Transformers 文档
GPT-NeoX
并获取增强的文档体验
开始使用
GPT-NeoX
概述
我们介绍 GPT-NeoX-20B,这是一个在 Pile 数据集上训练的 200 亿参数自回归语言模型,其权重将通过宽松的许可证免费且公开地提供给公众。据我们所知,它是提交时权重公开可用的最大稠密自回归模型。在这项工作中,我们描述了 GPT-NeoX-20B 的架构和训练,并评估了其在语言理解、数学和基于知识的任务中的性能。我们发现 GPT-NeoX-20B 是一个特别强大的少样本推理器,并且在五样本评估时,其性能提升远超同等规模的 GPT-3 和 FairSeq 模型。我们在 https://github.com/EleutherAI/gpt-neox 开源了训练和评估代码,以及模型权重。
该模型的开发由 Sid Black、Stella Biderman 和 Eric Hallahan 领导,该模型的训练得到了 CoreWeave 的慷慨支持。
GPT-NeoX-20B 是使用 fp16 训练的,因此建议按如下方式初始化模型
model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b").half().cuda()
GPT-NeoX-20B 还具有与 GPT-J-6B 和 GPT-Neo 中使用的分词器不同的分词器。新的分词器为空格字符分配了额外的 token,使模型更适合某些任务,例如代码生成。
使用示例
generate()
方法可用于使用 GPT Neo 模型生成文本。
>>> from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b")
>>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("EleutherAI/gpt-neox-20b")
>>> prompt = "GPTNeoX20B is a 20B-parameter autoregressive Transformer model developed by EleutherAI."
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
>>> gen_tokens = model.generate(
... input_ids,
... do_sample=True,
... temperature=0.9,
... max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
使用 Flash Attention 2
Flash Attention 2 是该模型的更快、更优化的版本。
安装
首先,检查您的硬件是否与 Flash Attention 2 兼容。兼容硬件的最新列表可以在官方文档中找到。如果您的硬件与 Flash Attention 2 不兼容,您仍然可以通过 Better Transformer 支持从 attention kernel 优化中受益,详见上方。
接下来,安装最新版本的 Flash Attention 2
pip install -U flash-attn --no-build-isolation
用法
要使用 Flash Attention 2 加载模型,我们可以将参数 attn_implementation="flash_attention_2"
传递给 .from_pretrained
。我们还将以半精度(例如 torch.float16
)加载模型,因为它几乎不会降低音频质量,但可以显著降低内存使用量并加快推理速度
>>> from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast
model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to(device)
...
预期加速
下面是一个预期加速图,比较了使用 stockmark/gpt-neox-japanese-1.4b
检查点的 transformers 中的原生实现与使用序列长度为 2048 的模型的 Flash Attention 2 版本之间的纯推理时间。

使用缩放点积注意力 (SDPA)
PyTorch 包含一个原生缩放点积注意力 (SDPA) 运算符,作为 torch.nn.functional
的一部分。此函数包含多个实现,可以根据输入和正在使用的硬件应用。有关更多信息,请参阅官方文档或 GPU 推理页面。
当实现可用时,torch>=2.1.1
默认使用 SDPA,但您也可以在 from_pretrained()
中设置 attn_implementation="sdpa"
以显式请求使用 SDPA。
from transformers import GPTNeoXForCausalLM
model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", torch_dtype=torch.float16, attn_implementation="sdpa")
...
