Transformers 文档

Nemotron

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

Nemotron

PyTorch FlashAttention SDPA

许可

此模型的使用受NVIDIA AI 基础模型社区许可协议的约束。

描述

Nemotron-4 是一系列企业级生成文本模型,与NVIDIA NeMo 框架兼容。

NVIDIA NeMo 是一个端到端、云原生的平台,用于在任何地方构建、定制和部署生成式 AI 模型。它包括训练和推理框架、护栏工具包、数据整理工具和预训练模型,为企业提供了一种简单、经济高效、快速的生成式 AI 采用方式。要访问 NeMo 框架,请通过此链接注册。

参考

公告博客

模型架构

架构类型: Transformer

网络架构: Transformer 解码器(自回归语言模型)。

Minitron

Minitron 4B Base

Minitron 是通过修剪 NVIDIA 的 Nemotron-4 15B 模型获得的小型语言模型(SLM)家族。我们修剪了模型的嵌入大小、注意力头和 MLP 中间维度,然后通过蒸馏进行持续训练,从而得到最终模型。

与从头开始训练相比,使用我们的方法从基础 15B 模型派生 Minitron 8B 和 4B 模型所需的每个模型的训练令牌减少多达 40 倍;这使得训练整个模型家族(15B、8B 和 4B)的计算成本节省 1.8 倍。Minitron 模型在 MMLU 分数上比从头开始训练的模型提高了 16%,与 Mistral 7B、Gemma 7B 和 Llama-3 8B 等其他社区模型表现相当,并且优于文献中最新的压缩技术。请参阅我们的arXiv 论文了解更多详情。

Minitron 模型仅用于研究和开发。

HuggingFace 快速入门

以下代码提供了一个如何加载 Minitron-4B 模型并使用它执行文本生成的示例。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load the tokenizer and model
model_path = 'nvidia/Minitron-4B-Base'
tokenizer  = AutoTokenizer.from_pretrained(model_path)

device = 'cuda'
dtype  = torch.bfloat16
model  = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)

# Prepare the input text
prompt = 'Complete the paragraph: our solar system is'
inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device)

# Generate the output
outputs = model.generate(inputs, max_length=20)

# Decode and print the output
output_text = tokenizer.decode(outputs[0])
print(output_text)

许可

Minitron 根据NVIDIA 开放模型许可协议发布。

评估结果

5-shot 性能。 使用 Massive Multitask Language Understanding 评估语言理解

平均分
58.6

Zero-shot 性能。 使用 LM Evaluation Harness 中的部分数据集进行评估,并有额外补充

HellaSwag Winogrande GSM8K ARC-C XLSum
75.0 74.0 24.1 50.9 29.5

代码生成性能。使用 HumanEval 评估

p@1,0-Shot
23.3

有关完整结果,请参阅我们的论文

引用

如果您认为我们的工作有帮助,请考虑引用我们的论文

@article{minitron2024,
      title={Compact Language Models via Pruning and Knowledge Distillation},
      author={Saurav Muralidharan and Sharath Turuvekere Sreenivas and Raviraj Joshi and Marcin Chochowski and Mostofa Patwary and Mohammad Shoeybi and Bryan Catanzaro and Jan Kautz and Pavlo Molchanov},
      journal={arXiv preprint arXiv:2407.14679},
      year={2024},
      url={https://arxiv.org/abs/2407.14679},
}

NemotronConfig

class transformers.NemotronConfig

< >

( vocab_size = 256000 hidden_size = 6144 intermediate_size = 24576 num_hidden_layers = 32 num_attention_heads = 48 head_dim = None num_key_value_heads = None hidden_act = 'relu2' max_position_embeddings = 4096 initializer_range = 0.0134 norm_eps = 1e-05 use_cache = True pad_token_id = None bos_token_id = 2 eos_token_id = 3 tie_word_embeddings = False rope_theta = 10000.0 partial_rotary_factor = 0.5 attention_bias = False attention_dropout = 0.0 mlp_bias = False **kwargs )

