Transformers 文档
ERNIE
并获得增强的文档体验
开始使用
ERNIE
概述
ERNIE 是百度提出的一系列强大的模型,特别是在中文任务上,包括 ERNIE1.0、ERNIE2.0、ERNIE3.0、ERNIE-Gram、ERNIE-health 等。
这些模型由 nghuyong 贡献,官方代码可以在 PaddleNLP (基于 PaddlePaddle) 中找到。
使用示例
以 ernie-1.0-base-zh
为例
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
model = AutoModel.from_pretrained("nghuyong/ernie-1.0-base-zh")
模型检查点
模型名称 | 语言 | 描述 |
---|---|---|
ernie-1.0-base-zh | 中文 | 层数:12,注意力头数:12,隐藏层维度:768 |
ernie-2.0-base-en | 英语 | 层数:12,注意力头数:12,隐藏层维度:768 |
ernie-2.0-large-en | 英语 | 层数:24,注意力头数:16,隐藏层维度:1024 |
ernie-3.0-base-zh | 中文 | 层数:12,注意力头数:12,隐藏层维度:768 |
ernie-3.0-medium-zh | 中文 | 层数:6,注意力头数:12,隐藏层维度:768 |
ernie-3.0-mini-zh | 中文 | 层数:6,注意力头数:12,隐藏层维度:384 |
ernie-3.0-micro-zh | 中文 | 层数:4,注意力头数:12,隐藏层维度:384 |
ernie-3.0-nano-zh | 中文 | 层数:4,注意力头数:12,隐藏层维度:312 |
ernie-health-zh | 中文 | 层数:12,注意力头数:12,隐藏层维度:768 |
ernie-gram-zh | 中文 | 层数:12,注意力头数:12,隐藏层维度:768 |
你可以从 Hugging Face 模型中心找到所有支持的模型:huggingface.co/nghuyong,以及从 Paddle 的官方仓库中找到模型详细信息:PaddleNLP 和 ERNIE。
资源
ErnieConfig
class transformers.ErnieConfig
< 来源 >( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 task_type_vocab_size = 3 use_task_id = False initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 30522) — ERNIE 模型的词汇表大小。定义了在调用 ErnieModel 或TFErnieModel
时,inputs_ids
可以表示的不同词元的数量。 - hidden_size (
int
, 可选, 默认为 768) — 编码器层和池化层的维度。 - num_hidden_layers (
int
, 可选, 默认为 12) — Transformer 编码器中的隐藏层数量。 - num_attention_heads (
int
, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数量。 - intermediate_size (
int
, 可选, 默认为 3072) — Transformer 编码器中“中间层”(通常称为前馈层)的维度。 - hidden_act (
str
orCallable
, 可选, 默认为"gelu"
) — 编码器和池化层中的非线性激活函数(函数或字符串)。如果为字符串,则支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, 可选, 默认为 0.1) — 嵌入层、编码器和池化层中所有全连接层的丢弃概率。 - attention_probs_dropout_prob (
float
, 可选, 默认为 0.1) — 注意力概率的丢弃率。 - max_position_embeddings (
int
, 可选, 默认为 512) — 模型可能使用的最大序列长度。通常将其设置为一个较大的值以备不时之需(例如,512、1024 或 2048)。 - type_vocab_size (
int
, 可选, 默认为 2) — 在调用 ErnieModel 或TFErnieModel
时,token_type_ids
的词汇表大小。 - task_type_vocab_size (
int
, 可选, 默认为 3) — ERNIE2.0/ERNIE3.0 模型中task_type_ids
的词汇表大小。 - use_task_id (
bool
, 可选, 默认为False
) — 模型是否支持task_type_ids
。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。 - pad_token_id (
int
, 可选, 默认为 0) — 填充词元 ID。 - position_embedding_type (
str
, 可选, 默认为"absolute"
) — 位置嵌入的类型。选择"absolute"
、"relative_key"
或"relative_key_query"
。对于位置嵌入,使用"absolute"
。有关"relative_key"
的更多信息,请参阅 《Self-Attention with Relative Position Representations》(Shaw 等人)。有关"relative_key_query"
的更多信息,请参阅 《Improve Transformer Models with Better Relative Position Embeddings》(Huang 等人) 中的 *方法 4*。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - classifier_dropout (
float
, 可选) — 分类头的丢弃率。
这是用于存储 ErnieModel 或 TFErnieModel
配置的配置类。它用于根据指定的参数实例化 ERNIE 模型,定义模型架构。使用默认值实例化配置将产生与 ERNIE nghuyong/ernie-3.0-base-zh 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import ErnieConfig, ErnieModel
>>> # Initializing a ERNIE nghuyong/ernie-3.0-base-zh style configuration
>>> configuration = ErnieConfig()
>>> # Initializing a model (with random weights) from the nghuyong/ernie-3.0-base-zh style configuration
>>> model = ErnieModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Ernie 特定输出
class transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput
< 来源 >( loss: typing.Optional[torch.FloatTensor] = None prediction_logits: typing.Optional[torch.FloatTensor] = None seq_relationship_logits: typing.Optional[torch.FloatTensor] = None hidden_states: typing.Optional[tuple[torch.FloatTensor]] = None attentions: typing.Optional[tuple[torch.FloatTensor]] = None )
参数
- loss (
*可选*
, 当提供了labels
时返回,torch.FloatTensor
,形状为(1,)
) — 总损失,是掩码语言建模损失和下一句预测(分类)损失的和。 - prediction_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇词元的分数)。 - seq_relationship_logits (
torch.FloatTensor
,形状为(batch_size, 2)
) — 下一句预测(分类)头的预测分数(SoftMax 之前的真/假连续性分数)。 - hidden_states (
tuple[torch.FloatTensor]
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则第一个是嵌入层的输出,+ 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态以及可选的初始嵌入输出。
- attentions (
tuple[torch.FloatTensor]
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
ErnieForPreTraining 的输出类型。
ErnieModel
class transformers.ErnieModel
< 源代码 >( config add_pooling_layer = True )
参数
- config (ErnieModel) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- add_pooling_layer (
bool
, 可选, 默认为True
) — 是否添加一个池化层
该模型既可以作为编码器(仅使用自注意力机制),也可以作为解码器。在作为解码器时,自注意力层之间会添加一个交叉注意力层,遵循 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin 在 Attention is all you need 中描述的架构。
