer

< >

( vocab_file do_lower_case = False remove_space = True keep_accents = True unk_token = '<unk>' sep_token = '[SEP]' pad_token = '<pad>' cls_token = '[CLS]' mask_token = '[MASK]' sp_model_kwargs: typing.Optional[dict[str, typing.Any]] = None **kwargs )

参数

  • vocab_file (str) — SentencePiece 文件(通常扩展名为 *.spm*),其中包含实例化分词器所需的词汇表。
  • do_lower_case (bool, 可选, 默认为 `False`) — 是否在分词时将输入转换为小写。
  • remove_space (bool, 可选, 默认为 `True`) — 是否在分词时去除文本前后多余的空格。
  • keep_accents (bool, 可选, 默认为 True) — 在分词时是否保留重音符号。
  • unk_token (str, 可选, 默认为 "<unk>") — 未知词元(unknown token)。词汇表中不存在的词元无法转换为 ID,将被设置为此词元。
  • sep_token (str, 可选, 默认为 "[SEP]") — 分隔符词元(separator token),用于从多个序列构建一个序列时,例如,用于序列分类的两个序列,或用于问答任务的文本和问题。它也用作带有特殊词元的序列的最后一个词元。
  • pad_token (str, 可选, 默认为 "<pad>") — 用于填充的词元,例如在批处理不同长度的序列时使用。
  • cls_token (str, 可选, 默认为 "[CLS]") — 分类符词元(classifier token),在进行序列分类(对整个序列进行分类而非逐词元分类)时使用。当使用特殊词元构建序列时,它是序列的第一个词元。
  • mask_token (str, 可选, 默认为 "[MASK]") — 用于掩盖值的词元。在使用掩码语言模型(masked language modeling)训练此模型时使用此词元。模型将尝试预测此词元。
  • sp_model_kwargs (dict, 可选) — 将传递给 SentencePieceProcessor.__init__() 方法。 SentencePiece 的 Python 封装 可用于设置以下内容等:

    • enable_sampling: 启用子词正则化。

    • nbest_size: Unigram 的采样参数。对 BPE-Dropout 无效。

      • nbest_size = {0,1}: 不执行采样。
      • nbest_size > 1: 从 nbest_size 个结果中采样。
      • nbest_size < 0: 假设 nbest_size 是无限的,并使用前向过滤-后向采样算法从所有假设(lattice)中采样。
    • alpha: Unigram 采样的平滑参数,以及 BPE-dropout 的合并操作的丢弃概率。

  • sp_model (SentencePieceProcessor) — 用于每次转换(字符串、词元和 ID)的 SentencePiece 处理器。

构建一个 FNet 分词器。改编自 AlbertTokenizer。基于 SentencePiece。此分词器继承自 PreTrainedTokenizer,其中包含大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — 将要添加特殊词元的 ID 列表。
  • token_ids_1 (List[int], 可选) — 用于序列对的可选的第二个 ID 列表。

返回

List[int]

带有适当特殊标记的输入ID列表。

通过连接和添加特殊词元,从单个序列或序列对为序列分类任务构建模型输入。FNet 序列具有以下格式:

  • 单个序列:[CLS] X [SEP]
  • 序列对:[CLS] A [SEP] B [SEP]

get_special_tokens_mask

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 用于序列对的可选的第二个 ID 列表。
  • already_has_special_tokens (bool, 可选, 默认为 False) — 词元列表是否已经为模型格式化了特殊词元。

返回

List[int]

一个范围为 [0, 1] 的整数列表:1 表示特殊标记,0 表示序列标记。

从没有添加特殊标记的标记列表中检索序列ID。此方法在使用分词器prepare_for_model方法添加特殊标记时调用。

create_token_type_ids_from_sequences

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) list[int]

参数

  • token_ids_0 (list[int]) — 第一个分词后的序列。
  • token_ids_1 (list[int], 可选) — 第二个分词后的序列。

返回

list[int]

标记类型 ID。

创建与传入序列对应的标记类型 ID。什么是标记类型 ID?