参数

  • vocab_size (int, 可选, 默认为 256000) — Nemotron 模型的词汇量。定义了调用 NemotronModel 时通过 inputs_ids 传入的不同令牌的数量。
  • hidden_size (int, 可选, 默认为 6144) — 隐藏表示的维度。
  • intermediate_size (int, 可选, 默认为 24576) — MLP 表示的维度。
  • num_hidden_layers (int, 可选, 默认为 32) — Transformer 解码器中隐藏层的数量。
  • num_attention_heads (int, 可选, 默认为 48) — Transformer 解码器中每个注意力层的注意力头数量。
  • head_dim (int, 可选) — 多头注意力中的投影权重维度。如果为 None,则设置为 hidden_size // num_attention_heads。
  • num_key_value_heads (int, 可选) — 用于实现分组查询注意力 (Grouped Query Attention) 的键值头数量。如果 num_key_value_heads=num_attention_heads,模型将使用多头注意力 (MHA),如果 num_key_value_heads=1,模型将使用多查询注意力 (MQA),否则使用 GQA。当将多头检查点转换为 GQA 检查点时,每个分组的键和值头应通过对该组中的所有原始头进行均值池化来构建。有关更多详细信息,请查看这篇论文。如果未指定,将默认为num_attention_heads
  • hidden_act (strfunction, 可选, 默认为 "relu2") — 解码器中的非线性激活函数(函数或字符串)。
  • max_position_embeddings (int, 可选, 默认为 4096) — 此模型可能使用的最大序列长度。
  • initializer_range (float, 可选, 默认为 0.0134) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • norm_eps (float, 可选, 默认为 1e-05) — 归一化层使用的 epsilon 值。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。仅在 config.is_decoder=True 时相关。
  • pad_token_id (int, 可选) — 填充令牌 ID。
  • bos_token_id (int, 可选, 默认为 2) — 流开始令牌 ID。
  • eos_token_id (int, 可选, 默认为 3) — 流结束令牌 ID。
  • tie_word_embeddings (bool, 可选, 默认为 False) — 是否绑定词嵌入。
  • rope_theta (float, 可选, 默认为 10000.0) — RoPE 嵌入的基础周期。
  • partial_rotary_factor (float, 可选, 默认为 0.5) — 将具有旋转嵌入的查询和键的百分比。
  • attention_bias (bool, 可选, 默认为 False) — 在自注意力过程中,是否在查询、键、值和输出投影层中使用偏差。
  • attention_dropout (float, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。
  • mlp_bias (bool, 可选, 默认为 False) — 在 MLP 层中的 up_proj 和 down_proj 层中是否使用偏差。

这是配置类,用于存储 NemotronModel 的配置。它用于根据指定的参数实例化 Nemotron 模型,定义模型架构。使用默认值实例化配置将生成与 Nemotron-8B 类似的配置,例如 nvidia/nemotron-3-8b-base-4k-hf。配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

>>> from transformers import NemotronModel, NemotronConfig

>>> # Initializing a Nemotron nemotron-15b style configuration
>>> configuration = NemotronConfig()

>>> # Initializing a model from the nemotron-15b style configuration
>>> model = NemotronModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

NemotronModel

class transformers.NemotronModel

< >

( config: NemotronConfig )

参数

  • 配置 (NemotronConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法来加载模型权重。

裸的 Nemotron 模型,输出原始隐藏状态,不带任何特定头部。

此模型继承自 PreTrainedModel。有关库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等),请查阅其超类文档。

此模型也是 PyTorch torch.nn.Module 的子类。请将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档了解所有与一般用法和行为相关的事项。

前向传播

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, list[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。

    索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选择范围为 [0, 1]

    • 1 表示**未被掩码**的标记,
    • 0 表示**被掩码**的标记。

    什么是注意力掩码?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • past_key_values (Union[~cache_utils.Cache, list[torch.FloatTensor], NoneType]) — 预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也被称为传统缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传入 past_key_values,将返回传统缓存格式。

    如果使用 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最后一个 input_ids(即没有将过去键值状态提供给此模型的那些),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 input_ids。如果你想对如何将 input_ids 索引转换为关联向量拥有更多控制权,而不是模型内部的嵌入查找矩阵,这将很有用。
  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多详情请参见返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多详情请参见返回张量中的 hidden_states
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 表示输入序列标记在序列中的位置的索引。与 position_ids 不同,此张量不受填充影响。它用于在正确位置更新缓存并推断完整的序列长度。

返回

transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPast 或一个 torch.FloatTensor 元组(如果传入 return_dict=False 或当 config.return_dict=False 时),其中包含根据配置 (NemotronConfig) 和输入的不同元素。

  • last_hidden_state (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (Cache, 可选,当传入 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南

    包含预计算的隐藏状态(自注意力块中的键和值,如果 config.is_encoder_decoder=True,则可选地包含交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传入 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层输出,如果模型有嵌入层,+一个用于每个层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传入 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

NemotronModel 的前向传播方法,覆盖了 __call__ 特殊方法。

尽管前向传播的实现需要在该函数中定义,但随后应该调用 Module 实例而不是该函数,因为前者负责运行预处理和后处理步骤,而后者则会静默忽略它们。

NemotronForCausalLM

class transformers.NemotronForCausalLM

< >

( 配置 )

