Transformers 文档

ERNIE

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

ERNIE

PyTorch

概述

ERNIE 是百度提出的一系列强大的模型,特别是在中文任务上,包括 ERNIE1.0ERNIE2.0ERNIE3.0ERNIE-GramERNIE-health 等。

这些模型由 nghuyong 贡献,官方代码可以在 PaddleNLP (基于 PaddlePaddle) 中找到。

使用示例

ernie-1.0-base-zh 为例

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
model = AutoModel.from_pretrained("nghuyong/ernie-1.0-base-zh")

模型检查点

模型名称 语言 描述
ernie-1.0-base-zh 中文 层数:12,注意力头数:12,隐藏层维度:768
ernie-2.0-base-en 英语 层数:12,注意力头数:12,隐藏层维度:768
ernie-2.0-large-en 英语 层数:24,注意力头数:16,隐藏层维度:1024
ernie-3.0-base-zh 中文 层数:12,注意力头数:12,隐藏层维度:768
ernie-3.0-medium-zh 中文 层数:6,注意力头数:12,隐藏层维度:768
ernie-3.0-mini-zh 中文 层数:6,注意力头数:12,隐藏层维度:384
ernie-3.0-micro-zh 中文 层数:4,注意力头数:12,隐藏层维度:384
ernie-3.0-nano-zh 中文 层数:4,注意力头数:12,隐藏层维度:312
ernie-health-zh 中文 层数:12,注意力头数:12,隐藏层维度:768
ernie-gram-zh 中文 层数:12,注意力头数:12,隐藏层维度:768

你可以从 Hugging Face 模型中心找到所有支持的模型:huggingface.co/nghuyong,以及从 Paddle 的官方仓库中找到模型详细信息:PaddleNLPERNIE

资源

ErnieConfig

class transformers.ErnieConfig

< >

( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 task_type_vocab_size = 3 use_task_id = False initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )

参数

  • vocab_size (int, 可选, 默认为 30522) — ERNIE 模型的词汇表大小。定义了在调用 ErnieModelTFErnieModel 时,inputs_ids 可以表示的不同词元的数量。
  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数量。
  • intermediate_size (int, 可选, 默认为 3072) — Transformer 编码器中“中间层”(通常称为前馈层)的维度。
  • hidden_act (str or Callable, 可选, 默认为 "gelu") — 编码器和池化层中的非线性激活函数(函数或字符串)。如果为字符串,则支持 "gelu""relu""silu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入层、编码器和池化层中所有全连接层的丢弃概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的丢弃率。
  • max_position_embeddings (int, 可选, 默认为 512) — 模型可能使用的最大序列长度。通常将其设置为一个较大的值以备不时之需(例如,512、1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 2) — 在调用 ErnieModelTFErnieModel 时,token_type_ids 的词汇表大小。
  • task_type_vocab_size (int, 可选, 默认为 3) — ERNIE2.0/ERNIE3.0 模型中 task_type_ids 的词汇表大小。
  • use_task_id (bool, 可选, 默认为 False) — 模型是否支持 task_type_ids
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。
  • pad_token_id (int, 可选, 默认为 0) — 填充词元 ID。
  • position_embedding_type (str, 可选, 默认为 "absolute") — 位置嵌入的类型。选择 "absolute""relative_key""relative_key_query"。对于位置嵌入,使用 "absolute"。有关 "relative_key" 的更多信息,请参阅 《Self-Attention with Relative Position Representations》(Shaw 等人)。有关 "relative_key_query" 的更多信息,请参阅 《Improve Transformer Models with Better Relative Position Embeddings》(Huang 等人) 中的 *方法 4*。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。仅当 config.is_decoder=True 时相关。
  • classifier_dropout (float, 可选) — 分类头的丢弃率。

这是用于存储 ErnieModelTFErnieModel 配置的配置类。它用于根据指定的参数实例化 ERNIE 模型,定义模型架构。使用默认值实例化配置将产生与 ERNIE nghuyong/ernie-3.0-base-zh 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import ErnieConfig, ErnieModel

>>> # Initializing a ERNIE nghuyong/ernie-3.0-base-zh style configuration
>>> configuration = ErnieConfig()

>>> # Initializing a model (with random weights) from the nghuyong/ernie-3.0-base-zh style configuration
>>> model = ErnieModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

