Transformers 文档
I-BERT
并获取增强的文档体验
开始使用
I-BERT
概述
I-BERT 模型由 Sehoon Kim、Amir Gholami、Zhewei Yao、Michael W. Mahoney 和 Kurt Keutzer 在 I-BERT: Integer-only BERT Quantization 中提出。 它是 RoBERTa 的量化版本,推理速度最高可快四倍。
该论文的摘要如下:
基于 Transformer 的模型,如 BERT 和 RoBERTa,在许多自然语言处理任务中取得了最先进的结果。然而,它们的内存占用、推理延迟和功耗对于边缘设备甚至数据中心的有效推理来说是令人望而却步的。虽然量化可能是解决此问题的可行方案,但先前关于量化基于 Transformer 的模型的工作在推理期间使用浮点运算,这无法有效地利用仅整数逻辑单元,例如最近的 Turing Tensor Cores 或传统的仅整数 ARM 处理器。在这项工作中,我们提出了 I-BERT,这是一种用于基于 Transformer 的模型的新型量化方案,该方案使用仅整数算术来量化整个推理过程。基于非线性运算(例如 GELU、Softmax 和 Layer Normalization)的轻量级仅整数近似方法,I-BERT 执行端到端的仅整数 BERT 推理,而无需任何浮点计算。我们使用 RoBERTa-Base/Large 在 GLUE 下游任务上评估了我们的方法。我们表明,对于这两种情况,与全精度基线相比,I-BERT 都实现了相似(甚至略高)的精度。此外,我们 I-BERT 的初步实施表明,与 FP32 推理相比,在 T4 GPU 系统上进行 INT8 推理的速度提高了 2.4 - 4.0 倍。该框架已在 PyTorch 中开发并已开源。
此模型由 kssteven 贡献。 原始代码可以在这里找到。
资源
IBertConfig
类 transformers.IBertConfig
< 源码 >( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' quant_mode = False force_dequant = 'none' **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 30522) — I-BERT 模型的词汇表大小。 定义了在调用 IBertModel 时传递的inputs_ids
可以表示的不同标记的数量 - hidden_size (
int
, 可选, 默认为 768) — 编码器层和池化器层的维度。 - num_hidden_layers (
int
, 可选, 默认为 12) — Transformer 编码器中隐藏层的数量。 - num_attention_heads (
int
, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。 - intermediate_size (
int
, 可选, 默认为 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。 - hidden_act (
str
或Callable
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持"gelu"
,"relu"
,"silu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。 - max_position_embeddings (
int
, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - type_vocab_size (
int
, 可选, 默认为 2) — 调用 IBertModel 时传递的token_type_ids
的词汇表大小 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。 - position_embedding_type (
str
, 可选, 默认为"absolute"
) — 位置嵌入的类型。选择"absolute"
,"relative_key"
,"relative_key_query"
之一。对于位置嵌入,请使用"absolute"
。有关"relative_key"
的更多信息,请参阅 Self-Attention with Relative Position Representations (Shaw et al.)。有关"relative_key_query"
的更多信息,请参阅 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的方法 4。 - quant_mode (
bool
, 可选, 默认为False
) — 是否量化模型。 - force_dequant (
str
, 可选, 默认为"none"
) — 强制反量化特定的非线性层。反量化层随后以全精度执行。支持"none"
,"gelu"
,"softmax"
,"layernorm"
和"nonlinear"
。 默认情况下,它设置为"none"
,这不会反量化任何层。请指定"gelu"
,"softmax"
或"layernorm"
分别反量化 GELU、Softmax 或 LayerNorm。"nonlinear"
将反量化所有非线性层,即 GELU、Softmax 和 LayerNorm。
这是用于存储 IBertModel 配置的配置类。它用于根据指定的参数实例化 I-BERT 模型,定义模型架构。使用默认值实例化配置将产生与 IBERT kssteven/ibert-roberta-base 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
IBertModel
类 transformers.IBertModel
< 源码 >( config add_pooling_layer = True )
参数
- config (IBertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
裸 I-BERT 模型 Transformer 输出原始隐藏状态,顶部没有任何特定的 head。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
该模型可以充当编码器(仅具有自注意力)和解码器,在这种情况下,自注意力层之间会添加一个交叉注意力层,遵循 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin 在 Attention is all you need 中描述的架构。
forward
< 源码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。索引可以使用 AutoTokenizer 获取。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 掩码,以避免对 padding 标记索引执行注意力。在[0, 1]
中选择的掩码值:- 1 表示未被掩码的标记,
- 0 表示已被掩码的标记。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一部分和第二部分的分段 token 索引。索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于 nullify 自注意力模块中选定 head 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩蔽,
- 0 表示 head 已被掩蔽。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (IBertConfig) 和输入。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的输出处的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
,形状为(batch_size, hidden_size)
) — 序列的第一个 token(分类 token)的最后一层隐藏状态,在通过用于辅助预训练任务的层进一步处理之后。例如,对于 BERT 系列模型,这返回通过线性层和 tanh 激活函数处理后的分类 token。线性层权重通过预训练期间的下一句预测(分类)目标进行训练。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层的输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
和config.add_cross_attention=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力 head 中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) —tuple(torch.FloatTensor)
元组,长度为config.n_layers
,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,并且可选地,如果config.is_encoder_decoder=True
,则具有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外张量。包含预先计算的隐藏状态(自注意力块中的键和值,以及可选地,如果
config.is_encoder_decoder=True
,则在交叉注意力块中),这些隐藏状态可用于(请参阅past_key_values
输入)加速顺序解码。
IBertModel forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, IBertModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("kssteven/ibert-roberta-base")
>>> model = IBertModel.from_pretrained("kssteven/ibert-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
IBertForMaskedLM
class transformers.IBertForMaskedLM
< source >( config )
参数
- config (IBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有 language modeling
head 的 I-BERT 模型。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对 padding token 索引执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩蔽,
- 0 表示 token 已被掩蔽。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一部分和第二部分的分段 token 索引。索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于 nullify 自注意力模块中选定 head 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩蔽,
- 0 表示 head 已被掩蔽。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言模型损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(参见input_ids
文档字符串)。索引设置为-100
的 token 将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的 token 计算。 - kwargs (
Dict[str, any]
,可选,默认为{}
) — 用于隐藏已弃用的旧参数。
返回值
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (IBertConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 掩码语言模型 (MLM) 损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言模型头的预测分数(SoftMax 之前的每个词汇 token 的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层的输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。
IBertForMaskedLM forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, IBertForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("kssteven/ibert-roberta-base")
>>> model = IBertForMaskedLM.from_pretrained("kssteven/ibert-roberta-base")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