为了获得最佳加速,我们建议以半精度(例如 torch.float16
或 torch.bfloat16
)加载模型。
在本地基准测试(rtx3080ti-16GB,PyTorch 2.2.1,OS Ubuntu 22.04)中使用 float16
和 pythia-410m-deduped,我们在训练和推理期间看到了以下加速。
训练
批大小 | 序列长度 | 每批次时间 (Eager - 秒) | 每批次时间 (SDPA - 秒) | 加速 (%) | Eager 峰值内存 (MB) | SDPA 峰值内存 (MB) | 内存节省 (%) |
---|---|---|---|---|---|---|---|
1 | 128 | 0.024 | 0.019 | 28.945 | 1789.95 | 1789.95 | 0 |
1 | 256 | 0.039 | 0.031 | 23.18 | 1845.83 | 1844.84 | 0.053 |
1 | 512 | 0.08 | 0.055 | 45.524 | 2278.38 | 1953.76 | 16.615 |
1 | 1024 | 0.19 | 0.102 | 86.777 | 4772.36 | 2408.35 | 98.159 |
1 | 2048 | 0.565 | 0.204 | 177.098 | 13484.1 | 3882.01 | 247.348 |
2 | 128 | 0.037 | 0.032 | 15.121 | 1843.86 | 1844.78 | -0.05 |
2 | 256 | 0.067 | 0.055 | 21.706 | 1999.72 | 1951.67 | 2.462 |
2 | 512 | 0.144 | 0.096 | 50.046 | 3613.16 | 2406.77 | 50.125 |
2 | 1024 | 0.366 | 0.193 | 89.666 | 8707.55 | 3878.86 | 124.487 |
2 | 2048 | OOM (内存溢出) | 0.379 | / | OOM (内存溢出) | 6825.13 | SDPA 不会 OOM |
4 | 128 | 0.06 | 0.054 | 11.539 | 1947.6 | 1952.06 | -0.228 |
4 | 256 | 0.119 | 0.093 | 28.072 | 3008.39 | 2405.99 | 25.038 |
4 | 512 | 0.275 | 0.187 | 47.145 | 6290.58 | 3877.29 | 62.242 |
4 | 1024 | OOM (内存溢出) | 0.36 | / | OOM (内存溢出) | 6821.98 | SDPA 不会 OOM |
4 | 2048 | OOM (内存溢出) | 0.731 | / | OOM (内存溢出) | 12705.1 | SDPA 不会 OOM |
推理
批大小 | 序列长度 | 每个 token 的延迟 Eager (毫秒) | 每个 token 的延迟 SDPA (毫秒) | 加速 (%) | 内存 Eager (MB) | 内存 SDPA (MB) | 内存节省 (%) |
---|---|---|---|---|---|---|---|
1 | 128 | 6.569 | 5.858 | 12.14 | 974.831 | 974.826 | 0 |
1 | 256 | 7.009 | 5.863 | 19.542 | 1029.01 | 1028.08 | 0.09 |
1 | 512 | 7.157 | 5.965 | 19.983 | 1137.54 | 1137.52 | 0.001 |
1 | 1024 | 7.523 | 6.506 | 15.637 | 1329.3 | 1329.26 | 0.003 |
1 | 2048 | 9.271 | 9.205 | 0.713 | 1752.47 | 1734.51 | 1.036 |
2 | 128 | 7.239 | 5.959 | 21.493 | 1044.8 | 1028.37 | 1.597 |
2 | 256 | 7.228 | 6.036 | 19.757 | 1167.32 | 1137.73 | 2.601 |
2 | 512 | 7.538 | 6.693 | 12.628 | 1352.93 | 1329.55 | 1.758 |
2 | 1024 | 8.916 | 8.632 | 3.291 | 1752.56 | 1734.62 | 1.034 |
2 | 2048 | 12.628 | 12.606 | 0.181 | 2558.72 | 2545.8 | 0.508 |
4 | 128 | 7.278 | 6.046 | 20.373 | 1168.41 | 1137.79 | 2.691 |
4 | 256 | 7.614 | 6.588 | 15.574 | 1353.1 | 1329.79 | 1.753 |
4 | 512 | 8.798 | 8.144 | 8.028 | 1752.76 | 1734.85 | 1.032 |
4 | 1024 | 11.765 | 11.303 | 4.09 | 2558.96 | 2546.04 | 0.508 |
4 | 2048 | 19.568 | 17.735 | 10.33 | 4175.5 | 4165.26 | 0.246 |
资源
GPTNeoXConfig
class transformers.GPTNeoXConfig
< source >( vocab_size = 50432 hidden_size = 6144 num_hidden_layers = 44 num_attention_heads = 64 intermediate_size = 24576 hidden_act = 'gelu' rotary_pct = 0.25 rotary_emb_base = 10000 attention_dropout = 0.0 hidden_dropout = 0.0 classifier_dropout = 0.1 max_position_embeddings = 2048 initializer_range = 0.02 layer_norm_eps = 1e-05 use_cache = True bos_token_id = 0 eos_token_id = 2 tie_word_embeddings = False use_parallel_residual = True rope_scaling = None attention_bias = True **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 50432) — GPTNeoX 模型的词汇表大小。定义了在调用 GPTNeoXModel 时传递的inputs_ids
可以表示的不同 token 的数量。 - hidden_size (
int
, 可选, 默认为 6144) — 编码器层和池化器层的维度。 - num_hidden_layers (
int
, 可选, 默认为 44) — Transformer 编码器中隐藏层的数量。 - num_attention_heads (
int
, 可选, 默认为 64) — Transformer 编码器中每个注意力层的注意力头数。 - intermediate_size (
int
, 可选, 默认为 24576) — Transformer 编码器中“中间”(即,前馈)层的维度。 - hidden_act (
str
或function
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持"gelu"
