Transformers 文档
LLaMA
并获得增强的文档体验
开始使用
LLaMA
概述
LLaMA 模型在 LLaMA: Open and Efficient Foundation Language Models 中被提出,作者是 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample。 它是参数范围从 7B 到 65B 的基础语言模型的集合。
该论文的摘要如下
我们介绍了 LLaMA,这是一系列基础语言模型,参数范围从 7B 到 65B。 我们使用数万亿的 tokens 训练我们的模型,并表明仅使用公开可用的数据集训练最先进的模型是可能的,而无需求助于专有的和无法访问的数据集。 特别是,LLaMA-13B 在大多数基准测试中优于 GPT-3 (175B),而 LLaMA-65B 可以与最好的模型 Chinchilla-70B 和 PaLM-540B 相媲美。 我们向研究社区发布我们所有的模型。
此模型由 zphang 贡献,并由 BlackSamorez 贡献代码。 Hugging Face 中实现的代碼基于 GPT-NeoX here。 作者的原始代码可以在 here 找到。
使用技巧
python src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
- 转换后,可以通过以下方式加载模型和分词器
from transformers import LlamaForCausalLM, LlamaTokenizer
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
model = LlamaForCausalLM.from_pretrained("/output/path")
请注意,执行脚本需要足够的 CPU 内存以容纳以 float16 精度表示的整个模型(即使最大的版本分为多个检查点,它们也各自包含模型权重的一部分,因此我们需要将它们全部加载到 RAM 中)。 对于 65B 模型,因此需要 130GB 的 RAM。
- LLaMA tokenizer 使用基于 sentencepiece 的 BPE 模型。sentencepiece 的一个特性是,当解码序列时,如果第一个 token 是单词的开头(例如 “Banana”),tokenizer 不会在字符串前面添加前缀空格。
此模型由 zphang 贡献,并由 BlackSamorez 贡献代码。Hugging Face 中实现的代碼基于 GPT-NeoX,代码位于 此处。作者的原始代码可以在 此处 找到。Flax 版本的实现由 afmck 贡献,其代码实现基于 Hugging Face 的 Flax GPT-Neo。
基于原始的 LLaMA 模型,Meta AI 发布了一些后续工作
- Llama2: Llama2 是 Llama 的改进版本,进行了一些架构调整(分组查询注意力),并在 2 万亿个 token 上进行了预训练。请参阅 Llama2 的文档,文档位于 此处。
资源
以下列出了官方 Hugging Face 和社区 (🌎 表示) 资源,以帮助您开始使用 LLaMA。如果您有兴趣提交资源以包含在此处,请随时打开 Pull Request,我们将进行审核!理想情况下,资源应展示一些新内容,而不是重复现有资源。
- 关于如何使用 prompt tuning 来调整 LLaMA 模型以执行文本分类任务的 notebook。🌎
- StackLLaMA:使用 RLHF 训练 LLaMA 的实操指南,一篇关于如何训练 LLaMA 以使用 RLHF 回答 Stack Exchange 上的问题的博客文章。
⚗️ 优化
- 关于如何在 GPU 内存有限的情况下使用 xturing 库微调 LLaMA 模型的 notebook。🌎
⚡️ 推理
- 关于如何使用 🤗 PEFT 库中的 PeftModel 运行 LLaMA 模型的 notebook。🌎
- 关于如何使用 LangChain 加载 PEFT adapter LLaMA 模型的 notebook。🌎
🚀 部署
- 关于如何通过 🤗 PEFT 库使用 LoRA 方法微调 LLaMA 模型(带有直观的 UI)的 notebook。🌎
- 关于如何在 Amazon SageMaker 上部署 Open-LLaMA 模型以进行文本生成的 notebook。🌎
LlamaConfig
class transformers.LlamaConfig
< source >( vocab_size = 32000 hidden_size = 4096 intermediate_size = 11008 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = None hidden_act = 'silu' max_position_embeddings = 2048 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = None bos_token_id = 1 eos_token_id = 2 pretraining_tp = 1 tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None attention_bias = False attention_dropout = 0.0 mlp_bias = False head_dim = None **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 32000) — LLaMA 模型的词汇表大小。定义了调用 LlamaModel 时传递的inputs_ids
可以表示的不同 token 的数量。 - hidden_size (
