Transformers 文档
LongT5
并获得增强的文档体验
开始使用
LongT5
概述
LongT5 模型由 Mandy Guo、Joshua Ainslie、David Uthus、Santiago Ontanon、Jianmo Ni、Yun-Hsuan Sung 和 Yinfei Yang 在论文 LongT5: Efficient Text-To-Text Transformer for Long Sequences 中提出。它是一个在文本到文本去噪生成设置中预训练的编码器-解码器 Transformer。LongT5 模型是 T5 模型的扩展,它支持使用两种不同的高效注意力机制之一——(1)局部注意力(Local attention),或(2)瞬时全局注意力(Transient-Global attention)。
论文摘要如下:
最近的研究表明,(1)增加输入长度或(2)增加模型大小都可以提高基于 Transformer 的神经模型的性能。在本文中,我们提出了一个名为 LongT5 的新模型,用它来探索同时扩展输入长度和模型大小的效果。具体来说,我们将长输入 Transformer(ETC)的注意力思想整合进来,并将摘要预训练(PEGASUS)的预训练策略应用于可扩展的 T5 架构中。其结果是一种我们称之为 {\em 瞬时全局} (TGlobal) 的新注意力机制,它模拟了 ETC 的局部/全局注意力机制,但不需要额外的侧输入。我们在几个摘要任务上取得了最先进的结果,并在问答任务上优于原始的 T5 模型。
使用技巧
- LongT5ForConditionalGeneration 是 T5ForConditionalGeneration 的一个扩展,它将传统的编码器*自注意力*层替换为高效的*局部*注意力或*瞬时全局*(*tglobal*)注意力。
- 与 T5 模型不同,LongT5 不使用任务前缀。此外,它使用了一种不同的预训练目标,灵感来自于 PegasusForConditionalGeneration 的预训练。
- LongT5 模型设计用于高效且出色地处理长距离*序列到序列*任务,其输入序列长度超过了常用的 512 个 token。它能够处理长度最多为 16,384 个 token 的输入序列。
- 对于*局部注意力*,稀疏的滑动窗口局部注意力操作允许给定 token 只关注其左右各 `r` 个 token(默认 `r=127`)。*局部注意力*不会给模型引入任何新参数。该机制的复杂度与输入序列长度 `l` 呈线性关系:`O(l*r)`。
- 瞬时全局注意力是*局部注意力*的扩展。它进一步允许每个输入 token 与层中的所有其他 token 进行交互。这是通过将输入序列分割成固定长度 `k`(默认 `k=16`)的块来实现的。然后,通过对块中每个 token 的嵌入进行求和和归一化,得到该块的全局 token。因此,注意力机制允许每个 token 既像局部注意力一样关注附近的 token,也像标准全局注意力一样关注每个全局 token(“瞬时”表示全局 token 是在每个注意力操作中动态构建的)。因此,*TGlobal* 注意力引入了一些新参数——全局相对位置偏置和用于全局 token 嵌入的层归一化。该机制的复杂度为 `O(l(r + l/k))`。
- 下面是一个示例,展示了如何在 pubmed 数据集上评估一个微调过的 LongT5 模型。
>>> import evaluate
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> dataset = load_dataset("scientific_papers", "pubmed", split="validation")
>>> model = (
... LongT5ForConditionalGeneration.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps")
... .to("cuda")
... .half()
... )
>>> tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps")
>>> def generate_answers(batch):
... inputs_dict = tokenizer(
... batch["article"], max_length=16384, padding="max_length", truncation=True, return_tensors="pt"
... )
... input_ids = inputs_dict.input_ids.to("cuda")
... attention_mask = inputs_dict.attention_mask.to("cuda")
... output_ids = model.generate(input_ids, attention_mask=attention_mask, max_length=512, num_beams=2)
... batch["predicted_abstract"] = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
... return batch
>>> result = dataset.map(generate_answer, batched=True, batch_size=2)
>>> rouge = evaluate.load("rouge")
>>> rouge.compute(predictions=result["predicted_abstract"], references=result["abstract"])
资源
LongT5Config
class transformers.LongT5Config