Ernie 特定输出

class transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput

< >

( loss: typing.Optional[torch.FloatTensor] = None prediction_logits: typing.Optional[torch.FloatTensor] = None seq_relationship_logits: typing.Optional[torch.FloatTensor] = None hidden_states: typing.Optional[tuple[torch.FloatTensor]] = None attentions: typing.Optional[tuple[torch.FloatTensor]] = None )

参数

  • loss (*可选*, 当提供了 labels 时返回,torch.FloatTensor,形状为 (1,)) — 总损失,是掩码语言建模损失和下一句预测(分类)损失的和。
  • prediction_logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇词元的分数)。
  • seq_relationship_logits (torch.FloatTensor,形状为 (batch_size, 2)) — 下一句预测(分类)头的预测分数(SoftMax 之前的真/假连续性分数)。
  • hidden_states (tuple[torch.FloatTensor], 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则第一个是嵌入层的输出,+ 每个层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple[torch.FloatTensor], 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

ErnieForPreTraining 的输出类型。

ErnieModel

class transformers.ErnieModel

< >

( config add_pooling_layer = True )

参数

  • config (ErnieModel) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • add_pooling_layer (bool, 可选, 默认为 True) — 是否添加一个池化层

该模型既可以作为编码器(仅使用自注意力机制),也可以作为解码器。在作为解码器时,自注意力层之间会添加一个交叉注意力层,遵循 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin 在 Attention is all you need 中描述的架构。

要作为解码器使用,模型初始化时需要将配置的 `is_decoder` 参数设置为 `True`。要在 Seq2Seq 模型中使用,模型初始化时需要同时设置 `is_decoder` 参数和

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充词元索引上执行注意力的掩码。掩码值选自 [0, 1]

    • 1 表示词元未被掩码
    • 0 表示词元被掩码

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于指示输入的第一和第二部分的段落词元索引。索引选自 [0, 1]

    • 0 对应于 *A 句子* 的词元,
    • 1 对应于 *B 句子* 的词元。

    什么是词元类型 ID?

  • task_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个 task_type_id,且 task_type_id 的范围在 `[0, config.task_type_vocab_size-1]` 之间
  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列词元在位置嵌入中的位置索引。选自范围 [0, config.n_positions - 1]

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自 [0, 1]

    • 1 表示头未被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 `input_ids`。如果你想更多地控制如何将 `input_ids` 索引转换为关联向量,而不是使用模型的内部嵌入查找矩阵,这会很有用。
  • encoder_hidden_states (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则用于交叉注意力。
  • encoder_attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在编码器输入的填充词元索引上执行注意力的掩码。如果模型被配置为解码器,该掩码用于交叉注意力。掩码值选自 [0, 1]

    • 1 表示词元未被掩码
    • 0 表示词元被掩码
  • past_key_values (list[torch.FloatTensor], 可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常由模型在解码的先前阶段返回的 `past_key_values` 组成,当 `use_cache=True` 或 `config.use_cache=True` 时。

    允许两种格式:

    • 一个 Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 `config.n_layers` 的 `tuple(tuple(torch.FloatTensor))`,每个元组包含 2 个形状为 `(batch_size, num_heads, sequence_length, embed_size_per_head)` 的张量。这也被称为旧版缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传递 `past_key_values`,将返回旧版缓存格式。

    如果使用了 `past_key_values`,用户可以选择只输入最后一个 `input_ids`(那些没有为其提供过去键值状态的词元),形状为 `(batch_size, 1)`,而不是所有形状为 `(batch_size, sequence_length)` 的 `input_ids`。

  • use_cache (bool, 可选) — 如果设置为 True,则返回 `past_key_values` 键值状态,可用于加速解码(参见 `past_key_values`)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 `attentions`。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 `hidden_states`。
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个 torch.FloatTensor 的元组(如果传递 `return_dict=False` 或 `config.return_dict=False`),根据配置 (ErnieConfig) 和输入包含不同的元素。

  • last_hidden_state (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (torch.FloatTensor,形状为 (batch_size, hidden_size)) — 序列的第一个词元(分类词元)的最后一层隐藏状态,经过用于辅助预训练任务的层进一步处理。例如,对于 BERT 家族模型,这返回经过线性层和 tanh 激活函数处理后的分类词元。线性层权重在预训练期间通过下一句预测(分类)目标进行训练。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 `output_attentions=True` 且 `config.add_cross_attention=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • past_key_values (Cache可选,当传递 `use_cache=True` 或 `config.use_cache=True` 时返回) — 这是一个 Cache 实例。更多详情,请参阅我们的 kv 缓存指南