要作为解码器使用,模型初始化时需要将配置的 `is_decoder` 参数设置为 `True`。要在 Seq2Seq 模型中使用,模型初始化时需要同时设置 `is_decoder` 参数和
该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< 源代码 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列词元的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充词元索引上执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示词元未被掩码,
- 0 表示词元被掩码。
- token_type_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一和第二部分的段落词元索引。索引选自[0, 1]
:- 0 对应于 *A 句子* 的词元,
- 1 对应于 *B 句子* 的词元。
- task_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个task_type_id
,且task_type_id
的范围在 `[0, config.task_type_vocab_size-1]` 之间 - position_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列词元在位置嵌入中的位置索引。选自范围[0, config.n_positions - 1]
。 - head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自[0, 1]
:- 1 表示头未被掩码,
- 0 表示头被掩码。
- inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 `input_ids`。如果你想更多地控制如何将 `input_ids` 索引转换为关联向量,而不是使用模型的内部嵌入查找矩阵,这会很有用。 - encoder_hidden_states (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则用于交叉注意力。 - encoder_attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在编码器输入的填充词元索引上执行注意力的掩码。如果模型被配置为解码器,该掩码用于交叉注意力。掩码值选自[0, 1]
:- 1 表示词元未被掩码,
- 0 表示词元被掩码。
- past_key_values (
list[torch.FloatTensor]
, 可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常由模型在解码的先前阶段返回的 `past_key_values` 组成,当 `use_cache=True` 或 `config.use_cache=True` 时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为 `config.n_layers` 的 `tuple(tuple(torch.FloatTensor))`,每个元组包含 2 个形状为 `(batch_size, num_heads, sequence_length, embed_size_per_head)` 的张量。这也被称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果没有传递 `past_key_values`,将返回旧版缓存格式。
如果使用了 `past_key_values`,用户可以选择只输入最后一个 `input_ids`(那些没有为其提供过去键值状态的词元),形状为 `(batch_size, 1)`,而不是所有形状为 `(batch_size, sequence_length)` 的 `input_ids`。
- use_cache (
bool
, 可选) — 如果设置为True
,则返回 `past_key_values` 键值状态,可用于加速解码(参见 `past_key_values`)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 `attentions`。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 `hidden_states`。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个 torch.FloatTensor
的元组(如果传递 `return_dict=False` 或 `config.return_dict=False`),根据配置 (ErnieConfig) 和输入包含不同的元素。
-
last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
,形状为(batch_size, hidden_size)
) — 序列的第一个词元(分类词元)的最后一层隐藏状态,经过用于辅助预训练任务的层进一步处理。例如,对于 BERT 家族模型,这返回经过线性层和 tanh 激活函数处理后的分类词元。线性层权重在预训练期间通过下一句预测(分类)目标进行训练。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 且 `config.add_cross_attention=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
-
past_key_values (
Cache
,可选,当传递 `use_cache=True` 或 `config.use_cache=True` 时返回) — 这是一个 Cache 实例。更多详情,请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(自注意力块中的键和值,如果 `config.is_encoder_decoder=True`,则还包括交叉注意力块中的键和值),可用于(参见 `past_key_values` 输入)加速序列解码。
ErnieModel 的 forward 方法重写了 `__call__` 特殊方法。
尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
ErnieForPreTraining
class transformers.ErnieForPreTraining
< 源代码 >( config )
参数
- config (ErnieForPreTraining) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
Ernie 模型,顶部有两个头,用于预训练:一个“掩码语言建模”头和一个“下一句预测(分类)”头。
该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< 源代码 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None next_sentence_label: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列词元的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充词元索引上执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示词元未被掩码,
- 0 表示词元被掩码。
- token_type_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一和第二部分的段落词元索引。索引选自[0, 1]
:- 0 对应于 *A 句子* 的词元,
- 1 对应于 *B 句子* 的词元。
- task_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个task_type_id
,且task_type_id
的范围在 `[0, config.task_type_vocab_size-1]` 之间 - position_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列词元在位置嵌入中的位置索引。选自范围[0, config.n_positions - 1]
。 - head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自[0, 1]
:- 1 表示头未被掩码,
- 0 表示头被掩码。
- inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 `input_ids`。如果你想更多地控制如何将 `input_ids` 索引转换为关联向量,而不是使用模型的内部嵌入查找矩阵,这会很有用。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。索引应在 `[-100, 0, ..., config.vocab_size]` 范围内(参见 `input_ids` 文档字符串)。索引设置为 `-100` 的词元将被忽略(掩码),损失仅针对标签在 `[0, ..., config.vocab_size]` 范围内的词元计算。 - next_sentence_label (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算下一序列预测(分类)损失的标签。输入应为序列对(参见 `input_ids` 文档字符串)。索引应在 `[0, 1]` 范围内:- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是一个随机序列。