int
, 可选, 默认为 4096) — 隐藏层表示的维度。 - intermediate_size (
int
, 可选, 默认为 11008) — MLP 表示的维度。 - num_hidden_layers (
int
, 可选, 默认为 32) — Transformer 解码器中隐藏层的数量。 - num_attention_heads (
int
, 可选, 默认为 32) — Transformer 解码器中每个注意力层的注意力头的数量。 - num_key_value_heads (
int
, 可选) — 这是用于实现分组查询注意力的 key\_value 头的数量。如果num_key_value_heads=num_attention_heads
,模型将使用多头注意力 (MHA);如果num_key_value_heads=1
,模型将使用多查询注意力 (MQA);否则使用 GQA。当将多头检查点转换为 GQA 检查点时,每个组 key 和 value 头应通过平均池化该组内所有原始头来构建。有关更多详细信息,请查看 本文。如果未指定,则默认为num_attention_heads
。 - hidden_act (
str
或function
, 可选, 默认为"silu"
) — 解码器中的非线性激活函数(函数或字符串)。 - max_position_embeddings (
int
, 可选, 默认为 2048) — 此模型可能使用的最大序列长度。 Llama 1 支持最多 2048 个 token,Llama 2 支持最多 4096 个,CodeLlama 支持最多 16384 个。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated\_normal\_initializer 的标准差。 - rms_norm_eps (
float
, 可选, 默认为 1e-06) — rms 归一化层使用的 epsilon 值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回上次的 key/values 注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - pad_token_id (
int
, 可选) — Padding token id。 - bos_token_id (
int
, 可选, 默认为 1) — 流开始 token id。 - eos_token_id (
int
, 可选, 默认为 2) — 流结束 token id。 - pretraining_tp (
int
, 可选, 默认为 1) — 实验性功能。预训练期间使用的张量并行等级。请参阅此文档以了解更多信息。此值对于确保预训练结果的完全可重复性是必要的。请参阅此问题。 - tie_word_embeddings (
bool
, 可选, 默认为False
) — 是否绑定权重 embedding。 - rope_theta (
float
, 可选, 默认为 10000.0) — RoPE embedding 的基期。 - rope_scaling (
Dict
, 可选) — 包含 RoPE embedding 缩放配置的字典。注意:如果您应用新的 rope 类型,并期望模型在更长的max_position_embeddings
上工作,我们建议您相应地更新此值。预期内容:rope_type
(str
):要使用的 RoPE 的子变体。可以是 [‘default’, ‘linear’, ‘dynamic’, ‘yarn’, ‘longrope’, ‘llama3’] 之一,其中 ‘default’ 是原始 RoPE 实现。factor
(float
, 可选):用于除 ‘default’ 之外的所有 rope 类型。应用于 RoPE embedding 的缩放因子。在大多数缩放类型中,x 的factor
将使模型能够处理长度为 x * 原始最大预训练长度的序列。original_max_position_embeddings
(int
, 可选):与 ‘dynamic’、‘longrope’ 和 ‘llama3’ 一起使用。预训练期间使用的原始最大位置 embedding。attention_factor
(float
, 可选):与 ‘yarn’ 和 ‘longrope’ 一起使用。要应用于注意力计算的缩放因子。如果未指定,则默认为实现建议的值,使用factor
字段来推断建议的值。beta_fast
(float
, 可选):仅与 ‘yarn’ 一起使用。用于设置线性斜坡函数中外推(仅限)边界的参数。如果未指定,则默认为 32。beta_slow
(float
, 可选):仅与 ‘yarn’ 一起使用。用于设置线性斜坡函数中插值(仅限)边界的参数。如果未指定,则默认为 1。short_factor
(List[float]
, 可选):仅与 ‘longrope’ 一起使用。要应用于短上下文(<original_max_position_embeddings
)的缩放因子。必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 相同。long_factor
(List[float]
, 可选):仅与 ‘longrope’ 一起使用。要应用于长上下文(<original_max_position_embeddings
)的缩放因子。必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 相同。low_freq_factor
(float
, 可选):仅与 ‘llama3’ 一起使用。应用于 RoPE 低频分量的缩放因子。high_freq_factor