前向传播

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, list[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **loss_kwargs ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。

    索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选择范围为 [0, 1]

    • 1 表示**未被掩码**的标记,
    • 0 表示**被掩码**的标记。

    什么是注意力掩码?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • past_key_values (Union[~cache_utils.Cache, list[torch.FloatTensor], NoneType]) — 预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也被称为传统缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传入 past_key_values,将返回传统缓存格式。

    如果使用 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最后一个 input_ids(即没有将过去键值状态提供给此模型的那些),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 input_ids。如果你想对如何将 input_ids 索引转换为关联向量拥有更多控制权,而不是模型内部的嵌入查找矩阵,这将很有用。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),损失只对标签在 [0, ..., config.vocab_size] 中的标记计算。
  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多详情请参见返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多详情请参见返回张量中的 hidden_states
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 表示输入序列标记在序列中的位置的索引。与 position_ids 不同,此张量不受填充影响。它用于在正确位置更新缓存并推断完整的序列长度。
  • logits_to_keep (Union[int, torch.Tensor], 默认为 0) — 如果是 int,则计算最后 logits_to_keep 个标记的 logits。如果是 0,则计算所有 input_ids 的 logits(特殊情况)。生成时只需要最后一个标记的 logits,并且只计算该标记的 logits 可以节省内存,这对于长序列或大词汇量来说非常重要。如果是 torch.Tensor,则必须是 1D,对应于在序列长度维度中要保留的索引。这在使用打包张量格式(批次和序列长度的单维度)时很有用。

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个 torch.FloatTensor 元组(如果传入 return_dict=False 或当 config.return_dict=False 时),其中包含根据配置 (NemotronConfig) 和输入的不同元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个 token 预测)。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • past_key_values (Cache, 可选,当传入 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南

    包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传入 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层输出,如果模型有嵌入层,+一个用于每个层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传入 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

NemotronForCausalLM 的前向传播方法,覆盖了 __call__ 特殊方法。

尽管前向传播的实现需要在该函数中定义,但随后应该调用 Module 实例而不是该函数,因为前者负责运行预处理和后处理步骤,而后者则会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, NemotronForCausalLM

>>> model = NemotronForCausalLM.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."

NemotronForSequenceClassification

class transformers.NemotronForSequenceClassification

< >

( 配置 )

参数

Nemotron 模型 Transformer,顶部带有一个序列分类头(线性层)。

NemotronForSequenceClassification 使用最后一个标记进行分类,与其他因果模型(如 GPT-2)一样。

由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了 pad_token_id,它会在每一行中找到不是填充标记的最后一个标记。如果没有定义 pad_token_id,它只取批处理中每一行的最后一个值。由于当传入 inputs_embeds 而不是 input_ids 时,它无法猜测填充标记,因此它会做同样的操作(取批处理中每一行的最后一个值)。

此模型继承自 PreTrainedModel。有关库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等),请查阅其超类文档。

此模型也是 PyTorch torch.nn.Module 的子类。请将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档了解所有与一般用法和行为相关的事项。

前向传播

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。

    索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选择范围为 [0, 1]

    • 1 表示**未被掩码**的标记,
    • 0 表示**被掩码**的标记。

    什么是注意力掩码?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • past_key_values (~cache_utils.Cache, 可选) — 预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也被称为传统缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传入 past_key_values,将返回传统缓存格式。

    如果使用 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最后一个 input_ids(即没有将过去键值状态提供给此模型的那些),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 input_ids。如果你想对如何将 input_ids 索引转换为关联向量拥有更多控制权,而不是模型内部的嵌入查找矩阵,这将很有用。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 之间。如果 config.num_labels == 1,则计算回归损失(均方损失);如果 config.num_labels > 1,则计算分类损失(交叉熵)。
  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多详情请参见返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多详情请参见返回张量中的 hidden_states

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutputWithPast 或一个 torch.FloatTensor 元组(如果传入 return_dict=False 或当 config.return_dict=False 时),其中包含根据配置 (NemotronConfig) 和输入的不同元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。

  • logits (形状为 (batch_size, config.num_labels)torch.FloatTensor) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。

  • past_key_values (Cache, 可选,当传入 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南

    包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传入 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层输出,如果模型有嵌入层,+一个用于每个层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传入 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

NemotronForSequenceClassification 的前向传播方法,覆盖了 __call__ 特殊方法。

尽管前向传播的实现需要在该函数中定义,但随后应该调用 Module 实例而不是该函数,因为前者负责运行预处理和后处理步骤,而后者则会静默忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, NemotronForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf")
>>> model = NemotronForSequenceClassification.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NemotronForSequenceClassification.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, NemotronForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf")
>>> model = NemotronForSequenceClassification.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NemotronForSequenceClassification.from_pretrained(
...     "nvidia/nemotron-3-8b-base-4k-hf", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