- output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 `attentions`。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 `hidden_states`。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput 或 tuple(torch.FloatTensor)
一个 transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput 或一个 torch.FloatTensor
的元组(如果传递 `return_dict=False` 或 `config.return_dict=False`),根据配置 (ErnieConfig) 和输入包含不同的元素。
-
loss (可选, 当提供 `labels` 时返回, `torch.FloatTensor`,形状为 `(1,)`) — 总损失,为掩码语言建模损失和下一序列预测(分类)损失之和。
-
prediction_logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇 token 的分数)。 -
seq_relationship_logits (
torch.FloatTensor
形状为(batch_size, 2)
) — 下一序列预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。 -
hidden_states (
tuple[torch.FloatTensor]
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple[torch.FloatTensor]
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ErnieForPreTraining 的 forward 方法重写了 `__call__` 特殊方法。
尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, ErnieForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
ErnieForCausalLM
class transformers.ErnieForCausalLM
< 源代码 >( config )
参数
- config (ErnieForCausalLM) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
Ernie 模型,顶部带有一个用于因果语言模型(CLM)微调的“语言建模”头。
该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< 源代码 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[list[torch.Tensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充词元索引执行注意力操作的掩码。掩码值在[0, 1]
中选择:- 1 表示词元未被遮盖,
- 0 表示词元已被遮盖。
- token_type_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 片段词元索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于*句子 A*的词元,
- 1 对应于*句子 B*的词元。
- task_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特性,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个task_type_id
,该task_type_id
在 `[0, config.task_type_vocab_size-1]` 范围内。 - position_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列词元在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在[0, 1]
中选择:- 1 表示该头未被遮盖,
- 0 表示该头已被遮盖。
- inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你希望比模型内部的嵌入查找矩阵有更多控制权来将input_ids
索引转换为相关向量,这会非常有用。 - encoder_hidden_states (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对编码器输入的填充词元索引执行注意力操作的掩码。如果模型被配置为解码器,则在交叉注意力中使用此掩码。掩码值在[0, 1]
中选择:- 1 表示词元未被遮盖,
- 0 表示词元已被遮盖。
- labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算从左到右语言模型损失(下一个词预测)的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(请参阅input_ids
的文档字符串)。索引设置为-100
的词元将被忽略(遮盖),损失仅对标签在[0, ..., config.vocab_size]
范围内的词元进行计算。 - past_key_values (
list[torch.Tensor]
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括在解码的前一个阶段,当use_cache=True
或config.use_cache=True
时由模型返回的past_key_values
。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
的元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择只输入最后一个input_ids
(那些没有为其提供过去键值状态的词元),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
的元组(如果传递 return_dict=False
或当 config.return_dict=False
时),根据配置(ErnieConfig)和输入,包含各种元素。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均。
-
past_key_values (
Cache
,可选,当传递 `use_cache=True` 或 `config.use_cache=True` 时返回) — 这是一个 Cache 实例。更多详情,请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。
ErnieForCausalLM 的 forward 方法重写了 __call__
特殊方法。
尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
ErnieForMaskedLM
class transformers.ErnieForMaskedLM
< 源码 >( config )
参数
- config (ErnieForMaskedLM) — 包含模型所有参数的模型配置类。用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
带有`语言建模`头的 Ernie 模型。
该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< 源码 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充词元索引执行注意力操作的掩码。掩码值在[0, 1]
中选择:- 1 表示词元未被遮盖,
- 0 表示词元已被遮盖。
- token_type_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 片段词元索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于*句子 A*的词元,
- 1 对应于*句子 B*的词元。
- task_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特性,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个task_type_id
,该task_type_id
在 `[0, config.task_type_vocab_size-1]` 范围内。 - position_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列词元在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在[0, 1]
中选择:- 1 表示该头未被遮盖,
- 0 表示该头已被遮盖。
- inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你希望比模型内部的嵌入查找矩阵有更多控制权来将input_ids
索引转换为相关向量,这会非常有用。 - encoder_hidden_states (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对编码器输入的填充词元索引执行注意力操作的掩码。如果模型被配置为解码器,则在交叉注意力中使用此掩码。掩码值在[0, 1]
中选择:- 1 表示词元未被遮盖,
- 0 表示词元已被遮盖。
- labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言模型损失的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(请参阅input_ids
的文档字符串)。索引设置为-100
的词元将被忽略(遮盖),损失仅对标签在[0, ..., config.vocab_size]