(float
, 可选):仅与 ‘llama3’ 一起使用。应用于 RoPE 高频分量的缩放因子。 - attention_bias (
bool
, 可选, 默认为False
) — 是否在自注意力期间在查询、键、值和输出投影层中使用 bias。 - attention_dropout (
float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。 - mlp_bias (
bool
, 可选, 默认为False
) — 是否在 MLP 层中的 up\_proj、down\_proj 和 gate\_proj 层中使用 bias。 - head_dim (
int
, 可选) — 注意力头的维度。如果为 None,则默认为 hidden\_size // num\_attention\_heads。
这是用于存储 LlamaModel 配置的配置类。它用于根据指定的参数实例化 LLaMA 模型,定义模型架构。使用默认值实例化配置将产生与 LLaMA-7B 类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。请阅读 PretrainedConfig 的文档以获取更多信息。
>>> from transformers import LlamaModel, LlamaConfig
>>> # Initializing a LLaMA llama-7b style configuration
>>> configuration = LlamaConfig()
>>> # Initializing a model from the llama-7b style configuration
>>> model = LlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
LlamaTokenizer
class transformers.LlamaTokenizer
< source >( vocab_file unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' pad_token = None sp_model_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None add_bos_token = True add_eos_token = False clean_up_tokenization_spaces = False use_default_system_prompt = False spaces_between_special_tokens = False legacy = None add_prefix_space = True **kwargs )
参数
- vocab_file (
str
) — 词汇表文件的路径。 - unk_token (
str
或tokenizers.AddedToken
, 可选, 默认为"<unk>"
) — 未知 token。词汇表中不存在的 token 无法转换为 ID,并将被设置为此 token。 - bos_token (
str
或tokenizers.AddedToken
, 可选, 默认为"<s>"
) — 序列开始 token,在预训练期间使用。可以用作序列分类器 token。 - eos_token (
str
或tokenizers.AddedToken
, 可选, 默认为"</s>"
) — 序列结束 token。 - pad_token (
str
或tokenizers.AddedToken
, 可选) — 用于使 token 数组大小相同以便进行批量处理的特殊 token。然后将被注意力机制或损失计算忽略。 - sp_model_kwargs (
Dict[str, Any]
,Optional
, 可选) — 将传递给SentencePieceProcessor.__init__()
方法。 SentencePiece 的 Python 封装器 可用于设置:-
enable_sampling
: 启用子词正则化。 -
nbest_size
: unigram 的采样参数。对 BPE-Dropout 无效。nbest_size = {0,1}
: 不执行采样。nbest_size > 1
: 从 nbest_size 结果中采样。nbest_size < 0
: 假设 nbest_size 是无限的,并使用前向滤波和后向采样算法从所有假设(lattice)中采样。
-
alpha
: unigram 采样的平滑参数,以及 BPE-dropout 的合并操作的 dropout 概率。
-
- add_bos_token (
bool
, 可选, 默认为True
) — 是否在序列的开头添加bos_token
。 - add_eos_token (
bool
, 可选, 默认为False
) — 是否在序列的末尾添加eos_token
。 - clean_up_tokenization_spaces (
bool
, 可选, 默认为False
) — 是否在解码后清理空格,清理包括删除潜在的伪像,如多余的空格。 - use_default_system_prompt (
bool
, 可选, 默认为False
) — 是否应使用 Llama 的默认系统提示。 - spaces_between_special_tokens (
bool
, 可选, 默认为False
) — 是否在特殊 token 之间添加空格。 - legacy (
bool
, 可选) — 是否应使用分词器的legacy
行为。Legacy 是指在合并 #24622 和 #25224 之前的版本,其中包括对正确处理特殊 token 之后出现的 token 的修复。请确保同时将from_slow