< 源代码 >( vocab_size = 32128 d_model = 512 d_kv = 64 d_ff = 2048 num_layers = 6 num_decoder_layers = None num_heads = 8 local_radius = 127 global_block_size = 16 relative_attention_num_buckets = 32 relative_attention_max_distance = 128 dropout_rate = 0.1 layer_norm_epsilon = 1e-06 initializer_factor = 1.0 feed_forward_proj = 'relu' is_encoder_decoder = True encoder_attention_type = 'local' use_cache = True pad_token_id = 0 eos_token_id = 1 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 32128) — LongT5 模型的词汇表大小。定义了在调用 LongT5Model 时,`inputs_ids` 可以表示的不同 token 的数量。 - d_model (
int
, 可选, 默认为 512) — 编码器层和池化层的大小。 - d_kv (
int
, 可选, 默认为 64) — 每个注意力头的键、查询、值投影的大小。`d_kv` 必须等于 `d_model // num_heads`。 - d_ff (
int
, 可选, 默认为 2048) — 每个 `LongT5Block` 中中间前馈层的大小。 - num_layers (
int
, 可选, 默认为 6) — Transformer 编码器中的隐藏层数量。 - num_decoder_layers (
int
, 可选) — Transformer 解码器中的隐藏层数量。如果未设置,将使用与 `num_layers` 相同的值。 - num_heads (
int
, 可选, 默认为 8) — Transformer 编码器中每个注意力层的注意力头数量。 - local_radius (
int
, 可选, 默认为 127) — 在局部注意力机制中,每个 token 左右两侧进行局部自注意力计算的 token 数量。 - global_block_size (
int
, 可选, 默认为 16) — 用于将输入序列划分为块以进行全局 token 表示的块长度。仅用于 `encoder_attention_type = "transient-global"`。 - relative_attention_num_buckets (
int
, 可选, 默认为 32) — 每个注意力层使用的桶的数量。 - relative_attention_max_distance (
int
, 可选, 默认为 128) — 用于桶分离的较长序列的最大距离。 - dropout_rate (
float
, 可选, 默认为 0.1) — 所有 dropout 层的比率。 - layer_norm_eps (
float
, 可选, 默认为 1e-6) — 层归一化层使用的 epsilon 值。 - initializer_factor (
float
, 可选, 默认为 1) — 用于初始化所有权重矩阵的因子(应保持为 1,内部用于初始化测试)。 - feed_forward_proj (
string
, 可选, 默认为 `"relu"`) — 要使用的前馈层类型。应为 `"relu"` 或 `"gated-gelu"` 之一。LongT5v1.1 使用 `"gated-gelu"` 前馈投影。原始 LongT5 实现使用 `"gated-gelu"`。 - encoder_attention_type (
string
, 可选, 默认为 `"local"`) — 要使用的编码器注意力类型。应为 `"local"` 或 `"transient-global"` 之一,这些是 LongT5 实现支持的类型。 - use_cache (
bool
, 可选, 默认为 `True`) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。
这是一个配置类,用于存储 LongT5Model 或 FlaxLongT5Model 的配置。它根据指定的参数实例化一个 LongT5 模型,定义模型架构。使用默认值实例化配置将产生与 LongT5 google/long-t5-local-base 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。请阅读 PretrainedConfig 的文档以获取更多信息。
LongT5Model
class transformers.LongT5Model
< source >( config: LongT5Config )
参数
- config (LongT5Config) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
无任何特定头部的 LongT5 裸模型,输出原始隐藏状态。
该模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None decoder_head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None inputs_embeds: typing.Optional[torch.Tensor] = None decoder_inputs_embeds: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) → transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。LongT5 是一个带有相对位置嵌入的模型,因此你应该能够在输入的左侧和右侧进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解更多关于如何为预训练准备
input_ids
的信息,请参阅 LONGT5 训练。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力操作的掩码。掩码值选自[0, 1]
:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- decoder_input_ids (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