如果模型有特殊的构建方式,应在子类中重写此方法。

save_vocabulary

< >

( save_directory: str filename_prefix: typing.Optional[str] = None )

FNetTokenizerFast

class transformers.FNetTokenizerFast

< >

( vocab_file = None tokenizer_file = None do_lower_case = False remove_space = True keep_accents = True unk_token = '<unk>' sep_token = '[SEP]' pad_token = '<pad>' cls_token = '[CLS]' mask_token = '[MASK]' **kwargs )

参数

  • vocab_file (str) — SentencePiece 文件(通常扩展名为 .spm),其中包含实例化分词器所需的词汇表。
  • do_lower_case (bool, 可选, 默认为 False) — 在分词时是否将输入转换为小写。
  • remove_space (bool, 可选, 默认为 True) — 在分词时是否去除文本中的多余空格(删除字符串前后多余的空格)。
  • keep_accents (bool, 可选, 默认为 True) — 在分词时是否保留重音符号。
  • unk_token (str, 可选, 默认为 "<unk>") — 未知词元(unknown token)。词汇表中不存在的词元无法转换为 ID,将被设置为此词元。
  • sep_token (str, 可选, 默认为 "[SEP]") — 分隔符词元(separator token),用于从多个序列构建一个序列时,例如,用于序列分类的两个序列,或用于问答任务的文本和问题。它也用作带有特殊词元的序列的最后一个词元。
  • pad_token (str, 可选, 默认为 "<pad>") — 用于填充的词元,例如在批处理不同长度的序列时使用。
  • cls_token (str, 可选, 默认为 "[CLS]") — 分类符词元(classifier token),在进行序列分类(对整个序列进行分类而非逐词元分类)时使用。当使用特殊词元构建序列时,它是序列的第一个词元。
  • mask_token (str, 可选, 默认为 "[MASK]") — 用于掩盖值的词元。在使用掩码语言模型(masked language modeling)训练此模型时使用此词元。模型将尝试预测此词元。

构建一个“快速”的 FNetTokenizer(由 HuggingFace 的 tokenizers 库支持)。改编自 AlbertTokenizerFast。基于 Unigram。此分词器继承自 PreTrainedTokenizerFast,其中包含大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — 将要添加特殊词元的 ID 列表
  • token_ids_1 (List[int], 可选) — 用于序列对的可选的第二个 ID 列表。

返回

List[int]

包含适当特殊标记的 输入 ID 列表。

通过连接和添加特殊词元,从单个序列或序列对为序列分类任务构建模型输入。FNet 序列具有以下格式:

  • 单个序列:[CLS] X [SEP]
  • 序列对:[CLS] A [SEP] B [SEP]

FNetModel

class transformers.FNetModel

< >

( config add_pooling_layer = True )

参数

  • config (FNetModel) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • add_pooling_layer (bool, 可选, 默认为 True) — 是否添加池化层

裸 FNet 模型,输出原始的隐藏状态,顶部没有任何特定的头。

此模型继承自 PreTrainedModel。请查阅超类文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 段词元索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于*句子 A* 的词元,
    • 1 对应于*句子 B* 的词元。

    什么是词元类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列词元的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 `input_ids`。如果你想比模型的内部嵌入查找矩阵有更多控制权来将 `input_ids` 索引转换为相关向量,这将非常有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 `hidden_states`。
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutput 或一个 torch.FloatTensor 的元组(如果传递了 `return_dict=False` 或 `config.return_dict=False`),包含各种元素,具体取决于配置 (FNetConfig) 和输入。

  • last_hidden_state (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(torch.FloatTensor), 可选, 在传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 在传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetModel 的前向方法,重写了 `__call__` 特殊方法。

虽然前向传播的流程需要在此函数中定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理前后处理步骤,而后者会默默地忽略它们。

FNetForPreTraining

class transformers.FNetForPreTraining

< >

( config )

参数

  • config (FNetForPreTraining) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法来加载模型权重。

FNet 模型顶部带有两个头,用于预训练:一个 `掩码语言建模` 头和一个 `下一句预测 (分类)` 头。

此模型继承自 PreTrainedModel。请查阅超类文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None next_sentence_label: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.fnet.modeling_fnet.FNetForPreTrainingOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 A 句子 标记,
    • 1 对应于 B 句子 标记。

    什么是标记类型 ID?