设置为True
。一个简单的例子:legacy=True
:
构建 Llama 分词器。基于字节级 Byte-Pair-Encoding。默认的 padding token 未设置,因为原始模型中没有 padding token。
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → List[int]
从没有添加特殊 token 的 token 列表中检索序列 ID。当使用分词器 prepare_for_model
方法添加特殊 token 时,会调用此方法。
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
从传递的两个序列创建掩码,用于序列对分类任务。ALBERT
如果 token_ids_1 为 None,则仅返回掩码的第一部分(0)。
save_vocabulary
< source >( save_directory filename_prefix: typing.Optional[str] = None ) → Tuple(str)
将词汇表和特殊 token 文件保存到目录中。
LlamaTokenizerFast
class transformers.LlamaTokenizerFast
< source >( vocab_file = None tokenizer_file = None clean_up_tokenization_spaces = False unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' add_bos_token = True add_eos_token = False use_default_system_prompt = False legacy = None add_prefix_space = None **kwargs )
参数
- vocab_file (
str
, 可选) — SentencePiece 文件 (通常带有 .model 扩展名),其中包含实例化 tokenizer 所需的词汇表。 - tokenizer_file (
str
, 可选) — tokenizers 文件 (通常带有 .json 扩展名),其中包含加载 tokenizer 所需的一切。 - clean_up_tokenization_spaces (
bool
, 可选, 默认为False
) — 是否在解码后清理空格,清理包括删除潜在的伪像,如多余的空格。 - unk_token (
str
或tokenizers.AddedToken
, 可选, 默认为"<unk>"
) — 未知 token。词汇表中不存在的 token 无法转换为 ID,而是设置为此 token。 - bos_token (
str
或tokenizers.AddedToken
, 可选, 默认为"<s>"
) — 序列开始 token,在预训练期间使用。可以用作序列分类器 token。 - eos_token (
str
或tokenizers.AddedToken
, 可选, 默认为"</s>"
) — 序列结束 token。 - add_bos_token (
bool
, 可选, 默认为True
) — 是否在序列的开头添加bos_token
。 - add_eos_token (
bool
, 可选, 默认为False
) — 是否在序列的末尾添加eos_token
。 - use_default_system_prompt (
bool
, 可选, 默认为False
) — 是否应使用 Llama 的默认系统提示 - legacy (
bool
, 可选) — 是否应使用 tokenizer 的legacy
行为。Legacy 是指 #24622 和 #25224 合并之前的版本,其中包括正确处理特殊 token 后出现的 token 的修复。请确保同时将from_slow
设置为True
。一个简单的例子:legacy=True
:
构建 Llama tokenizer。基于字节级 Byte-Pair-Encoding。
这主要使用 ByteFallback 并且没有归一化。
>>> from transformers import LlamaTokenizerFast
>>> tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
>>> tokenizer.encode("Hello this is a test")
[1, 15043, 445, 338, 263, 1243]
如果你想更改 bos_token
或 eos_token
,请确保在初始化模型时指定它们,或者调用 tokenizer.update_post_processor()
以确保正确完成后处理(否则,编码序列的第一个 token 和最后一个 token 的值将不正确)。有关更多详细信息,请查看 [post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) 文档。
此 tokenizer 继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → [0, 1] 范围内的整数列表
从没有添加特殊 token 的 token 列表中检索序列 id。当使用 tokenizer prepare_for_model
或 encode_plus
方法添加特殊 token 时,将调用此方法。
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
创建与传递的序列相对应的 token 类型 ID。什么是 token 类型 ID?