、"relu"
、"selu"
和"gelu_new"
。 - rotary_pct (
float
, 可选, 默认为 0.25) — 分配给 rotary embeddings 的隐藏维度百分比 - rotary_emb_base (
int
, 可选, 默认为 10000) — 用于计算 rotary embeddings 频率的基数 - attention_dropout (
float
, 可选, 默认为 0.0) — 注意力分数 (attention score) 的 dropout 比率概率。 - hidden_dropout (
float
, 可选, 默认为 0.0) — (1) 词嵌入,(2) 注意力后隐藏状态,和 (3) MLP 后隐藏状态的 dropout 比率。 - classifier_dropout (
float
, 可选, 默认为 0.1) — 在进行 token 分类时使用的参数,在模型 GPTNeoXForTokenClassification 中使用。隐藏层的 dropout 比率。
- max_position_embeddings (
int
, 可选, 默认为 2048) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - initializer_range (
float
, 可选, 默认为 1e-5) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, 可选, 默认为 1e-12) — layer normalization 层使用的 epsilon 值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后一次的 key/values attentions (并非所有模型都使用)。仅在config.is_decoder=True
时相关。 - use_parallel_residual (
bool
, 可选, 默认为True
) — 是否在每个 Transformer 层中使用“并行”结构,这可以在大规模(例如 20B)时提供轻微的训练加速。 - rope_scaling (
Dict
, 可选) — 包含 RoPE 嵌入的缩放配置的字典。注意:如果您应用新的 rope 类型,并期望模型在更长的max_position_embeddings
上工作,我们建议您相应地更新此值。预期内容:rope_type
(str
): 要使用的 RoPE 的子变体。可以是 [‘default’, ‘linear’, ‘dynamic’, ‘yarn’, ‘longrope’, ‘llama3’] 之一,其中 ‘default’ 是原始的 RoPE 实现。factor
(float
, 可选): 用于除 ‘default’ 之外的所有 rope 类型。应用于 RoPE 嵌入的缩放因子。在大多数缩放类型中,x 的factor
将使模型能够处理长度为 x * 原始最大预训练长度的序列。original_max_position_embeddings
(int
, 可选): 用于 ‘dynamic’、‘longrope’ 和 ‘llama3’。预训练期间使用的原始最大位置嵌入。attention_factor
(float
, 可选): 用于 ‘yarn’ 和 ‘longrope’。应用于注意力计算的缩放因子。如果未指定,则默认为实现建议的值,使用factor
字段推断建议的值。beta_fast
(float
, 可选): 仅用于 ‘yarn’。用于设置线性斜坡函数中外推(仅限)边界的参数。如果未指定,则默认为 32。beta_slow
(float
, 可选): 仅用于 ‘yarn’。用于设置线性斜坡函数中内插(仅限)边界的参数。如果未指定,则默认为 1。short_factor
(List[float]
, 可选): 仅用于 ‘longrope’。应用于短上下文(<original_max_position_embeddings
)的缩放因子。必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 相同。long_factor
(List[float]
, 可选): 仅用于 ‘longrope’。应用于长上下文(<original_max_position_embeddings
)的缩放因子。必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 相同。low_freq_factor
(float
, 可选): 仅用于 ‘llama3’。应用于 RoPE 低频分量的缩放因子。high_freq_factor
(float
, 可选): 仅用于 ‘llama3’。应用于 RoPE 高频分量的缩放因子。 - attention_bias (
bool
, 可选, 默认为True
) — 是否在自注意力机制的查询、键、值和输出投影层中使用偏置。 - 示例 —
这是用于存储 GPTNeoXModel 的配置类。 它用于根据指定的参数实例化 GPTNeoX 模型,定义模型架构。 使用默认值实例化配置将产生与 GPTNeoX EleutherAI/gpt-neox-20b 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 中的文档。
>>> from transformers import GPTNeoXConfig, GPTNeoXModel
>>> # Initializing a GPTNeoX gpt-neox-20b style configuration
>>> configuration = GPTNeoXConfig()
>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
>>> model = GPTNeoXModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
GPTNeoXTokenizerFast
class transformers.GPTNeoXTokenizerFast
< source >( vocab_file = None merges_file = None tokenizer_file = None unk_token = '<|endoftext|>' bos_token = '<|endoftext|>' eos_token = '<|endoftext|>' pad_token = None add_bos_token = False add_eos_token = False add_prefix_space = False **kwargs )
参数
- vocab_file (
str
) — 词汇表文件的路径。 - merges_file (
str
) — 合并文件的路径。 - errors (
str
, 可选, 默认为"replace"
) — 将字节解码为 UTF-8 时遵循的范例。 有关更多信息,请参见 bytes.decode。 - unk_token (
str
, 可选, 默认为<|endoftext|>
) — 未知 token。 词汇表中不存在的 token 无法转换为 ID,而是设置为此 token。 - bos_token (
str
, 可选, 默认为<|endoftext|>
) — 序列的开头 token。 - eos_token (
str
, 可选, 默认为<|endoftext|>
) — 序列的结尾 token。 - pad_token (
str
, 可选) — 用于填充序列的 token。 - add_prefix_space (
bool
, 可选, 默认为False