    包含预先计算的隐藏状态(自注意力块中的键和值,如果 `config.is_encoder_decoder=True`,则还包括交叉注意力块中的键和值),可用于(参见 `past_key_values` 输入)加速序列解码。

ErnieModel 的 forward 方法重写了 `__call__` 特殊方法。

尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

ErnieForPreTraining

class transformers.ErnieForPreTraining

< >

( config )

参数

  • config (ErnieForPreTraining) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Ernie 模型,顶部有两个头,用于预训练:一个“掩码语言建模”头和一个“下一句预测(分类)”头。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None next_sentence_label: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充词元索引上执行注意力的掩码。掩码值选自 [0, 1]

    • 1 表示词元未被掩码
    • 0 表示词元被掩码

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于指示输入的第一和第二部分的段落词元索引。索引选自 [0, 1]

    • 0 对应于 *A 句子* 的词元,
    • 1 对应于 *B 句子* 的词元。

    什么是词元类型 ID?

  • task_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个 task_type_id,且 task_type_id 的范围在 `[0, config.task_type_vocab_size-1]` 之间
  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列词元在位置嵌入中的位置索引。选自范围 [0, config.n_positions - 1]

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自 [0, 1]

    • 1 表示头未被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 `input_ids`。如果你想更多地控制如何将 `input_ids` 索引转换为关联向量,而不是使用模型的内部嵌入查找矩阵,这会很有用。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 `[-100, 0, ..., config.vocab_size]` 范围内(参见 `input_ids` 文档字符串)。索引设置为 `-100` 的词元将被忽略(掩码),损失仅针对标签在 `[0, ..., config.vocab_size]` 范围内的词元计算。
  • next_sentence_label (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算下一序列预测(分类)损失的标签。输入应为序列对(参见 `input_ids` 文档字符串)。索引应在 `[0, 1]` 范围内:

    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是一个随机序列。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 `attentions`。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 `hidden_states`。
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutputtuple(torch.FloatTensor)

一个 transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput 或一个 torch.FloatTensor 的元组(如果传递 `return_dict=False` 或 `config.return_dict=False`),根据配置 (ErnieConfig) 和输入包含不同的元素。

  • loss (可选, 当提供 `labels` 时返回, `torch.FloatTensor`,形状为 `(1,)`) — 总损失,为掩码语言建模损失和下一序列预测(分类)损失之和。

  • prediction_logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇 token 的分数)。

  • seq_relationship_logits (torch.FloatTensor 形状为 (batch_size, 2)) — 下一序列预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。

  • hidden_states (tuple[torch.FloatTensor], 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple[torch.FloatTensor], 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ErnieForPreTraining 的 forward 方法重写了 `__call__` 特殊方法。

尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, ErnieForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

ErnieForCausalLM

class transformers.ErnieForCausalLM

< >

( config )

参数

  • config (ErnieForCausalLM) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Ernie 模型,顶部带有一个用于因果语言模型(CLM)微调的“语言建模”头。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[list[torch.Tensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。

    索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充词元索引执行注意力操作的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被遮盖
    • 0 表示词元已被遮盖

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 片段词元索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于*句子 A*的词元,
    • 1 对应于*句子 B*的词元。

    什么是词元类型 ID?

  • task_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特性,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个 task_type_id,该 task_type_id 在 `[0, config.task_type_vocab_size-1]` 范围内。
  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列词元在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示该头未被遮盖
    • 0 表示该头已被遮盖
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 input_ids。如果你希望比模型内部的嵌入查找矩阵有更多控制权来将 input_ids 索引转换为相关向量,这会非常有用。
  • encoder_hidden_states (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对编码器输入的填充词元索引执行注意力操作的掩码。如果模型被配置为解码器,则在交叉注意力中使用此掩码。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被遮盖
    • 0 表示词元已被遮盖
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算从左到右语言模型损失(下一个词预测)的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(请参阅 input_ids 的文档字符串)。索引设置为 -100 的词元将被忽略(遮盖),损失仅对标签在 [0, ..., config.vocab_size] 范围内的词元进行计算。
  • past_key_values (list[torch.Tensor]可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括在解码的前一个阶段,当 use_cache=Trueconfig.use_cache=True 时由模型返回的 past_key_values