LONGT5 使用
pad_token_id
作为生成decoder_input_ids
的起始标记。如果使用past_key_values
,则可以选择只输入最后一个decoder_input_ids
(参见past_key_values
)。要了解更多关于如何为预训练准备
decoder_input_ids
的信息,请参阅 LONGT5 训练。 - decoder_attention_mask (
torch.BoolTensor
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。默认情况下也会使用因果掩码。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值选自[0, 1]
:- 1 表示头部未被掩码,
- 0 表示头部被掩码。
- decoder_head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使解码器中自注意力模块中选定的头无效的掩码。掩码值选自[0, 1]
:- 1 表示头部未被掩码,
- 0 表示头部被掩码。
- cross_attn_head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使解码器中交叉注意力模块中选定的头无效的掩码。掩码值选自[0, 1]
:- 1 表示头部未被掩码,
- 0 表示头部被掩码。
- encoder_outputs (
tuple[tuple[torch.FloatTensor]]
,可选) — 元组包含 (last_hidden_state
, 可选:hidden_states
, 可选:attentions
)last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 - past_key_values (
tuple[tuple[torch.FloatTensor]]
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回传统缓存格式。如果使用
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有为其提供过去键值状态的 ID),而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为相关向量,这将非常有用。 - decoder_inputs_embeds (
torch.Tensor
,形状为(batch_size, target_sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递decoder_input_ids
。如果使用past_key_values
,可以选择只输入最后一个decoder_inputs_embeds
(参见past_key_values
)。如果你想比模型内部的嵌入查找矩阵更好地控制如何将decoder_input_ids
索引转换为相关向量,这将非常有用。如果
decoder_input_ids
和decoder_inputs_embeds
都未设置,decoder_inputs_embeds
将取inputs_embeds
的值。 - use_cache (
bool
,可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描绘输入序列标记在序列中位置的索引。与position_ids
不同,此张量不受填充影响。它用于在正确的位置更新缓存并推断完整的序列长度。
返回
transformers.modeling_outputs.Seq2SeqModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或 config.return_dict=False
),根据配置 (LongT5Config) 和输入包含不同的元素。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层输出的隐藏状态序列。如果使用了
past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
EncoderDecoderCache
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 EncoderDecoderCache 实例。更多详情请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出(如果模型有嵌入层),每个层一个输出)。解码器在每个层输出的隐藏状态,加上可选的初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
-
encoder_last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层输出的隐藏状态序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出(如果模型有嵌入层),每个层一个输出)。编码器在每个层输出的隐藏状态,加上可选的初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
LongT5Model 的 forward 方法覆盖了 __call__
特殊方法。
虽然前向传播的逻辑需要在此函数内定义,但之后应该调用 `Module` 实例而不是此函数,因为前者会处理预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, LongT5Model
>>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base")
>>> model = LongT5Model.from_pretrained("google/long-t5-local-base")
>>> # Let's try a very long encoder input.