) — 是否在输入中添加初始空格。 这允许像对待任何其他单词一样对待首单词。(GPTNeoX tokenizer 通过前面的空格检测单词的开头)。 - add_bos_token (
bool
, 可选, 默认为False
) — 是否在序列的开头添加bos_token
。 - add_eos_token (
bool
, 可选, 默认为False
) — 是否在序列的末尾添加eos_token
。 - trim_offsets (
bool
, 可选, 默认为True
) — 后处理步骤是否应修剪偏移量以避免包含空格。
构建一个 “快速” GPT-NeoX-20B 分词器(由 HuggingFace 的 tokenizers 库支持)。 基于字节级字节对编码 (Byte-Pair-Encoding)。
此分词器经过训练,可将空格视为 token 的一部分(有点像 sentencepiece),因此一个单词将
在句子开头(没有空格)或不在句子开头时,编码方式会有所不同
>>> from transformers import GPTNeoXTokenizerFast
>>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("openai-community/gpt2")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]
>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]
您可以通过在实例化此分词器时传递 add_prefix_space=True
来解决此行为,但由于模型并非以这种方式进行预训练,因此可能会导致性能下降。
当与 is_split_into_words=True
一起使用时,此分词器需要使用 add_prefix_space=True
进行实例化。
此分词器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。 用户应参考此超类以获取有关这些方法的更多信息。
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → List[int]
从没有添加特殊 token 的 token 列表中检索序列 ID。 当使用 tokenizer prepare_for_model
方法添加特殊 token 时,将调用此方法。
使用当前的 bos_token
和 eos_token
更新底层后处理器。
GPTNeoXModel
class transformers.GPTNeoXModel
< source >( config )
参数
- config (GPTNeoXConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
- config — GPTNeoXConfig
裸 GPTNeoX 模型输出原始隐藏状态,顶部没有任何特定的 head。 此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝 head 等)。
这个模型也是 PyTorch 的一个 torch.nn.Module 子类。您可以像使用常规 PyTorch 模块一样使用它,并参考 PyTorch 文档以了解有关通用用法和行为的所有事项。
Transformer 解码器由 config.num_hidden_layers 层组成。每一层都是一个 GPTNeoXDecoderLayer
。
前向传播
< 源代码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) → transformers.modeling_outputs.BaseModelOutputWithPast or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对 padding token 索引执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 未被掩盖 的 tokens,
- 0 表示 被掩盖 的 tokens。
索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(参见past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示 head 是未被掩盖的,
- 0 表示 head 是被掩盖的。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列 token 在位置 embeddings 中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的 hidden-states (self-attention 块和 cross-attention 块中的 key 和 values),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的 tensors。 这也称为旧版 cache 格式。
模型将输出与作为输入提供的 cache 格式相同的格式。 如果没有传递
past_key_values
,将返回旧版 cache 格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其过去的 key value 状态提供给此模型的 input_ids),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部 embedding 查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
key value 状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
, 可选) — 描述输入序列 tokens 在序列中位置的索引。与position_ids
相反,此 tensor 不受 padding 的影响。它用于在正确的位置更新 cache 并推断完整的序列长度。
返回
transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.BaseModelOutputWithPast 或 torch.FloatTensor
的元组 (如果传递 return_dict=False
或当 config.return_dict=False
时),包括各种元素,具体取决于配置 (GPTNeoXConfig) 和输入。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出端的 hidden-states 序列。如果使用
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个 hidden-state。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的 tensors),并且可选地,如果config.is_encoder_decoder=True
,则还有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的 tensors。包含预先计算的 hidden-states (self-attention 块中的 key 和 values,以及可选地,如果
config.is_encoder_decoder=True
,则在 cross-attention 块中),可用于加速顺序解码(请参阅past_key_values