如果模型具有构建这些 ID 的特殊方式,则应在子类中重写。
使用当前的 bos_token
和 eos_token
更新底层后处理器。
LlamaModel
class transformers.LlamaModel
< source >( config: LlamaConfig )
参数
- config (LlamaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
- config — LlamaConfig
裸 LLaMA 模型,输出原始隐藏状态,顶部没有任何特定的 head。此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
Transformer 解码器,由 config.num_hidden_layers 层组成。每层都是一个 LlamaDecoderLayer
forward
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] )
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。默认情况下,如果您提供填充,填充将被忽略。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
, 可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(参见past_key_values
)。如果您想更改填充行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 是未被掩码的,
- 0 表示 head 是被掩码的。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 位置嵌入中每个输入序列标记的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其过去的键值状态提供给此模型的输入 ID),形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
, 可选) — 描述输入序列标记在序列中位置的索引。 与position_ids
相反,此张量不受填充的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。
LlamaModel 前向方法,覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在该函数内定义,但应在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
LlamaForCausalLM
forward
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.llama.modeling_llama.KwargsForCausalLM] ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。默认情况下,如果您提供填充,填充将被忽略。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
, 可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(参见past_key_values
)。如果您想更改填充行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 是未被掩码的,
- 0 表示 head 是被掩码的。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 位置嵌入中每个输入序列标记的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其过去的键值状态提供给此模型的输入 ID),形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是一个普通的元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列 tokens 在序列中的位置。与position_ids
相反,此张量不受 padding 的影响。它用于在正确的位置更新缓存,并推断完整的序列长度。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算 masked language modeling loss 的标签。索引应在[0, ..., config.vocab_size]
或 -100 之间(参见input_ids
文档字符串)。索引设置为-100
的 tokens 将被忽略(masked),loss 仅针对标签在[0, ..., config.vocab_size]
中的 tokens 计算。 - logits_to_keep (
int
或torch.Tensor
, 可选) — 如果是int
,则计算最后logits_to_keep
个 tokens 的 logits。如果是0
,则计算所有input_ids
的 logits(特殊情况)。生成时只需要最后一个 token 的 logits,并且仅针对该 token 计算它们可以节省内存,这对于长序列或大型词汇表大小来说非常重要。如果是torch.Tensor
,则必须是 1D,对应于在序列长度维度中要保留的索引。这在使用 packed tensor 格式(批次和序列长度的单个维度)时非常有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个 torch.FloatTensor
的元组(如果在传递 return_dict=False
时或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (LlamaConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测得分(SoftMax 之前每个词汇表 token 的得分)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的 hidden-states(自注意力模块中的 key 和 values),可以用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型具有 embedding 层,则为 embedding 的输出 + 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的 hidden-states,加上可选的初始 embedding 输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
LlamaForCausalLM 的 forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在该函数内定义,但应在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, LlamaForCausalLM
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
LlamaForSequenceClassification
class transformers.LlamaForSequenceClassification
< source >( config )
参数
- config (LlamaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有序列分类头的 LLaMa 模型 transformer(线性层)。
LlamaForSequenceClassification 使用最后一个 token 进行分类,就像其他因果模型(例如 GPT-2)一样。
由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。如果在配置中定义了 pad_token_id
,它会找到每行中最后一个不是 padding token 的 token。如果未定义 pad_token_id
,它只取批次中每行的最后一个值。由于当传递 inputs_embeds
而不是 input_ids
时,它无法猜测 padding tokens,因此它执行相同的操作(取批次中每行的最后一个值)。
此模型继承自 PreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 heads 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — Mask,用于避免对 padding token 索引执行 attention。Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被 mask,
- 0 表示 tokens 已被 mask。
索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(那些没有将其 past key value states 提供给此模型的 input_ids)(参见past_key_values
)。如果您想更改 padding 行为,则应阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被 mask,
- 0 表示 head 已被 mask。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的 hidden-states(自注意力模块和 cross-attention 模块中的 key 和 values),可以用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也称为旧版缓存格式。