  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)你可以选择直接传递嵌入式表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这会非常有用。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 范围内的标记进行计算。
  • next_sentence_label (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算下一序列预测(分类)损失的标签。输入应为序列对(参见 input_ids 文档字符串)。索引应在 [0, 1] 范围内:

    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是一个随机序列。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.models.fnet.modeling_fnet.FNetForPreTrainingOutputtuple(torch.FloatTensor)

一个 transformers.models.fnet.modeling_fnet.FNetForPreTrainingOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置 (FNetConfig) 和输入包含不同的元素。

  • loss (*可选*,当提供了 labels 时返回,torch.FloatTensor,形状为 (1,)) — 总损失,为掩码语言建模损失和下一序列预测(分类)损失之和。

  • prediction_logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇 token 的分数)。

  • seq_relationship_logits (torch.FloatTensor 形状为 (batch_size, 2)) — 下一序列预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。

  • hidden_states (tuple[torch.FloatTensor]可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

FNetForPreTraining 的前向方法,重写了 __call__ 特殊方法。

虽然前向传播的流程需要在此函数中定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理前后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FNetForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForPreTraining.from_pretrained("google/fnet-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

FNetForMaskedLM

class transformers.FNetForMaskedLM

< >

( config )

参数

  • config (FNetForMaskedLM) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

带有 `语言建模` 头的 Fnet 模型。”

此模型继承自 PreTrainedModel。请查阅超类文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 A 句子 标记,
    • 1 对应于 B 句子 标记。

    什么是标记类型 ID?

  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)你可以选择直接传递嵌入式表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这会非常有用。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 范围内的标记进行计算。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置 (FNetConfig) 和输入包含不同的元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 掩码语言建模 (MLM) 损失。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 在传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 在传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForMaskedLM 的前向方法,重写了 __call__ 特殊方法。

虽然前向传播的流程需要在此函数中定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理前后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FNetForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForMaskedLM.from_pretrained("google/fnet-base")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
...

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
...

FNetForNextSentencePrediction

class transformers.FNetForNextSentencePrediction

< >

( config )

参数

  • config (FNetForNextSentencePrediction) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

带有 `下一句预测(分类)` 头的 FNet 模型。

此模型继承自 PreTrainedModel。请查阅超类文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 A 句子 标记,
    • 1 对应于 B 句子 标记。

    什么是标记类型 ID?

  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)你可以选择直接传递嵌入式表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这会非常有用。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算下一序列预测(分类)损失的标签。输入应为序列对(参见 input_ids 文档字符串)。索引应在 [0, 1] 范围内:

    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是一个随机序列。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置 (FNetConfig) 和输入包含不同的元素。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 next_sentence_label 时返回) — 下一个序列预测(分类)损失。

  • logits (torch.FloatTensor,形状为 (batch_size, 2)) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的真/假延续分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 在传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 在传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForNextSentencePrediction 的前向方法,重写了 __call__ 特殊方法。

虽然前向传播的流程需要在此函数中定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理前后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FNetForNextSentencePrediction
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForNextSentencePrediction.from_pretrained("google/fnet-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1]  # next sentence was random

FNetForSequenceClassification

class transformers.FNetForSequenceClassification

< >

( config )

参数

  • config (FNetForSequenceClassification) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

带有序列分类/回归头的 FNet 模型转换器(池化输出之上有一个线性层),例如用于 GLUE 任务。

此模型继承自 PreTrainedModel。请查阅超类文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 A 句子 标记,
    • 1 对应于 B 句子 标记。

    什么是标记类型 ID?

  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)你可以选择直接传递嵌入式表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这会非常有用。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置 (FNetConfig) 和输入包含不同的元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。

  • logits (形状为 (batch_size, config.num_labels)torch.FloatTensor) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 在传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 在传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

虽然前向传播的流程需要在此函数中定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理前后处理步骤,而后者会默默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, FNetForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForSequenceClassification.from_pretrained("google/fnet-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FNetForSequenceClassification.from_pretrained("google/fnet-base", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, FNetForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForSequenceClassification.from_pretrained("google/fnet-base", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FNetForSequenceClassification.from_pretrained(
...     "google/fnet-base", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

FNetForMultipleChoice

class transformers.FNetForMultipleChoice

< >

( config )

参数

  • config (FNetForMultipleChoice) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

带有选择题分类头的 Fnet 模型(池化输出之上有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 PreTrainedModel。请查阅超类文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 A 句子 标记,
    • 1 对应于 B 句子 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, num_choices, sequence_length, hidden_size)可选) — (可选)你可以选择直接传递嵌入式表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这会非常有用。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算多项选择分类损失的标签。索引应在 `[0, ..., num_choices-1]` 范围内,其中 `num_choices` 是输入张量第二个维度的大小。(参见上面的 `input_ids`)
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。更多详情请参阅返回张量下的 `hidden_states`。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通的元组。

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 `torch.FloatTensor` 的元组(如果传递了 `return_dict=False` 或 `config.return_dict=False`),包含根据配置(FNetConfig)和输入而变化的不同元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失。

  • logits (形状为 (batch_size, num_choices)torch.FloatTensor) — num_choices 是输入张量的第二维大小。(请参阅上面的 input_ids)。

    分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 在传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 在传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForMultipleChoice 的 forward 方法会覆盖 `__call__` 特殊方法。

虽然前向传播的流程需要在此函数中定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理前后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FNetForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForMultipleChoice.from_pretrained("google/fnet-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

FNetForTokenClassification

class transformers.FNetForTokenClassification

< >

( config )

参数

  • config (FNetForTokenClassification) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

带有词元分类头的 Fnet transformer(在隐藏状态输出之上加一个线性层),例如用于命名实体识别(NER)任务。

此模型继承自 PreTrainedModel。请查阅超类文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于指示输入的第一部分和第二部分的段标记索引。索引在 `[0, 1]` 中选择:

    • 0 对应于 *A 句* 标记,
    • 1 对应于 *B 句* 标记。

    什么是词元类型 ID?

  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 `[0, config.n_positions - 1]` 范围内选择。

    什么是位置 ID?

  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 `input_ids`。如果你想更多地控制如何将 `input_ids` 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这会很有用。
  • labels (torch.LongTensor,形状为 `(batch_size, sequence_length)`,可选) — 用于计算词元分类损失的标签。索引应在 `[0, ..., config.num_labels - 1]` 范围内。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。更多详情请参阅返回张量下的 `hidden_states`。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通的元组。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 `torch.FloatTensor` 的元组(如果传递了 `return_dict=False` 或 `config.return_dict=False`),包含根据配置(FNetConfig)和输入而变化的不同元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失。

  • logits (形状为 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 在传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 在传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForTokenClassification 的 forward 方法会覆盖 `__call__` 特殊方法。

虽然前向传播的流程需要在此函数中定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理前后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FNetForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForTokenClassification.from_pretrained("google/fnet-base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

FNetForQuestionAnswering

class transformers.FNetForQuestionAnswering

< >

( config )

参数

  • config (FNetForQuestionAnswering) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

带有片段分类头的 Fnet transformer,用于像 SQuAD 这样的抽取式问答任务(在隐藏状态输出之上加一个线性层来计算 `span start logits` 和 `span end logits`)。

此模型继承自 PreTrainedModel。请查阅超类文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None start_positions: typing.Optional[torch.Tensor] = None end_positions: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于指示输入的第一部分和第二部分的段标记索引。索引在 `[0, 1]` 中选择:

    • 0 对应于 *A 句* 标记,
    • 1 对应于 *B 句* 标记。

    什么是词元类型 ID?

  • position_ids (torch.Tensor,形状为 `(batch_size, sequence_length)`,可选) — 位置嵌入中每个输入序列标记的位置索引。在 `[0, config.n_positions - 1]` 范围内选择。

    什么是位置 ID?

  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 `input_ids`。如果你想更多地控制如何将 `input_ids` 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这会很有用。
  • start_positions (torch.Tensor,形状为 (batch_size,)可选) — 用于计算词元分类损失的标记片段开始位置(索引)的标签。位置被限制在序列长度(`sequence_length`)内。超出序列的位置不计入损失计算。
  • end_positions (torch.Tensor,形状为 `(batch_size,)`,可选) — 用于计算词元分类损失的标记片段结束位置(索引)的标签。位置被限制在序列长度(`sequence_length`)内。超出序列的位置不计入损失计算。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。更多详情请参阅返回张量下的 `hidden_states`。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通的元组。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 `torch.FloatTensor` 的元组(如果传递了 `return_dict=False` 或 `config.return_dict=False`),包含根据配置(FNetConfig)和输入而变化的不同元素。

  • loss (torch.FloatTensor of shape (1,), 可选, 当提供 labels 时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围起始分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围结束分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 在传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 在传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForQuestionAnswering 的 forward 方法会覆盖 `__call__` 特殊方法。

虽然前向传播的流程需要在此函数中定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理前后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FNetForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForQuestionAnswering.from_pretrained("google/fnet-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
< > 在 GitHub 上更新