范围内的词元进行计算。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor
的元组(如果传递 return_dict=False
或当 config.return_dict=False
时),根据配置(ErnieConfig)和输入,包含各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 掩码语言建模 (MLM) 损失。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ErnieForMaskedLM 的 forward 方法重写了 __call__
特殊方法。
尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, ErnieForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForMaskedLM.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
...
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
...
ErnieForNextSentencePrediction
class transformers.ErnieForNextSentencePrediction
< 源码 >( config )
参数
- config (ErnieForNextSentencePrediction) — 包含模型所有参数的模型配置类。用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
带有`下一句预测(分类)`头的 Ernie 模型。
该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< 源码 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.NextSentencePredictorOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充词元索引执行注意力操作的掩码。掩码值在[0, 1]
中选择:- 1 表示词元未被遮盖,
- 0 表示词元已被遮盖。
- token_type_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 片段词元索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于*句子 A*的词元,
- 1 对应于*句子 B*的词元。
- task_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特性,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个task_type_id
,该task_type_id
在 `[0, config.task_type_vocab_size-1]` 范围内。 - position_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列词元在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在[0, 1]
中选择:- 1 表示该头未被遮盖,
- 0 表示该头已被遮盖。
- inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入式表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为相关联的向量,这会很有用。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算下一句预测(分类)损失的标签。输入应该是一个句子对(请参阅input_ids
文档字符串)。索引应在[0, 1]
范围内:- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是一个随机序列。
- output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。更多细节请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.NextSentencePredictorOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(ErnieConfig)和输入,包含各种元素。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供next_sentence_label
时返回) — 下一个序列预测(分类)损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, 2)
) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的真/假延续分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ErnieForNextSentencePrediction 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
ErnieForSequenceClassification
class transformers.ErnieForSequenceClassification
< 来源 >( config )
参数
- config (ErnieForSequenceClassification) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
Ernie 模型,在其顶部带有一个序列分类/回归头(一个在池化输出之上的线性层),例如用于 GLUE 任务。
该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< 来源 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- token_type_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一和第二部分。索引在[0, 1]
中选择:- 0 对应于 *A 句子* 标记,
- 1 对应于 *B 句子* 标记。
- task_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特性,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个task_type_id
,task_type_id
在 `[0, config.task_type_vocab_size-1]` 范围内。 - position_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被掩码,
- 0 表示头被掩码。
- inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入式表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为相关联的向量,这会很有用。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。更多细节请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(ErnieConfig)和输入,包含各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。 -
logits (形状为
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ErnieForSequenceClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, ErnieForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForSequenceClassification.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = ErnieForSequenceClassification.from_pretrained("nghuyong/ernie-3.0-base-zh", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, ErnieForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForSequenceClassification.from_pretrained("nghuyong/ernie-3.0-base-zh", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = ErnieForSequenceClassification.from_pretrained(
... "nghuyong/ernie-3.0-base-zh", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
ErnieForMultipleChoice
class transformers.ErnieForMultipleChoice
< 来源 >( config )
参数
- config (ErnieForMultipleChoice) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
Ernie 模型在其顶部带有一个多项选择分类头(一个在池化输出之上的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< 来源 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 段标记索引,用于指示输入的第一和第二部分。索引在[0, 1]