>>> input_ids = tokenizer(
... 100 * "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
LongT5ForConditionalGeneration
class transformers.LongT5ForConditionalGeneration
< source >( config: LongT5Config )
参数
- config (LongT5Config) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
带有一个 `language modeling` 头的 LONGT5 模型。
该模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None decoder_head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[tuple[tuple[torch.Tensor]]] = None past_key_values: typing.Optional[tuple[tuple[torch.Tensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) → transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。LongT5 是一个带有相对位置嵌入的模型,因此你应该能够在输入的左侧和右侧进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解更多关于如何为预训练准备
input_ids
的信息,请参阅 LONGT5 训练。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力操作的掩码。掩码值选自[0, 1]
:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- decoder_input_ids (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
LONGT5 使用
pad_token_id
作为生成decoder_input_ids
的起始标记。如果使用past_key_values
,则可以选择只输入最后一个decoder_input_ids
(参见past_key_values
)。要了解更多关于如何为预训练准备
decoder_input_ids
的信息,请参阅 LONGT5 训练。 - decoder_attention_mask (
torch.BoolTensor
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。默认情况下也会使用因果掩码。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值选自[0, 1]
:- 1 表示头部未被掩码,
- 0 表示头部被掩码。
- decoder_head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使解码器中自注意力模块中选定的头无效的掩码。掩码值选自[0, 1]
:- 1 表示头部未被掩码,
- 0 表示头部被掩码。
- cross_attn_head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使解码器中交叉注意力模块中选定的头无效的掩码。掩码值选自[0, 1]
:- 1 表示头部未被掩码,
- 0 表示头部被掩码。
- encoder_outputs (
tuple[tuple[torch.Tensor]]
,可选) — 元组包含 (last_hidden_state
, 可选:hidden_states
, 可选:attentions
)last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 - past_key_values (
tuple[tuple[torch.Tensor]]
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回传统缓存格式。如果使用
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有为其提供过去键值状态的 ID),而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为相关向量,这将非常有用。 - decoder_inputs_embeds (
torch.FloatTensor
,形状为(batch_size, target_sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递decoder_input_ids
。如果使用past_key_values
,可以选择只输入最后一个decoder_inputs_embeds
(参见past_key_values
)。如果你想比模型内部的嵌入查找矩阵更好地控制如何将decoder_input_ids
索引转换为相关向量,这将非常有用。如果
decoder_input_ids
和decoder_inputs_embeds
都未设置,decoder_inputs_embeds
将取inputs_embeds
的值。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[-100, 0, ..., config.vocab_size - 1]
范围内。所有设置为-100
的标签都会被忽略(掩码),损失仅针对[0, ..., config.vocab_size]
范围内的标签计算。 - use_cache (
bool
,可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
, 可选) — 描述输入序列词元在序列中位置的索引。与position_ids
相反,此张量不受填充影响。它用于在正确的位置更新缓存并推断完整的序列长度。
返回
transformers.modeling_outputs.Seq2SeqLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(LongT5Config)和输入包含不同的元素。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
past_key_values (
EncoderDecoderCache
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 EncoderDecoderCache 实例。更多详情请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出(如果模型有嵌入层),每个层一个输出)。解码器在每一层输出时的隐藏状态以及初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
-
encoder_last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层输出的隐藏状态序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出(如果模型有嵌入层),每个层一个输出)。编码器在每一层输出时的隐藏状态以及初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
LongT5ForConditionalGeneration 的 forward 方法覆盖了 __call__
特殊方法。
虽然前向传播的逻辑需要在此函数内定义,但之后应该调用 `Module` 实例而不是此函数,因为前者会处理预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps")
>>> model = LongT5ForConditionalGeneration.from_pretrained(
... "Stancld/longt5-tglobal-large-16384-pubmed-3k_steps"
... )
>>> # Let's try a very long input.
>>> inputs = tokenizer(100 * "studies have shown that owning a dog is good for you ", return_tensors="pt")
>>> input_ids = inputs.input_ids
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
abstractthe aim of this article is to provide an overview of the literature on the role of dog
LongT5EncoderModel
class transformers.LongT5EncoderModel
< source >( config: LongT5Config )
参数
- config (LongT5Config) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
无任何特定头部的 LongT5 裸模型,输出原始隐藏状态。
该模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。LongT5 是一个带有相对位置嵌入的模型,因此你应该能够对输入的左右两边进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解如何为预训练准备
input_ids