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 的元组,其中每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量。这也称为旧版缓存格式。

    模型将输出与输入相同的缓存格式。如果未传递 past_key_values,将返回旧版缓存格式。

    如果使用 past_key_values,用户可以选择只输入最后一个 input_ids(那些没有为其提供过去键值状态的词元),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 的元组(如果传递 return_dict=False 或当 config.return_dict=False 时),根据配置(ErnieConfig)和输入,包含各种元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个 token 预测)。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均。

  • past_key_values (Cache可选,当传递 `use_cache=True` 或 `config.use_cache=True` 时返回) — 这是一个 Cache 实例。更多详情,请参阅我们的 kv 缓存指南

    包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

ErnieForCausalLM 的 forward 方法重写了 __call__ 特殊方法。

尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

ErnieForMaskedLM

class transformers.ErnieForMaskedLM

< >

( config )

参数

  • config (ErnieForMaskedLM) — 包含模型所有参数的模型配置类。用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

带有`语言建模`头的 Ernie 模型。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。

    索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充词元索引执行注意力操作的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被遮盖
    • 0 表示词元已被遮盖

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 片段词元索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于*句子 A*的词元,
    • 1 对应于*句子 B*的词元。

    什么是词元类型 ID?

  • task_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特性,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个 task_type_id,该 task_type_id 在 `[0, config.task_type_vocab_size-1]` 范围内。
  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列词元在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示该头未被遮盖
    • 0 表示该头已被遮盖
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 input_ids。如果你希望比模型内部的嵌入查找矩阵有更多控制权来将 input_ids 索引转换为相关向量,这会非常有用。
  • encoder_hidden_states (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对编码器输入的填充词元索引执行注意力操作的掩码。如果模型被配置为解码器,则在交叉注意力中使用此掩码。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被遮盖
    • 0 表示词元已被遮盖
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言模型损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(请参阅 input_ids 的文档字符串)。索引设置为 -100 的词元将被忽略(遮盖),损失仅对标签在 [0, ..., config.vocab_size] 范围内的词元进行计算。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor 的元组(如果传递 return_dict=False 或当 config.return_dict=False 时),根据配置(ErnieConfig)和输入,包含各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 掩码语言建模 (MLM) 损失。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ErnieForMaskedLM 的 forward 方法重写了 __call__ 特殊方法。

尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, ErnieForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForMaskedLM.from_pretrained("nghuyong/ernie-3.0-base-zh")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
...

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
...

ErnieForNextSentencePrediction

class transformers.ErnieForNextSentencePrediction

< >

( config )

参数

带有`下一句预测(分类)`头的 Ernie 模型。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。

    索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充词元索引执行注意力操作的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被遮盖
    • 0 表示词元已被遮盖

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 片段词元索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于*句子 A*的词元,
    • 1 对应于*句子 B*的词元。

    什么是词元类型 ID?

  • task_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特性,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个 task_type_id,该 task_type_id 在 `[0, config.task_type_vocab_size-1]` 范围内。
  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列词元在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示该头未被遮盖
    • 0 表示该头已被遮盖
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入式表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关联的向量,这会很有用。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算下一句预测(分类)损失的标签。输入应该是一个句子对(请参阅 input_ids 文档字符串)。索引应在 [0, 1] 范围内:

    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是一个随机序列。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参见返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参见返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(ErnieConfig)和输入,包含各种元素。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 next_sentence_label 时返回) — 下一个序列预测(分类)损失。

  • logits (torch.FloatTensor,形状为 (batch_size, 2)) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的真/假延续分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ErnieForNextSentencePrediction 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")

>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1]  # next sentence was random

ErnieForSequenceClassification

class transformers.ErnieForSequenceClassification

< >

( config )

参数

  • config (ErnieForSequenceClassification) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Ernie 模型,在其顶部带有一个序列分类/回归头(一个在池化输出之上的线性层),例如用于 GLUE 任务。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 *A 句子* 标记,
    • 1 对应于 *B 句子* 标记。

    什么是标记类型 ID?