输入)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型具有 embedding 层,则为 embedding 输出的元组 + 每个层输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的 Hidden-states,以及可选的初始 embedding 输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attentions 权重,用于计算 self-attention heads 中的加权平均值。
GPTNeoXModel 的 forward 方法,覆盖了 __call__
特殊方法。
虽然 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
此示例使用随机模型,因为真正的模型都非常大。要获得正确的结果,您应该使用 EleutherAI/gpt-neox-20b 而不是 trl-internal-testing/tiny-random-GPTNeoXForCausalLM。如果您在加载该 checkpoint 时遇到内存不足的问题,您可以尝试在 from_pretrained
调用中添加 device_map="auto"
。
示例
>>> from transformers import AutoTokenizer, GPTNeoXModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> model = GPTNeoXModel.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
GPTNeoXForCausalLM
class transformers.GPTNeoXForCausalLM
< 源代码 >( config )
参数
- config (GPTNeoXConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有 language modeling
head 的 GPTNeoX 模型,用于 CLM 微调。此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 heads 等)。
这个模型也是 PyTorch 的一个 torch.nn.Module 子类。您可以像使用常规 PyTorch 模块一样使用它,并参考 PyTorch 文档以了解有关通用用法和行为的所有事项。
前向传播
< 源代码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.FloatTensor]], NoneType] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.gpt_neox.modeling_gpt_neox.KwargsForCausalLM] ) → transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对 padding token 索引执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 未被掩盖 的 tokens,
- 0 表示 被掩盖 的 tokens。
索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(参见past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示 head 是未被掩盖的,
- 0 表示 head 是被掩盖的。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列 token 在位置 embeddings 中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(self-attention 模块和 cross-attention 模块中的键和值),可用于加速顺序解码。 这通常包含模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后一次的input_ids
(那些没有将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
, 可选) — 索引描述输入序列标记在序列中的位置。 与position_ids
相反,此张量不受填充的影响。 它用于在正确的位置更新缓存,并推断完整序列长度。 - labels (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 用于计算从左到右语言建模损失(下一个单词预测)的标签。 索引应在[-100, 0, ..., config.vocab_size]
中(请参阅input_ids
文档字符串) 索引设置为-100
的标记将被忽略(掩码),损失仅针对标签为 n[0, ..., config.vocab_size]
的标记计算。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (GPTNeoXConfig) 和输入。
-
loss (形状为
(1,)
的torch.FloatTensor
, 可选, 当提供labels
时返回) — 语言建模损失(用于下一个标记预测)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头的预测分数(SoftMax 之前每个词汇表标记的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递了use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的隐藏状态(self-attention 模块中的键和值),可用于(请参阅
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型具有 embedding 层,则为 embedding 输出的元组 + 每个层输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的 Hidden-states,以及可选的初始 embedding 输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attentions 权重,用于计算 self-attention heads 中的加权平均值。
GPTNeoXForCausalLM 前向方法,覆盖了 __call__
特殊方法。
虽然 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config.is_decoder = True
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
GPTNeoXForQuestionAnswering
class transformers.GPTNeoXForQuestionAnswering
< source >( config )
参数
- config (GPTNeoXConfig) — 具有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
带有跨度分类头的 GPT-NeoX 模型转换器,用于执行抽取式问答任务,如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝头等)。
这个模型也是 PyTorch 的一个 torch.nn.Module 子类。您可以像使用常规 PyTorch 模块一样使用它,并参考 PyTorch 文档以了解有关通用用法和行为的所有事项。