,请参阅 LONGT5 训练。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充词元索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示词元未被遮盖,
- 0 表示词元被遮盖。
- head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自[0, 1]
:- 1 表示头未被遮盖,
- 0 表示头被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,你可以不传递input_ids
,而是直接传递嵌入表示。如果你想比模型内部的嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这会很有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(LongT5Config)和输入包含不同的元素。
-
last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则第一个是嵌入层的输出,然后是每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
LongT5EncoderModel 的 forward 方法覆盖了 __call__
特殊方法。
虽然前向传播的逻辑需要在此函数内定义,但之后应该调用 `Module` 实例而不是此函数,因为前者会处理预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base")
>>> model = LongT5EncoderModel.from_pretrained("google/long-t5-local-base")
>>> input_ids = tokenizer(
... 100 * "Studies have been shown that owning a dog is good for you ", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
FlaxLongT5Model
class transformers.FlaxLongT5Model
< source >( config: LongT5Config input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
__call__
< source >( input_ids: Array attention_mask: typing.Optional[jax.Array] = None decoder_input_ids: Array = None decoder_attention_mask: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
jnp.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。LongT5 是一个带有相对位置嵌入的模型,因此你应该能够对输入的左右两边进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解如何为预训练准备
input_ids
,请参阅 LONGT5 训练。 - attention_mask (
jnp.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充词元索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示词元未被遮盖,
- 0 表示词元被遮盖。
- decoder_input_ids (
jnp.ndarray
,形状为(batch_size, target_sequence_length)
, 可选) — 解码器输入序列词元在词汇表中的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
LONGT5 使用
pad_token_id
作为生成decoder_input_ids
的起始词元。如果使用past_key_values
,可以选择只输入最后一个decoder_input_ids
(请参阅past_key_values
)。要了解如何为预训练准备
decoder_input_ids
,请参阅 LONGT5 训练。 - decoder_attention_mask (
jnp.ndarray
,形状为(batch_size, target_sequence_length)
, 可选) — 默认行为:生成一个忽略decoder_input_ids
中填充词元的张量。默认情况下也会使用因果掩码。 - encoder_outputs (
tuple(tuple(jnp.ndarray)
, 可选) — 元组包含(last_hidden_state
,可选
: hidden_states,可选
: attentions)。形状为(batch_size, sequence_length, hidden_size)
的last_hidden_state
是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 - past_key_values (
tuple(tuple(jnp.ndarray))
,长度为config.n_layers
,每个元组包含 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
的张量) — 包含预先计算的注意力块的键和值隐藏状态。可用于加速解码。如果使用
past_key_values
,用户可以选择只输入最后一个decoder_input_ids
(那些没有为其提供过去键值状态的词元),其形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(LongT5Config)和输入包含不同的元素。
-
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 语言建模头的预测分数(SoftMax 之前每个词汇 token 的分数)。 -
past_key_values (
tuple(tuple(jnp.ndarray))
, 可选, 在传递use_cache=True
或config.use_cache=True
时返回) —tuple(jnp.ndarray)
的元组,长度为config.n_layers
,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(jnp.ndarray)
, 可选, 在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个是嵌入层的输出 + 每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。解码器在每一层输出时的隐藏状态以及初始嵌入输出。
-
decoder_attentions (
tuple(jnp.ndarray)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
-
cross_attentions (
tuple(jnp.ndarray)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
-
encoder_last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
,可选) — 模型编码器最后一层输出的隐藏状态序列。 -
encoder_hidden_states (
tuple(jnp.ndarray)
, 可选, 在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个是嵌入层的输出 + 每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。编码器在每一层输出时的隐藏状态以及初始嵌入输出。
-
encoder_attentions (
tuple(jnp.ndarray)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
FlaxLongT5PreTrainedModel
的 forward 方法覆盖了 __call__
特殊方法。
虽然前向传播的逻辑需要在此函数内定义,但之后应该调用 `Module` 实例而不是此函数,因为前者会处理预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxLongT5Model
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = FlaxLongT5Model.from_pretrained("google/long-t5-local-base")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="np"
... ).input_ids
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
编码
< source >( input_ids: Array attention_mask: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
jnp.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。LongT5 是一个带有相对位置嵌入的模型,因此你应该能够对输入的左右两边进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解如何为预训练准备
input_ids
,请参阅 LONGT5 训练。 - attention_mask (