IBertForSequenceClassification
class transformers.IBertForSequenceClassification
< source >( config )
参数
- config (IBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
I-BERT 模型转换器,顶部带有一个序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。可以使用 AutoTokenizer 获取索引。请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — Segment token 索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于 nullify self-attention 模块的选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。有关更多详细信息,请参见返回的张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden state。有关更多详细信息,请参见返回的张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方误差损失);如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回值
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (IBertConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层的输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。
IBertForSequenceClassification forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, IBertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("kssteven/ibert-roberta-base")
>>> model = IBertForSequenceClassification.from_pretrained("kssteven/ibert-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = IBertForSequenceClassification.from_pretrained("kssteven/ibert-roberta-base", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, IBertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("kssteven/ibert-roberta-base")
>>> model = IBertForSequenceClassification.from_pretrained("kssteven/ibert-roberta-base", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = IBertForSequenceClassification.from_pretrained(
... "kssteven/ibert-roberta-base", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
IBertForMultipleChoice
class transformers.IBertForMultipleChoice
< source >( config )
参数
- config (IBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
I-BERT 模型,顶部带有多项选择分类头(池化输出顶部的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列 token 的索引。可以使用 AutoTokenizer 获取索引。请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩盖,
- 0 表示 token 已被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空 self-attention 模块中选定 head 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 已被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length, hidden_size)
,可选) — (可选) 您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention tensors。有关更多详细信息,请参阅返回的 tensors 下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
中,其中num_choices
是输入 tensors 的第二个维度的大小。(参见上面的input_ids
)
返回值
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (IBertConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为 (1,),可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, num_choices)
) — num_choices 是输入 tensors 的第二个维度。(参见上面的 input_ids)。分类得分(在 SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层的输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。
IBertForMultipleChoice forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, IBertForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("kssteven/ibert-roberta-base")
>>> model = IBertForMultipleChoice.from_pretrained("kssteven/ibert-roberta-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
IBertForTokenClassification
class transformers.IBertForTokenClassification
< source >( config )
参数
- config (IBertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有 token 分类头的 I-BERT 模型(在 hidden-states 输出之上的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩盖,
- 0 表示 token 已被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空 self-attention 模块中选定 head 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 已被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选) 您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention tensors。有关更多详细信息,请参阅返回的 tensors 下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算 token 分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。
返回值
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (IBertConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层的输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。
IBertForTokenClassification 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, IBertForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("kssteven/ibert-roberta-base")
>>> model = IBertForTokenClassification.from_pretrained("kssteven/ibert-roberta-base")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
IBertForQuestionAnswering
class transformers.IBertForQuestionAnswering
< source >( config )
参数
- config (IBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
I-BERT 模型,顶部带有跨度分类头,用于抽取式问答任务,如 SQuAD(隐藏状态输出之上的线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被 mask,
- 0 表示 tokens 已被 mask。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — Segment token 索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于 nullify self-attention 模块的选定 heads 的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 head 未被 mask,
- 0 表示 head 已被 mask。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention tensors。有关更多详细信息,请参阅返回的 tensors 下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。 - start_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算 token 分类损失的已标注跨度起点的标签(索引)。位置被限制在序列的长度 (sequence_length
) 内。序列之外的位置不计入损失计算。 - end_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算 token 分类损失的已标注跨度终点的标签(索引)。位置被限制在序列的长度 (sequence_length
) 内。序列之外的位置不计入损失计算。
返回值
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (IBertConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 总跨度抽取损失是起始和结束位置的交叉熵损失之和。 -
start_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度起始得分(在 SoftMax 之前)。 -
end_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度结束得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层的输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。
IBertForQuestionAnswering 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, IBertForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("kssteven/ibert-roberta-base")
>>> model = IBertForQuestionAnswering.from_pretrained("kssteven/ibert-roberta-base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss