Transformers 文档
Qwen2
并获得增强的文档体验
开始
Qwen2
概览
Qwen2 是 Qwen 团队推出的大型语言模型的新模型系列。此前,我们发布了 Qwen 系列,包括 Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B、Qwen2-72B、Qwen2-Audio 等。
模型详情
Qwen2 是一个语言模型系列,包括不同模型大小的解码器语言模型。对于每种大小,我们都发布了基础语言模型和对齐的聊天模型。它基于 Transformer 架构,采用 SwiGLU 激活、注意力 QKV 偏置、分组查询注意力、滑动窗口注意力和完整注意力的混合等。此外,我们还拥有一个改进的 tokenizer,可以适应多种自然语言和代码。
使用提示
Qwen2-7B
和 Qwen2-7B-Instruct
可以在 Huggingface Hub 上找到。
在下面,我们将演示如何使用 Qwen2-7B-Instruct
进行推理。请注意,我们使用了 ChatML 格式进行对话,在本演示中,我们将展示如何利用 apply_chat_template
来实现此目的。
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-7B-Instruct", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct")
>>> prompt = "Give me a short introduction to large language model."
>>> messages = [{"role": "user", "content": prompt}]
>>> text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> model_inputs = tokenizer([text], return_tensors="pt").to(device)
>>> generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True)
>>> generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
>>> response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
Qwen2Config
class transformers.Qwen2Config
< source >( vocab_size = 151936 hidden_size = 4096 intermediate_size = 22016 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = 32 hidden_act = 'silu' max_position_embeddings = 32768 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None use_sliding_window = False sliding_window = 4096 max_window_layers = 28 attention_dropout = 0.0 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 151936) — Qwen2 模型的词汇表大小。定义了在调用 Qwen2Model 时传递的inputs_ids
可以表示的不同 token 的数量 - hidden_size (
int
, 可选, 默认为 4096) — 隐藏层表示的维度。 - intermediate_size (
int
, 可选, 默认为 22016) — MLP 表示的维度。 - num_hidden_layers (
int
, 可选, 默认为 32) — Transformer 编码器中隐藏层的数量。 - num_attention_heads (
int
, 可选, 默认为 32) — Transformer 编码器中每个注意力层的注意力头的数量。 - num_key_value_heads (
int
, 可选, 默认为 32) — 这是用于实现分组查询注意力 (Grouped Query Attention) 的 key_value 头的数量。如果num_key_value_heads=num_attention_heads
,则模型将使用多头注意力 (MHA);如果num_key_value_heads=1
,则模型将使用多查询注意力 (MQA);否则,将使用 GQA。当将多头检查点转换为 GQA 检查点时,每个组 key 和 value 头应通过对该组内所有原始头进行均值池化来构建。有关更多详细信息,请查看 本文。如果未指定,则默认为32
。 - hidden_act (
str
或function
, 可选, 默认为"silu"
) — 解码器中的非线性激活函数(函数或字符串)。 - max_position_embeddings (
int
, 可选, 默认为 32768) — 此模型可能使用的最大序列长度。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - rms_norm_eps (
float
, 可选, 默认为 1e-06) — rms 归一化层使用的 epsilon 值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回上次的 key/values 注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - tie_word_embeddings (
bool
, 可选, 默认为False
) — 模型的输入和输出词嵌入是否应该绑定。 - rope_theta (
float
, 可选, 默认为 10000.0) — RoPE 嵌入的基周期。 - rope_scaling (
Dict
, 可选) — 包含 RoPE 嵌入缩放配置的字典。注意:如果您应用新的 rope 类型并期望模型在更长的max_position_embeddings
上工作,我们建议您相应地更新此值。预期内容:rope_type
(str
):要使用的 RoPE 的子变体。可以是 [‘default’, ‘linear’, ‘dynamic’, ‘yarn’, ‘longrope’, ‘llama3’] 之一,其中 ‘default’ 是原始 RoPE 实现。factor
(float
, 可选):与除 ‘default’ 之外的所有 rope 类型一起使用。应用于 RoPE 嵌入的缩放因子。在大多数缩放类型中,因子 x 将使模型能够处理长度为 x * 原始最大预训练长度的序列。original_max_position_embeddings
(int
, 可选):与 ‘dynamic’、‘longrope’ 和 ‘llama3’ 一起使用。预训练期间使用的原始最大位置嵌入。attention_factor
(float
, 可选):与 ‘yarn’ 和 ‘longrope’ 一起使用。应用于注意力计算的缩放因子。如果未指定,则默认为实现建议的值,使用factor
字段推断建议的值。beta_fast
(float
, 可选):仅与 ‘yarn’ 一起使用。用于设置线性斜坡函数中外推(仅限)边界的参数。如果未指定,则默认为 32。beta_slow
(float
, 可选):仅与 ‘yarn’ 一起使用。用于设置线性斜坡函数中插值(仅限)边界的参数。如果未指定,则默认为 1。short_factor
(List[float]
, 可选):仅与 ‘longrope’ 一起使用。应用于短上下文(<original_max_position_embeddings
)的缩放因子。必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 的长度相同。long_factor
(List[float]
, 可选):仅与 ‘longrope’ 一起使用。应用于长上下文(>original_max_position_embeddings
)的缩放因子。必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 的长度相同。low_freq_factor
(float
, 可选):仅与 ‘llama3’ 一起使用。应用于 RoPE 低频分量的缩放因子。high_freq_factor
(float
, 可选):仅与 ‘llama3’ 一起使用。应用于 RoPE 高频分量的缩放因子 - use_sliding_window (
bool
, 可选, 默认为False
) — 是否使用滑动窗口注意力。 - sliding_window (
int
, 可选, 默认为 4096) — 滑动窗口注意力 (SWA) 窗口大小。如果未指定,则默认为4096
。 - max_window_layers (
int
, 可选, 默认为 28) — 使用 SWA(滑动窗口注意力)的层数。底层使用 SWA,而顶层使用完整注意力。 - attention_dropout (
float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。
这是用于存储 Qwen2Model 配置的配置类。它用于根据指定的参数实例化 Qwen2 模型,定义模型架构。使用默认值实例化配置将产生与 Qwen2-7B-beta Qwen/Qwen2-7B-beta 类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。请阅读 PretrainedConfig 中的文档以获取更多信息。
>>> from transformers import Qwen2Model, Qwen2Config
>>> # Initializing a Qwen2 style configuration
>>> configuration = Qwen2Config()
>>> # Initializing a model from the Qwen2-7B style configuration
>>> model = Qwen2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Qwen2Tokenizer
class transformers.Qwen2Tokenizer
< source >( vocab_file merges_file errors = 'replace' unk_token = '<|endoftext|>' bos_token = None eos_token = '<|endoftext|>' pad_token = '<|endoftext|>' clean_up_tokenization_spaces = False split_special_tokens = False **kwargs )
参数
- vocab_file (
str
) — 词汇表文件的路径。 - merges_file (
str
) — merges 文件的路径。 - errors (
str
, 可选, 默认为"replace"
) — 将字节解码为 UTF-8 时遵循的范例。 有关更多信息,请参阅 bytes.decode。 - unk_token (
str
, 可选, 默认为"<|endoftext|>"
) — 未知标记。词汇表中不存在的标记无法转换为 ID,并将设置为此标记。 - bos_token (
str
, 可选) — 序列的开始标记。不适用于此 tokenizer。 - eos_token (
str
, 可选, 默认为"<|endoftext|>"
) — 序列的结束标记。 - pad_token (
str
, 可选, 默认为"<|endoftext|>"
) — 用于填充的标记,例如在对不同长度的序列进行批处理时。 - clean_up_tokenization_spaces (
bool
, 可选, 默认为False
) — 是否清理在分词过程中拆分输入文本时添加的空格。不适用于此 tokenizer,因为分词不会添加空格。 - split_special_tokens (
bool
, 可选, 默认为False
) — 是否应在分词过程中拆分特殊标记。默认行为是不拆分特殊标记。这意味着如果<|endoftext|>
是eos_token
,那么tokenizer.tokenize("<|endoftext|>") = ['<|endoftext|>']
。否则,如果split_special_tokens=True
,那么tokenizer.tokenize("<|endoftext|>")
将给出['<', '|', 'endo', 'ft', 'ext', '|', '>']
。目前,此参数仅支持slow
tokenizer。
构建 Qwen2 tokenizer。基于字节级 Byte-Pair-Encoding。
与 GPT2Tokenizer 相同,此 tokenizer 经过训练,将空格视为标记的一部分,因此一个单词在
句子开头(没有空格)与否的编码方式会有所不同
>>> from transformers import Qwen2Tokenizer
>>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
>>> tokenizer("Hello world")["input_ids"]
[9707, 1879]
>>> tokenizer(" Hello world")["input_ids"]
[21927, 1879]
由于不同的预分词规则,您不应使用 GPT2Tokenizer 代替。
此 tokenizer 继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。
Qwen2TokenizerFast
class transformers.Qwen2TokenizerFast
< source >( vocab_file = None merges_file = None tokenizer_file = None unk_token = '<|endoftext|>' bos_token = None eos_token = '<|endoftext|>' pad_token = '<|endoftext|>' **kwargs )
参数
- vocab_file (
str
, 可选) — 词汇表文件的路径。 - merges_file (
str
, 可选) — merges 文件的路径。 - tokenizer_file (
str
, 可选) — 指向 tokenizers 文件的路径(通常具有 .json 扩展名),其中包含加载 tokenizer 所需的一切。 - unk_token (
str
, 可选, 默认为"<|endoftext|>"
) — 未知标记。词汇表中不存在的标记无法转换为 ID,并将设置为此标记。不适用于此 tokenizer。 - bos_token (
str
, 可选) — 序列的开始标记。不适用于此 tokenizer。 - eos_token (
str
, 可选, 默认为"<|endoftext|>"
) — 序列的结束标记。 - pad_token (
str
, 可选, 默认为"<|endoftext|>"
) — 用于填充的标记,例如在对不同长度的序列进行批处理时。
构建 “快速” Qwen2 tokenizer(由 HuggingFace 的 tokenizers 库支持)。基于字节级 Byte-Pair-Encoding。
与 GPT2Tokenizer 相同,此 tokenizer 经过训练,将空格视为标记的一部分,因此一个单词在
句子开头(没有空格)与否的编码方式会有所不同
>>> from transformers import Qwen2TokenizerFast
>>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
>>> tokenizer("Hello world")["input_ids"]
[9707, 1879]
>>> tokenizer(" Hello world")["input_ids"]
[21927, 1879]
此 tokenizer 继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。
Qwen2Model
class transformers.Qwen2Model
< source >( config: Qwen2Config )
参数
- config (Qwen2Config) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
- config — Qwen2Config
裸 Qwen2 模型,输出原始隐藏状态,顶部没有任何特定的头部。此模型继承自 PreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与通用用法和行为相关的所有事项。
Transformer 解码器,由 config.num_hidden_layers 层组成。每一层都是一个 Qwen2DecoderLayer
forward
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。如果您提供填充,默认情况下将忽略填充。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详情。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列 token 在位置嵌入中的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, optional) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常由模型在先前解码阶段返回的past_key_values
组成,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其过去键值状态提供给此模型的)的形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是纯元组。 - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — 索引,描述输入序列 token 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。
Qwen2Model
forward 方法,覆盖了 __call__
特殊方法。
虽然 forward pass 的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
Qwen2ForCausalLM
forward
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.qwen2.modeling_qwen2.KwargsForCausalLM] ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。 默认情况下,如果您提供 padding,则会忽略 padding。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详情。
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详情。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列 token 在位置嵌入中的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, optional) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常由模型在先前解码阶段返回的past_key_values
组成,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其过去键值状态提供给此模型的)的形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是纯元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列 token 在序列中的位置。与position_ids
相反,此张量不受 padding 的影响。它用于在正确的位置更新缓存,并推断完整的序列长度。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算 masked language modeling loss 的标签。索引应为[0, ..., config.vocab_size]
或 -100 (参见input_ids
文档字符串)。索引设置为-100
的 token 将被忽略(masked),loss 仅针对标签在[0, ..., config.vocab_size]
中的 token 计算。 - logits_to_keep (
int
或torch.Tensor
,可选) — 如果是int
,则计算最后logits_to_keep
个 token 的 logits。 如果为0
,则计算所有input_ids
的 logits(特殊情况)。 仅生成最后一个 token 的 logits 是需要的,并且仅针对该 token 计算它们可以节省内存,这对于长序列或大型词汇表大小而言变得非常重要。 如果是torch.Tensor
,则必须是 1D,对应于在序列长度维度中要保留的索引。 这在使用 packed tensor 格式(批次和序列长度的单维度)时很有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个 torch.FloatTensor
的 tuple (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (Qwen2Config) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
的 tuple,每个 tuple 包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的隐藏状态(自注意力模块中的键和值),可以用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的 tuple (如果模型具有 embedding 层,则为 embedding 输出,+ 每个层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的隐藏状态,加上可选的初始 embedding 输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的 tuple (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。
Qwen2ForCausalLM forward 方法,覆盖了 __call__
特殊方法。
虽然 forward pass 的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM
>>> model = Qwen2ForCausalLM.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
Qwen2ForSequenceClassification
class transformers.Qwen2ForSequenceClassification
< source >( config )
参数
- config (Qwen2Config) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法来加载模型权重。
Qwen2 模型 transformer,顶部带有一个序列分类 head(线性层)。
Qwen2ForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型(例如 GPT-2)一样。
由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。 如果在配置中定义了 pad_token_id
,它会在每一行中找到最后一个不是 padding token 的 token。 如果未定义 pad_token_id
,它只会获取批次中每一行的最后一个值。 由于当传递 inputs_embeds
而不是 input_ids
时,它无法猜测 padding token,因此它也会执行相同的操作(获取批次中每一行的最后一个值)。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、pruning heads 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。 默认情况下,如果您提供 padding,则会忽略 padding。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — Mask,用于避免在 padding token 索引上执行 attention。 Mask 值在[0, 1]
中选择:- 1 表示 token 未被 mask,
- 0 表示 token 被 mask。
可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后一个input_ids
(参见past_key_values
)。如果您想更改 padding 行为,则应阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1 。- 1 表示 head 未被 mask,
- 0 表示 head 被 mask。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置 embeddings 中的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
的 Tuple,每个 tuple 包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的缓存格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的input_ids
),其形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递 embedding 表示,而不是传递input_ids
。 如果您希望比模型的内部 embedding 查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(参见past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通 tuple。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列 token 在序列中的位置。与position_ids
相反,此张量不受 padding 的影响。它用于在正确的位置更新缓存,并推断完整的序列长度。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归 loss 的标签。 索引应为[0, ..., config.num_labels - 1]
。 如果config.num_labels == 1
,则计算回归 loss(均方 loss),如果config.num_labels > 1
,则计算分类 loss(交叉熵)。
Qwen2ForSequenceClassification forward 方法,覆盖了 __call__
特殊方法。
虽然 forward pass 的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
Qwen2ForTokenClassification
class transformers.Qwen2ForTokenClassification
< source >( config )
参数
- config (Qwen2Config) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法来加载模型权重。
Qwen2 模型 transformer,顶部带有一个 token 分类 head(hidden-states 输出顶部的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、pruning heads 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与通用用法和行为相关的所有事项。
forward
< 源文件 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,用于避免在 padding token 索引上执行 attention。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的 hidden-states(自注意力模块和交叉注意力模块中的 key 和 values),可用于加速顺序解码。 这通常包含模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后的input_ids
(那些没有将其过去 key value 状态提供给此模型的)形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参阅返回的张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列 tokens 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.TokenClassifierOutput 或 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (Qwen2Config) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的 tuple (如果模型具有 embedding 层,则为 embedding 输出,+ 每个层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的隐藏状态,加上可选的初始 embedding 输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的 tuple (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。
Qwen2ForTokenClassification 的 forward 方法,覆盖了 __call__
特殊方法。
虽然 forward pass 的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, Qwen2ForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
>>> model = Qwen2ForTokenClassification.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
Qwen2ForQuestionAnswering
class transformers.Qwen2ForQuestionAnswering
< 源文件 >( config )
参数
- config (Qwen2Config) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
带有跨度分类头的 Qwen2 模型转换器,用于执行抽取式问答任务,例如 SQuAD(hidden-states 输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、pruning heads 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与通用用法和行为相关的所有事项。
forward
< 源文件 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,用于避免在 padding token 索引上执行 attention。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括在先前解码阶段由模型返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。如果没有传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一次的input_ids
(那些没有将其过去键值状态提供给此模型的),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是纯元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描述输入序列 token 在序列中位置的索引。与position_ids
相反,此张量不受 padding 的影响。它用于在正确的位置更新缓存并推断完整序列长度。 - start_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算 token 分类损失的标记跨度开始位置(索引)的标签。位置被限制在序列的长度 (sequence_length
) 内。序列之外的位置不计入损失计算。 - end_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算 token 分类损失的标记跨度结束位置(索引)的标签。位置被限制在序列的长度 (sequence_length
) 内。序列之外的位置不计入损失计算。
Qwen2ForQuestionAnswering
的 forward 方法,覆盖了 __call__
特殊方法。
虽然 forward pass 的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。