前向传播
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。 如果您提供填充,默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
, 可选) — 掩码,以避免对填充令牌索引执行注意力机制。 在[0, 1]
中选择的掩码值:- 1 表示未被掩盖的令牌,
- 0 表示被掩盖的令牌。
可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后一次的input_ids
(请参阅past_key_values
)。如果您想更改填充行为,则应阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示头未被掩盖,
- 0 表示头被掩盖。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(self-attention 模块和 cross-attention 模块中的键和值),可用于加速顺序解码。 这通常包含模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后一次的input_ids
(那些没有将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
, 可选) — 索引描述输入序列标记在序列中的位置。 与position_ids
相反,此张量不受填充的影响。 它用于在正确的位置更新缓存,并推断完整序列长度。 - start_positions (
torch.LongTensor
, 形状为(batch_size,)
,可选) — 用于计算 token 分类损失的标注跨度起始位置(索引)的标签。位置被限制在序列的长度 (sequence_length
) 内。序列之外的位置在计算损失时不会被考虑。 - end_positions (
torch.LongTensor
, 形状为(batch_size,)
,可选) — 用于计算 token 分类损失的标注跨度结束位置(索引)的标签。位置被限制在序列的长度 (sequence_length
) 内。序列之外的位置在计算损失时不会被考虑。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor
的元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GPTNeoXConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 总跨度提取损失是起始和结束位置的交叉熵损失之和。 -
start_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度起始得分 (SoftMax 之前)。 -
end_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度结束得分 (SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型具有 embedding 层,则为 embedding 输出的元组 + 每个层输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的 Hidden-states,以及可选的初始 embedding 输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attentions 权重,用于计算 self-attention heads 中的加权平均值。
GPTNeoXForQuestionAnswering 的 forward 方法,覆盖了 __call__
特殊方法。
虽然 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
此示例使用随机模型,因为真正的模型都非常大。要获得正确的结果,您应该使用 EleutherAI/gpt-neox-20b 而不是 trl-internal-testing/tiny-random-GPTNeoXForCausalLM。如果您在加载该 checkpoint 时遇到内存不足的问题,您可以尝试在 from_pretrained
调用中添加 device_map="auto"
。
示例
>>> from transformers import AutoTokenizer, GPTNeoXForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> model = GPTNeoXForQuestionAnswering.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
GPTNeoXForSequenceClassification
class transformers.GPTNeoXForSequenceClassification
< source >( config )
参数
- config (GPTNeoXConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有序列分类头的 GPTNeoX 模型 Transformer(线性层)。
GPTNeoXForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型(例如 GPT-1)一样。
由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。如果在配置中定义了 pad_token_id
,它会找到每行中最后一个不是 padding token 的 token。如果未定义 pad_token_id
,它只会取每行批次的最后一个值。由于当传递 inputs_embeds
而不是 input_ids
时,它无法猜测 padding token,因此它执行相同的操作(取每行批次的最后一个值)。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝头等)。
这个模型也是 PyTorch 的一个 torch.nn.Module 子类。您可以像使用常规 PyTorch 模块一样使用它,并参考 PyTorch 文档以了解有关通用用法和行为的所有事项。
前向传播
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.FloatTensor]], NoneType] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。如果您提供 padding,默认情况下 padding 将被忽略。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 token 未被 Mask,
- 0 表示 token 被 Mask。
可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被 Mask,
- 0 表示 head 被 Mask。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在解码的先前阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后的input_ids
(那些没有将其 past key value 状态提供给此模型的input_ids