NemotronForQuestionAnswering

class transformers.NemotronForQuestionAnswering

< >

( 配置 )

参数

  • 配置 (NemotronForQuestionAnswering) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法来加载模型权重。

Nemotron transformer,顶部带有一个用于提取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出之上的一层线性层,用于计算 span start logitsspan end logits)。

此模型继承自 PreTrainedModel。有关库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等),请查阅其超类文档。

此模型也是 PyTorch torch.nn.Module 的子类。请将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档了解所有与一般用法和行为相关的事项。

前向传播

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。

    索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选择范围为 [0, 1]

    • 1 表示**未被掩码**的标记,
    • 0 表示**被掩码**的标记。

    什么是注意力掩码?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • past_key_values (~cache_utils.Cache, 可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码前期返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • 一个 Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也被称为传统缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传入 past_key_values,将返回传统缓存格式。

    如果使用了 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最新 input_ids(那些没有将过去的键值状态提供给此模型的),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor可选) — 可选地,除了传递 input_ids,您还可以选择直接传递嵌入表示。如果您希望对如何将 input_ids 索引转换为相关向量有比模型内部嵌入查找矩阵更多的控制,这将非常有用。
  • start_positions (形状为 (batch_size,)torch.LongTensor可选) — 用于计算标记分类损失的标记跨度起始位置(索引)的标签。位置将被限制在序列的长度(sequence_length)内。序列外的位置不计入损失计算。
  • end_positions (形状为 (batch_size,)torch.LongTensor可选) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。位置将被限制在序列的长度(sequence_length)内。序列外的位置不计入损失计算。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置(NemotronConfig)和输入而定的各种元素。

  • loss (torch.FloatTensor of shape (1,), 可选, 当提供 labels 时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围起始分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围结束分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传入 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层输出,如果模型有嵌入层,+一个用于每个层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传入 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

NemotronForQuestionAnswering 的 forward 方法,它覆盖了 __call__ 特殊方法。

尽管前向传播的实现需要在该函数中定义,但随后应该调用 Module 实例而不是该函数,因为前者负责运行预处理和后处理步骤,而后者则会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, NemotronForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf")
>>> model = NemotronForQuestionAnswering.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...

NemotronForTokenClassification

class transformers.NemotronForTokenClassification

< >

( 配置 )

参数

  • config (NemotronForTokenClassification) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只加载配置。请查看 from_pretrained() 方法来加载模型权重。

Nemotron transformer,顶部带有一个标记分类头(隐藏状态输出顶部的一个线性层),例如用于命名实体识别(NER)任务。

此模型继承自 PreTrainedModel。有关库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等),请查阅其超类文档。

此模型也是 PyTorch torch.nn.Module 的子类。请将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档了解所有与一般用法和行为相关的事项。

前向传播

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)torch.LongTensor可选) — 词汇表中输入序列 token 的索引。默认情况下,填充将被忽略。

    索引可以使用 AutoTokenizer 获取。有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是 input IDs?

  • attention_mask (形状为 (batch_size, sequence_length)torch.Tensor可选) — 掩码,用于避免对填充 token 索引执行注意力操作。掩码值选择范围为 [0, 1]

    • 1 表示 未被掩盖 的 token,
    • 0 表示 被掩盖 的 token。

    什么是注意力掩码?

  • position_ids (形状为 (batch_size, sequence_length)torch.LongTensor可选) — 每个输入序列 token 在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • past_key_values (~cache_utils.Cache, 可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码前期返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • 一个 Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也被称为传统缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传入 past_key_values,将返回传统缓存格式。

    如果使用了 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最新 input_ids(那些没有将过去的键值状态提供给此模型的),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor可选) — 可选地,除了传递 input_ids,您还可以选择直接传递嵌入表示。如果您希望对如何将 input_ids 索引转换为相关向量有比模型内部嵌入查找矩阵更多的控制,这将非常有用。
  • labels (形状为 (batch_size,)torch.LongTensor可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方误差损失);如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。
  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(请参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置(NemotronConfig)和输入而定的各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失。

  • logits (形状为 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传入 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层输出,如果模型有嵌入层,+一个用于每个层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传入 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

NemotronForTokenClassification 的 forward 方法,它覆盖了 __call__ 特殊方法。

尽管前向传播的实现需要在该函数中定义,但随后应该调用 Module 实例而不是该函数,因为前者负责运行预处理和后处理步骤,而后者则会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, NemotronForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf")
>>> model = NemotronForTokenClassification.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
< > 在 GitHub 上更新