模型将输出与作为输入提供的缓存格式相同的格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其 past key value states 提供给此模型的 input_ids),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型的内部 embedding 查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
key value states,并且可以用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions 张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是一个普通的元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列 tokens 在序列中的位置。与position_ids
相反,此张量不受 padding 的影响。它用于在正确的位置更新缓存,并推断完整的序列长度。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失);如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
LlamaForSequenceClassification 的 forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在该函数内定义,但应在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
LlamaForQuestionAnswering
class transformers.LlamaForQuestionAnswering
< source >( config )
参数
- config (LlamaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
Llama 模型转换器,顶部带有一个跨度分类头,用于执行抽取式问答任务,如 SQuAD(隐藏状态输出顶部的一个线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 PreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 heads 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs )
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列 tokens 的索引。如果您提供填充,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
, 可选) — 掩码,用于避免在填充 token 索引上执行 attention。 掩码值在[0, 1]
中选择:- 1 表示 token 未被掩盖,
- 0 表示 token 已被掩盖。
索引可以使用 AutoTokenizer 获得。 详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用了
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改填充行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩盖,
- 0 表示 head 已被掩盖。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其过去的键值状态提供给此模型的输入),形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通的元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
, 可选) — 索引,描述输入序列 token 在序列中的位置。与position_ids
相反,此张量不受填充的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。 - start_positions (形状为
(batch_size,)
的torch.LongTensor
, 可选) — 用于计算 token 分类损失的带标签跨度开始位置(索引)的标签。 位置被钳制到序列的长度 (sequence_length
)。 序列之外的位置不计入损失计算。 - end_positions (形状为
(batch_size,)
的torch.LongTensor
, 可选) — 用于计算 token 分类损失的带标签跨度结束位置(索引)的标签。 位置被钳制到序列的长度 (sequence_length
)。 序列之外的位置不计入损失计算。
LlamaForQuestionAnswering 的 forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在该函数内定义,但应在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
LlamaForTokenClassification
class transformers.LlamaForTokenClassification
< source >( config )
参数
- config (LlamaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
Llama 模型转换器,顶部带有一个 token 分类头(隐藏状态输出顶部的一个线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 heads 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列 tokens 的索引。如果您提供填充,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
, 可选) — 掩码,用于避免在填充 token 索引上执行 attention。 掩码值在[0, 1]
中选择:- 1 表示 token 未被掩盖,
- 0 表示 token 已被掩盖。
索引可以使用 AutoTokenizer 获得。 详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用了
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改填充行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩盖,
- 0 表示 head 已被掩盖。
- position_ids (
torch.LongTensor
, 形状为(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果没有传递
past_key_values
,将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一次的input_ids
(那些没有将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯元组。 - cache_position (
torch.LongTensor
, 形状为(sequence_length)
, 可选) — 描述输入序列标记在序列中位置的索引。 与position_ids
相反,此张量不受填充的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (
torch.LongTensor
, 形状为(batch_size,)
, 可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方误差损失),如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (LlamaConfig) 和输入。
-
loss (
torch.FloatTensor
, 形状为(1,)
, 可选, 当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
, 形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型具有 embedding 层,则为 embedding 的输出 + 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的 hidden-states,加上可选的初始 embedding 输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
LlamaForTokenClassification 前向方法,覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在该函数内定义,但应在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, LlamaForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
>>> model = LlamaForTokenClassification.from_pretrained("meta-llama/Llama-2-7b-hf")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
FlaxLlamaModel
class transformers.FlaxLlamaModel
< source >( config: LlamaConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (LlamaConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
、jax.numpy.float16
或jax.numpy.bfloat16
之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,所有计算将以给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