),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是纯元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描述输入序列 token 在序列中位置的索引。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方误差损失),如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutputWithPast
或一个 torch.FloatTensor
的元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GPTNeoXConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类损失(或回归损失,如果 config.num_labels==1)。 -
logits (
torch.FloatTensor
,形状为(batch_size, config.num_labels)
) — 分类得分(或回归得分,如果 config.num_labels==1)(SoftMax 之前)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递了use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的隐藏状态(self-attention 模块中的键和值),可用于(请参阅
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型具有 embedding 层,则为 embedding 输出的元组 + 每个层输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的 Hidden-states,以及可选的初始 embedding 输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attentions 权重,用于计算 self-attention heads 中的加权平均值。
GPTNeoXForSequenceClassification 的 forward 方法,覆盖了 __call__
特殊方法。
虽然 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, GPTNeoXForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> model = GPTNeoXForSequenceClassification.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTNeoXForSequenceClassification.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, GPTNeoXForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> model = GPTNeoXForSequenceClassification.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTNeoXForSequenceClassification.from_pretrained(
... "trl-internal-testing/tiny-random-GPTNeoXForCausalLM", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
GPTNeoXForTokenClassification
前向传播
< source >( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.Tensor]], NoneType] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。如果您提供 padding,默认情况下 padding 将被忽略。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 Mask 值在[0, 1]
中选择:- 1 代表 token 未被掩码,
- 0 代表 token 已被掩码。
索引可以使用 AutoTokenizer 获得。 参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详情。
如果使用了
past_key_values
,则可以选择只输入最后的input_ids
(参见past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在 position embeddings 中的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的 hidden-states(self-attention 块和 cross-attention 块中的 key 和 values),可用于加速顺序解码。 这通常包含模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组都有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入提供的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其 past key value states 提供给此模型的输入),形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描述输入序列 token 在序列中位置的索引。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方误差损失),如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GPTNeoXConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型具有 embedding 层,则为 embedding 输出的元组 + 每个层输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的 Hidden-states,以及可选的初始 embedding 输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attentions 权重,用于计算 self-attention heads 中的加权平均值。
GPTNeoXForTokenClassification forward 方法,覆盖了 __call__
特殊方法。
虽然 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, GPTNeoXForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("LarsJonasson/pythia-410m-deduped-sft-swedish")
>>> model = GPTNeoXForTokenClassification.from_pretrained("LarsJonasson/pythia-410m-deduped-sft-swedish")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.25