中选择:- 0 对应于 *A 句子* 标记,
- 1 对应于 *B 句子* 标记。
- task_type_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特性,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个task_type_id
,task_type_id
在 `[0, config.task_type_vocab_size-1]` 范围内。 - position_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被掩码,
- 0 表示头被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入式表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为相关联的向量,这会很有用。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
范围内,其中num_choices
是输入张量第二维的大小。(见上面的input_ids
) - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。更多细节请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(ErnieConfig)和输入,包含各种元素。
-
loss (形状为 (1,) 的
torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, num_choices)
的torch.FloatTensor
) — num_choices 是输入张量的第二维大小。(请参阅上面的 input_ids)。分类分数(SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ErnieForMultipleChoice 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, ErnieForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForMultipleChoice.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
ErnieForTokenClassification
class transformers.ErnieForTokenClassification
< 来源 >( config )
参数
- config (ErnieForTokenClassification) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
Ernie 模型在其顶部带有一个标记分类头(一个在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。
该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< 来源 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- token_type_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一和第二部分。索引在[0, 1]
中选择:- 0 对应于 *A 句子* 标记,
- 1 对应于 *B 句子* 标记。
- task_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特性,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个task_type_id
,task_type_id
在 `[0, config.task_type_vocab_size-1]` 范围内。 - position_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被掩码,
- 0 表示头被掩码。
- inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入式表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为相关联的向量,这会很有用。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(ErnieConfig)和输入,包含各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分类分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ErnieForTokenClassification 的 forward 方法,重写了 __call__
特殊方法。
尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, ErnieForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForTokenClassification.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
ErnieForQuestionAnswering
class transformers.ErnieForQuestionAnswering
< 源 >( config )
参数
- config (ErnieForQuestionAnswering) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
Ernie Transformer 模型,在其顶部有一个用于抽取式问答任务(如 SQuAD)的片段分类头(在隐藏状态输出之上有一个线性层,用于计算 `span start logits` 和 `span end logits`)。
该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< 源 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None start_positions: typing.Optional[torch.Tensor] = None end_positions: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被屏蔽,
- 0 表示标记被屏蔽。
- token_type_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 *A 句子* 标记,
- 1 对应于 *B 句子* 标记。
- task_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个 `task_type_id`,`task_type_id` 的范围在 `[0, config.task_type_vocab_size-1]` 内。 - position_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。 - head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于使自注意力模块的选定头无效的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被屏蔽,
- 0 表示头被屏蔽。
- inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,你可以选择直接传递嵌入表示而不是 `input_ids`。如果你希望对如何将 `input_ids` 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - start_positions (
torch.Tensor
,形状为(batch_size,)
, 可选) — 标记的片段开始位置(索引)的标签,用于计算标记分类损失。位置被限制在序列长度(sequence_length
)内。序列之外的位置在计算损失时不被考虑。 - end_positions (
torch.Tensor
,形状为(batch_size,)
, 可选) — 标记的片段结束位置(索引)的标签,用于计算标记分类损失。位置被限制在序列长度(sequence_length
)内。序列之外的位置在计算损失时不被考虑。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(ErnieConfig)和输入,包含各种元素。
-
loss (
torch.FloatTensor
of shape(1,)
, 可选, 当提供labels
时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 范围起始分数(SoftMax 之前)。 -
end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 范围结束分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ErnieForQuestionAnswering 的 forward 方法,重写了 __call__
特殊方法。
尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, ErnieForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForQuestionAnswering.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...