  • task_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特性,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个 task_type_idtask_type_id 在 `[0, config.task_type_vocab_size-1]` 范围内。
  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入式表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关联的向量,这会很有用。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参见返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参见返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(ErnieConfig)和输入,包含各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。

  • logits (形状为 (batch_size, config.num_labels)torch.FloatTensor) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ErnieForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, ErnieForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForSequenceClassification.from_pretrained("nghuyong/ernie-3.0-base-zh")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = ErnieForSequenceClassification.from_pretrained("nghuyong/ernie-3.0-base-zh", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, ErnieForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForSequenceClassification.from_pretrained("nghuyong/ernie-3.0-base-zh", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = ErnieForSequenceClassification.from_pretrained(
...     "nghuyong/ernie-3.0-base-zh", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

ErnieForMultipleChoice

class transformers.ErnieForMultipleChoice

< >

( config )

参数

  • config (ErnieForMultipleChoice) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Ernie 模型在其顶部带有一个多项选择分类头(一个在池化输出之上的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 段标记索引,用于指示输入的第一和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 *A 句子* 标记,
    • 1 对应于 *B 句子* 标记。

    什么是标记类型 ID?

  • task_type_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特性,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个 task_type_idtask_type_id 在 `[0, config.task_type_vocab_size-1]` 范围内。
  • position_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, num_choices, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入式表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关联的向量,这会很有用。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices-1] 范围内,其中 num_choices 是输入张量第二维的大小。(见上面的 input_ids
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参见返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参见返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(ErnieConfig)和输入,包含各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失。

  • logits (形状为 (batch_size, num_choices)torch.FloatTensor) — num_choices 是输入张量的第二维大小。(请参阅上面的 input_ids)。

    分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ErnieForMultipleChoice 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, ErnieForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForMultipleChoice.from_pretrained("nghuyong/ernie-3.0-base-zh")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

ErnieForTokenClassification

class transformers.ErnieForTokenClassification

< >

( config )

参数

  • config (ErnieForTokenClassification) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Ernie 模型在其顶部带有一个标记分类头(一个在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 *A 句子* 标记,
    • 1 对应于 *B 句子* 标记。

    什么是标记类型 ID?

  • task_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特性,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个 task_type_idtask_type_id 在 `[0, config.task_type_vocab_size-1]` 范围内。
  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入式表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关联的向量,这会很有用。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算标记分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(ErnieConfig)和输入,包含各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失。

  • logits (形状为 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ErnieForTokenClassification 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, ErnieForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForTokenClassification.from_pretrained("nghuyong/ernie-3.0-base-zh")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

ErnieForQuestionAnswering

class transformers.ErnieForQuestionAnswering

< >

( config )

参数

  • config (ErnieForQuestionAnswering) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Ernie Transformer 模型,在其顶部有一个用于抽取式问答任务(如 SQuAD)的片段分类头(在隐藏状态输出之上有一个线性层,用于计算 `span start logits` 和 `span end logits`)。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None start_positions: typing.Optional[torch.Tensor] = None end_positions: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被屏蔽
    • 0 表示标记被屏蔽

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 *A 句子* 标记,
    • 1 对应于 *B 句子* 标记。

    什么是标记类型 ID?

  • task_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们为每个任务分配一个 `task_type_id`,`task_type_id` 的范围在 `[0, config.task_type_vocab_size-1]` 内。
  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于使自注意力模块的选定头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被屏蔽
    • 0 表示头被屏蔽
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,你可以选择直接传递嵌入表示而不是 `input_ids`。如果你希望对如何将 `input_ids` 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • start_positions (torch.Tensor,形状为 (batch_size,), 可选) — 标记的片段开始位置(索引)的标签,用于计算标记分类损失。位置被限制在序列长度(sequence_length)内。序列之外的位置在计算损失时不被考虑。
  • end_positions (torch.Tensor,形状为 (batch_size,), 可选) — 标记的片段结束位置(索引)的标签,用于计算标记分类损失。位置被限制在序列长度(sequence_length)内。序列之外的位置在计算损失时不被考虑。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(ErnieConfig)和输入,包含各种元素。

  • loss (torch.FloatTensor of shape (1,), 可选, 当提供 labels 时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围起始分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围结束分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ErnieForQuestionAnswering 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传递的逻辑需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, ErnieForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-3.0-base-zh")
>>> model = ErnieForQuestionAnswering.from_pretrained("nghuyong/ernie-3.0-base-zh")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
< > 在 GitHub 上更新