jnp.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充词元索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示词元未被遮盖,
- 0 表示词元被遮盖。
- output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(<class 'transformers.models.longt5.configuration_longt5.LongT5Config'>
)和输入包含不同的元素。
-
last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型最后一层输出的隐藏状态序列。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个是嵌入层的输出 + 每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
示例
>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
decode
< source >( decoder_input_ids encoder_outputs encoder_attention_mask: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None past_key_values: typing.Optional[dict] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- decoder_input_ids (
jnp.ndarray
,形状为(batch_size, target_sequence_length)
) — 解码器输入序列词元在词汇表中的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
对于训练,应提供
decoder_input_ids
。 - encoder_outputs (
tuple(tuple(jnp.ndarray)
) — 元组包含(last_hidden_state
, 可选:hidden_states
, 可选:attentions
)。形状为(batch_size, sequence_length, hidden_size)
的last_hidden_state
是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 - encoder_attention_mask (
jnp.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充词元索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示词元未被遮盖,
- 0 表示词元被遮盖。
- decoder_attention_mask (
jnp.ndarray
,形状为(batch_size, target_sequence_length)
, 可选) — 默认行为:生成一个忽略decoder_input_ids
中填充词元的张量。默认情况下也会使用因果掩码。如果你想改变填充行为,应根据你的需求进行修改。有关默认策略的更多信息,请参阅论文中的图 1。
- past_key_values (
Dict[str, np.ndarray]
, 可选, 由init_cache
返回或在传递先前的past_key_values
时返回) — 预先计算的隐藏状态(注意力块中的键和值)的字典,可用于快速自回归解码。预先计算的键和值隐藏状态的形状为 [batch_size, max_length]。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(<class 'transformers.models.longt5.configuration_longt5.LongT5Config'>
)和输入包含不同的元素。
-
last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型最后一层输出的隐藏状态序列。如果使用了
past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
tuple(tuple(jnp.ndarray))
, 可选, 在传递use_cache=True
或config.use_cache=True
时返回) —tuple(jnp.ndarray)
的元组,长度为config.n_layers
,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,如果config.is_encoder_decoder=True
,则还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块中的键和值,如果
config.is_encoder_decoder=True
,则还包含交叉注意力块中的键和值),可用于(请参阅past_key_values
输入)加速序列解码。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个是嵌入层的输出 + 每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(jnp.ndarray)
, 可选, 在传递output_attentions=True
且config.add_cross_attention=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
示例
>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> import jax.numpy as jnp
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
FlaxLongT5ForConditionalGeneration
class transformers.FlaxLongT5ForConditionalGeneration
< source >( config: LongT5Config input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
__call__
< source >( input_ids: Array attention_mask: typing.Optional[jax.Array] = None decoder_input_ids: Array = None decoder_attention_mask: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
jnp.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。LongT5 是一个带有相对位置嵌入的模型,因此你应该能够对输入的左右两边进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解如何为预训练准备
input_ids
,请参阅 LONGT5 训练。 - attention_mask (
jnp.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充词元索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示词元未被遮盖,
- 0 表示词元被遮盖。
- decoder_input_ids (
jnp.ndarray
,形状为(batch_size, target_sequence_length)
, 可选) — 解码器输入序列词元在词汇表中的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
LONGT5 使用
pad_token_id
作为生成decoder_input_ids
的起始词元。如果使用past_key_values
,可以选择只输入最后一个decoder_input_ids
(请参阅past_key_values
)。要了解如何为预训练准备
decoder_input_ids
,请参阅 LONGT5 训练。 - decoder_attention_mask (
jnp.ndarray
,形状为(batch_size, target_sequence_length)
, 可选) — 默认行为:生成一个忽略decoder_input_ids
中填充词元的张量。默认情况下也会使用因果掩码。 - encoder_outputs (
tuple(tuple(jnp.ndarray)
, 可选) — 元组包含 (last_hidden_state
,可选
: hidden_states,可选
: attentions)。last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,是编码器最后一层输出的一系列隐藏状态。用于解码器的交叉注意力机制。 - past_key_values (
tuple(tuple(jnp.ndarray))
,长度为config.n_layers
,其中每个元组包含 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
的张量) — 包含注意力块的预计算键(key)和值(value)隐藏状态。可用于加速解码。如果使用
past_key_values
,用户可以选择只输入最后一个decoder_input_ids
(即那些没有为其提供过去键值状态的decoder_input_ids
),其形状为(batch_size, 1)
,而不是输入所有形状为(batch_size, sequence_length)
的decoder_input_ids