裸 Llama 模型转换器,输出原始隐藏状态,顶部没有任何特定的头部。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 Flax Linen flax.nn.Module 子类。 将其用作常规 Flax 模块,并参阅 Flax 文档,了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None position_ids = None params: dict = None past_key_values: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, input_ids_length)
的numpy.ndarray
) — 词汇表中输入序列标记的索引。 默认情况下,如果您提供填充,则填充将被忽略。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 用于避免对填充标记索引执行注意力的掩码。 在[0, 1]
中选择的掩码值:- 1 表示未掩码的标记,
- 0 表示已掩码的标记。
可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后一个decoder_input_ids
(请参阅past_key_values
)。如果您想更改填充行为,则应阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示头部未被掩码,
- 0 表示头部被掩码。
- position_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Dict[str, np.ndarray]
, 可选, 由init_cache
返回或在传递先前的past_key_values
时返回) — 预先计算的隐藏状态字典(注意力块中的键和值),可用于快速自动回归解码。 预先计算的键和值隐藏状态的形状为[batch_size, max_length]。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (LlamaConfig) 和输入。
-
last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型最后一层的输出处的隐藏状态序列。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组 (每个 embedding 输出层 + 每个层的输出对应一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及初始 embedding 输出的隐藏状态。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组 (每层对应一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxLlamaPreTrainedModel
的 forward 方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在该函数内定义,但应在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
此示例使用随机模型,因为真实模型都非常大。要获得正确的结果,您应该使用 openlm-research/open_llama_3b_v2 而不是 afmck/testing-llama-tiny。 如果在加载检查点时内存不足,您可以尝试在 from_pretrained
调用中添加 device_map="auto"
。
示例
>>> from transformers import AutoTokenizer, FlaxLlamaModel
>>> tokenizer = AutoTokenizer.from_pretrained("afmck/testing-llama-tiny")
>>> model = FlaxLlamaModel.from_pretrained("afmck/testing-llama-tiny")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxLlamaForCausalLM
class transformers.FlaxLlamaForCausalLM
< source >( config: LlamaConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (LlamaConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,仅加载配置。 查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
、jax.numpy.float16
或jax.numpy.bfloat16
之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,则所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
带有语言建模头(线性层)的 Llama 模型 Transformer。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 Flax Linen flax.nn.Module 子类。 将其用作常规 Flax 模块,并参阅 Flax 文档,了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None position_ids = None params: dict = None past_key_values: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxMaskedLMOutput or tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, input_ids_length)
的numpy.ndarray
) — 词汇表中输入序列 tokens 的索引。 如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后的decoder_input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- position_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 位置 embeddings 中每个输入序列 tokens 的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Dict[str, np.ndarray]
, 可选, 由init_cache
返回或当传递之前的past_key_values
时返回) — 预先计算的隐藏状态字典(attention 块中的 key 和 value),可用于快速自回归解码。 预先计算的 key 和 value 隐藏状态的形状为 _[batch_size, max_length]_。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attention tensors。 有关更多详细信息,请参阅返回 tensors 下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回 tensors 下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个 torch.FloatTensor
元组 (如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (LlamaConfig) 和输入。
-
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 语言建模头的预测分数(SoftMax 之前每个词汇 tokens 的分数)。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组 (每个 embedding 输出层 + 每个层的输出对应一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及初始 embedding 输出的隐藏状态。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组 (每层对应一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxLlamaPreTrainedModel
的 forward 方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在该函数内定义,但应在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
此示例使用随机模型,因为真实模型都非常大。要获得正确的结果,您应该使用 openlm-research/open_llama_3b_v2 而不是 afmck/testing-llama-tiny。 如果在加载检查点时内存不足,您可以尝试在 from_pretrained
调用中添加 device_map="auto"
。
示例
>>> from transformers import AutoTokenizer, FlaxLlamaForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("afmck/testing-llama-tiny")
>>> model = FlaxLlamaForCausalLM.from_pretrained("afmck/testing-llama-tiny")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]