。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(LongT5Config)和输入包含不同的元素。
-
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 语言建模头的预测分数(SoftMax 之前每个词汇 token 的分数)。 -
past_key_values (
tuple(tuple(jnp.ndarray))
, 可选, 在传递use_cache=True
或config.use_cache=True
时返回) —tuple(jnp.ndarray)
的元组,长度为config.n_layers
,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(jnp.ndarray)
, 可选, 在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个是嵌入层的输出 + 每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。解码器在每一层输出时的隐藏状态以及初始嵌入输出。
-
decoder_attentions (
tuple(jnp.ndarray)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
-
cross_attentions (
tuple(jnp.ndarray)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
-
encoder_last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
,可选) — 模型编码器最后一层输出的隐藏状态序列。 -
encoder_hidden_states (
tuple(jnp.ndarray)
, 可选, 在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个是嵌入层的输出 + 每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。编码器在每一层输出时的隐藏状态以及初始嵌入输出。
-
encoder_attentions (
tuple(jnp.ndarray)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
FlaxLongT5PreTrainedModel
的 forward 方法覆盖了 __call__
特殊方法。
虽然前向传播的逻辑需要在此函数内定义,但之后应该调用 `Module` 实例而不是此函数,因为前者会处理预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> ARTICLE_TO_SUMMARIZE = "summarize: My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], return_tensors="np")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"]).sequences
>>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False))
编码
< 来源 >( input_ids: Array attention_mask: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
jnp.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。LongT5 是一个带有相对位置嵌入的模型,因此您应该能够在输入的左侧和右侧进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解更多关于如何为预训练准备
input_ids
的信息,请参阅 LONGT5 训练。 - attention_mask (
jnp.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充词元索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示未被屏蔽的词元,
- 0 表示被屏蔽的词元。
- output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(<class 'transformers.models.longt5.configuration_longt5.LongT5Config'>
)和输入包含不同的元素。
-
last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型最后一层输出的隐藏状态序列。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个是嵌入层的输出 + 每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
示例
>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
decode
< 来源 >( decoder_input_ids encoder_outputs encoder_attention_mask: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None past_key_values: typing.Optional[dict] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) → transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- decoder_input_ids (
jnp.ndarray
,形状为(batch_size, target_sequence_length)
) — 词汇表中解码器输入序列词元的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
对于训练,应提供
decoder_input_ids
。 - encoder_outputs (
tuple(tuple(jnp.ndarray)
) — 元组包含 (last_hidden_state
, 可选:hidden_states
, 可选:attentions
)。last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选) 是编码器最后一层输出的一系列隐藏状态。用于解码器的交叉注意力机制。 - encoder_attention_mask (
jnp.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充词元索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示未被屏蔽的词元,
- 0 表示被屏蔽的词元。
- decoder_attention_mask (
jnp.ndarray
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个忽略decoder_input_ids
中填充词元的张量。默认情况下也会使用因果掩码。如果您想更改填充行为,应根据您的需要进行修改。有关默认策略的更多信息,请参阅论文中的图 1。
- past_key_values (
Dict[str, np.ndarray]
, 可选,由init_cache
返回或在传递先前的past_key_values
时返回) — 预计算的隐藏状态(注意力块中的键和值)字典,可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length]。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(<class 'transformers.models.longt5.configuration_longt5.LongT5Config'>
)和输入,包含各种元素。
-
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 语言建模头的预测分数(SoftMax 之前每个词汇 token 的分数)。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个是嵌入层的输出 + 每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(jnp.ndarray)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均。
-
past_key_values (
tuple(tuple(jnp.ndarray))
, 可选,在传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的jnp.ndarray
元组的元组,其中每个元组包含自注意力和交叉注意力层的缓存键、值状态(如果模型在编码器-解码器设置中使用)。仅当config.is_decoder = True
时相关。包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。
示例
>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> import jax.numpy as jnp
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> text = "summarize: My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits