Transformers 文档

GPT-NeoX

Hugging Face's logo
加入 Hugging Face 社区

并获取增强的文档体验

开始使用

GPT-NeoX

PyTorch SDPA

概述

我们介绍 GPT-NeoX-20B,这是一个在 Pile 数据集上训练的 200 亿参数自回归语言模型,其权重将通过宽松的许可证免费且公开地提供给公众。据我们所知,它是提交时权重公开可用的最大稠密自回归模型。在这项工作中,我们描述了 GPT-NeoX-20B 的架构和训练,并评估了其在语言理解、数学和基于知识的任务中的性能。我们发现 GPT-NeoX-20B 是一个特别强大的少样本推理器,并且在五样本评估时,其性能提升远超同等规模的 GPT-3 和 FairSeq 模型。我们在 https://github.com/EleutherAI/gpt-neox 开源了训练和评估代码,以及模型权重。

该模型的开发由 Sid Black、Stella Biderman 和 Eric Hallahan 领导,该模型的训练得到了 CoreWeave 的慷慨支持。

GPT-NeoX-20B 是使用 fp16 训练的,因此建议按如下方式初始化模型

model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b").half().cuda()

GPT-NeoX-20B 还具有与 GPT-J-6B 和 GPT-Neo 中使用的分词器不同的分词器。新的分词器为空格字符分配了额外的 token,使模型更适合某些任务,例如代码生成。

使用示例

generate() 方法可用于使用 GPT Neo 模型生成文本。

>>> from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast

>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b")
>>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("EleutherAI/gpt-neox-20b")

>>> prompt = "GPTNeoX20B is a 20B-parameter autoregressive Transformer model developed by EleutherAI."

>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids

>>> gen_tokens = model.generate(
...     input_ids,
...     do_sample=True,
...     temperature=0.9,
...     max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]

使用 Flash Attention 2

Flash Attention 2 是该模型的更快、更优化的版本。

安装

首先,检查您的硬件是否与 Flash Attention 2 兼容。兼容硬件的最新列表可以在官方文档中找到。如果您的硬件与 Flash Attention 2 不兼容,您仍然可以通过 Better Transformer 支持从 attention kernel 优化中受益,详见上方

接下来,安装最新版本的 Flash Attention 2

pip install -U flash-attn --no-build-isolation

用法

要使用 Flash Attention 2 加载模型,我们可以将参数 attn_implementation="flash_attention_2" 传递给 .from_pretrained。我们还将以半精度(例如 torch.float16)加载模型,因为它几乎不会降低音频质量,但可以显著降低内存使用量并加快推理速度

>>> from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast

model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to(device)
...

预期加速

下面是一个预期加速图,比较了使用 stockmark/gpt-neox-japanese-1.4b 检查点的 transformers 中的原生实现与使用序列长度为 2048 的模型的 Flash Attention 2 版本之间的纯推理时间。

使用缩放点积注意力 (SDPA)

PyTorch 包含一个原生缩放点积注意力 (SDPA) 运算符,作为 torch.nn.functional 的一部分。此函数包含多个实现,可以根据输入和正在使用的硬件应用。有关更多信息,请参阅官方文档GPU 推理页面。

当实现可用时,torch>=2.1.1 默认使用 SDPA,但您也可以在 from_pretrained() 中设置 attn_implementation="sdpa" 以显式请求使用 SDPA。

from transformers import GPTNeoXForCausalLM
model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", torch_dtype=torch.float16, attn_implementation="sdpa")
...

为了获得最佳加速,我们建议以半精度(例如 torch.float16torch.bfloat16)加载模型。

在本地基准测试(rtx3080ti-16GB,PyTorch 2.2.1,OS Ubuntu 22.04)中使用 float16pythia-410m-deduped,我们在训练和推理期间看到了以下加速。

训练

批大小 序列长度 每批次时间 (Eager - 秒) 每批次时间 (SDPA - 秒) 加速 (%) Eager 峰值内存 (MB) SDPA 峰值内存 (MB) 内存节省 (%)
1 128 0.024 0.019 28.945 1789.95 1789.95 0
1 256 0.039 0.031 23.18 1845.83 1844.84 0.053
1 512 0.08 0.055 45.524 2278.38 1953.76 16.615
1 1024 0.19 0.102 86.777 4772.36 2408.35 98.159
1 2048 0.565 0.204 177.098 13484.1 3882.01 247.348
2 128 0.037 0.032 15.121 1843.86 1844.78 -0.05
2 256 0.067 0.055 21.706 1999.72 1951.67 2.462
2 512 0.144 0.096 50.046 3613.16 2406.77 50.125
2 1024 0.366 0.193 89.666 8707.55 3878.86 124.487
2 2048 OOM (内存溢出) 0.379 / OOM (内存溢出) 6825.13 SDPA 不会 OOM
4 128 0.06 0.054 11.539 1947.6 1952.06 -0.228
4 256 0.119 0.093 28.072 3008.39 2405.99 25.038
4 512 0.275 0.187 47.145 6290.58 3877.29 62.242
4 1024 OOM (内存溢出) 0.36 / OOM (内存溢出) 6821.98 SDPA 不会 OOM
4 2048 OOM (内存溢出) 0.731 / OOM (内存溢出) 12705.1 SDPA 不会 OOM

推理

批大小 序列长度 每个 token 的延迟 Eager (毫秒) 每个 token 的延迟 SDPA (毫秒) 加速 (%) 内存 Eager (MB) 内存 SDPA (MB) 内存节省 (%)
1 128 6.569 5.858 12.14 974.831 974.826 0
1 256 7.009 5.863 19.542 1029.01 1028.08 0.09
1 512 7.157 5.965 19.983 1137.54 1137.52 0.001
1 1024 7.523 6.506 15.637 1329.3 1329.26 0.003
1 2048 9.271 9.205 0.713 1752.47 1734.51 1.036
2 128 7.239 5.959 21.493 1044.8 1028.37 1.597
2 256 7.228 6.036 19.757 1167.32 1137.73 2.601
2 512 7.538 6.693 12.628 1352.93 1329.55 1.758
2 1024 8.916 8.632 3.291 1752.56 1734.62 1.034
2 2048 12.628 12.606 0.181 2558.72 2545.8 0.508
4 128 7.278 6.046 20.373 1168.41 1137.79 2.691
4 256 7.614 6.588 15.574 1353.1 1329.79 1.753
4 512 8.798 8.144 8.028 1752.76 1734.85 1.032
4 1024 11.765 11.303 4.09 2558.96 2546.04 0.508
4 2048 19.568 17.735 10.33 4175.5 4165.26 0.246

资源

GPTNeoXConfig

class transformers.GPTNeoXConfig

< >

( vocab_size = 50432 hidden_size = 6144 num_hidden_layers = 44 num_attention_heads = 64 intermediate_size = 24576 hidden_act = 'gelu' rotary_pct = 0.25 rotary_emb_base = 10000 attention_dropout = 0.0 hidden_dropout = 0.0 classifier_dropout = 0.1 max_position_embeddings = 2048 initializer_range = 0.02 layer_norm_eps = 1e-05 use_cache = True bos_token_id = 0 eos_token_id = 2 tie_word_embeddings = False use_parallel_residual = True rope_scaling = None attention_bias = True **kwargs )

参数

  • vocab_size (int, 可选, 默认为 50432) — GPTNeoX 模型的词汇表大小。定义了在调用 GPTNeoXModel 时传递的 inputs_ids 可以表示的不同 token 的数量。
  • hidden_size (int, 可选, 默认为 6144) — 编码器层和池化器层的维度。
  • num_hidden_layers (int, 可选, 默认为 44) — Transformer 编码器中隐藏层的数量。
  • num_attention_heads (int, 可选, 默认为 64) — Transformer 编码器中每个注意力层的注意力头数。
  • intermediate_size (int, 可选, 默认为 24576) — Transformer 编码器中“中间”(即,前馈)层的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持 "gelu""relu""selu""gelu_new"
  • rotary_pct (float, 可选, 默认为 0.25) — 分配给 rotary embeddings 的隐藏维度百分比
  • rotary_emb_base (int, 可选, 默认为 10000) — 用于计算 rotary embeddings 频率的基数
  • attention_dropout (float, 可选, 默认为 0.0) — 注意力分数 (attention score) 的 dropout 比率概率。
  • hidden_dropout (float, 可选, 默认为 0.0) — (1) 词嵌入,(2) 注意力后隐藏状态,和 (3) MLP 后隐藏状态的 dropout 比率。
  • classifier_dropout (float, 可选, 默认为 0.1) — 在进行 token 分类时使用的参数,在模型 GPTNeoXForTokenClassification 中使用。

    隐藏层的 dropout 比率。

  • max_position_embeddings (int, 可选, 默认为 2048) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • initializer_range (float, 可选, 默认为 1e-5) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-12) — layer normalization 层使用的 epsilon 值。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后一次的 key/values attentions (并非所有模型都使用)。仅在 config.is_decoder=True 时相关。
  • use_parallel_residual (bool, 可选, 默认为 True) — 是否在每个 Transformer 层中使用“并行”结构,这可以在大规模(例如 20B)时提供轻微的训练加速。
  • rope_scaling (Dict, 可选) — 包含 RoPE 嵌入的缩放配置的字典。注意:如果您应用新的 rope 类型,并期望模型在更长的 max_position_embeddings 上工作,我们建议您相应地更新此值。预期内容:rope_type (str): 要使用的 RoPE 的子变体。可以是 [‘default’, ‘linear’, ‘dynamic’, ‘yarn’, ‘longrope’, ‘llama3’] 之一,其中 ‘default’ 是原始的 RoPE 实现。 factor (float, 可选): 用于除 ‘default’ 之外的所有 rope 类型。应用于 RoPE 嵌入的缩放因子。在大多数缩放类型中,x 的 factor 将使模型能够处理长度为 x * 原始最大预训练长度的序列。 original_max_position_embeddings (int, 可选): 用于 ‘dynamic’、‘longrope’ 和 ‘llama3’。预训练期间使用的原始最大位置嵌入。 attention_factor (float, 可选): 用于 ‘yarn’ 和 ‘longrope’。应用于注意力计算的缩放因子。如果未指定,则默认为实现建议的值,使用 factor 字段推断建议的值。 beta_fast (float, 可选): 仅用于 ‘yarn’。用于设置线性斜坡函数中外推(仅限)边界的参数。如果未指定,则默认为 32。 beta_slow (float, 可选): 仅用于 ‘yarn’。用于设置线性斜坡函数中内插(仅限)边界的参数。如果未指定,则默认为 1。 short_factor (List[float], 可选): 仅用于 ‘longrope’。应用于短上下文(< original_max_position_embeddings)的缩放因子。必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 相同。 long_factor (List[float], 可选): 仅用于 ‘longrope’。应用于长上下文(< original_max_position_embeddings)的缩放因子。必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 相同。 low_freq_factor (float, 可选): 仅用于 ‘llama3’。应用于 RoPE 低频分量的缩放因子。 high_freq_factor (float, 可选): 仅用于 ‘llama3’。应用于 RoPE 高频分量的缩放因子。
  • attention_bias (bool, 可选, 默认为 True) — 是否在自注意力机制的查询、键、值和输出投影层中使用偏置。
  • 示例

这是用于存储 GPTNeoXModel 的配置类。 它用于根据指定的参数实例化 GPTNeoX 模型,定义模型架构。 使用默认值实例化配置将产生与 GPTNeoX EleutherAI/gpt-neox-20b 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 中的文档。

>>> from transformers import GPTNeoXConfig, GPTNeoXModel

>>> # Initializing a GPTNeoX gpt-neox-20b style configuration
>>> configuration = GPTNeoXConfig()

>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
>>> model = GPTNeoXModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

GPTNeoXTokenizerFast

class transformers.GPTNeoXTokenizerFast

< >

( vocab_file = None merges_file = None tokenizer_file = None unk_token = '<|endoftext|>' bos_token = '<|endoftext|>' eos_token = '<|endoftext|>' pad_token = None add_bos_token = False add_eos_token = False add_prefix_space = False **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • merges_file (str) — 合并文件的路径。
  • errors (str, 可选, 默认为 "replace") — 将字节解码为 UTF-8 时遵循的范例。 有关更多信息,请参见 bytes.decode
  • unk_token (str, 可选, 默认为 <|endoftext|>) — 未知 token。 词汇表中不存在的 token 无法转换为 ID,而是设置为此 token。
  • bos_token (str, 可选, 默认为 <|endoftext|>) — 序列的开头 token。
  • eos_token (str, 可选, 默认为 <|endoftext|>) — 序列的结尾 token。
  • pad_token (str, 可选) — 用于填充序列的 token。
  • add_prefix_space (bool, 可选, 默认为 False) — 是否在输入中添加初始空格。 这允许像对待任何其他单词一样对待首单词。(GPTNeoX tokenizer 通过前面的空格检测单词的开头)。
  • add_bos_token (bool, 可选, 默认为 False) — 是否在序列的开头添加 bos_token
  • add_eos_token (bool, 可选, 默认为 False) — 是否在序列的末尾添加 eos_token
  • trim_offsets (bool, 可选, 默认为 True) — 后处理步骤是否应修剪偏移量以避免包含空格。

构建一个 “快速” GPT-NeoX-20B 分词器(由 HuggingFace 的 tokenizers 库支持)。 基于字节级字节对编码 (Byte-Pair-Encoding)。

此分词器经过训练,可将空格视为 token 的一部分(有点像 sentencepiece),因此一个单词将

在句子开头(没有空格)或不在句子开头时,编码方式会有所不同

>>> from transformers import GPTNeoXTokenizerFast

>>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("openai-community/gpt2")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]

>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]

您可以通过在实例化此分词器时传递 add_prefix_space=True 来解决此行为,但由于模型并非以这种方式进行预训练,因此可能会导致性能下降。

当与 is_split_into_words=True 一起使用时,此分词器需要使用 add_prefix_space=True 进行实例化。

此分词器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。 用户应参考此超类以获取有关这些方法的更多信息。

get_special_tokens_mask

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 序列对的可选的第二个 ID 列表。
  • already_has_special_tokens (bool, 可选, 默认为 False) — token 列表是否已使用模型的特殊 token 格式化。

返回

List[int]

一个整数列表,范围为 [0, 1]:1 表示特殊 token,0 表示序列 token。

从没有添加特殊 token 的 token 列表中检索序列 ID。 当使用 tokenizer prepare_for_model 方法添加特殊 token 时,将调用此方法。

update_post_processor

< >

( )

使用当前的 bos_tokeneos_token 更新底层后处理器。

GPTNeoXModel

class transformers.GPTNeoXModel

< >

( config )

参数

  • config (GPTNeoXConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
  • config — GPTNeoXConfig

裸 GPTNeoX 模型输出原始隐藏状态,顶部没有任何特定的 head。 此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝 head 等)。

这个模型也是 PyTorch 的一个 torch.nn.Module 子类。您可以像使用常规 PyTorch 模块一样使用它,并参考 PyTorch 文档以了解有关通用用法和行为的所有事项。

Transformer 解码器由 config.num_hidden_layers 层组成。每一层都是一个 GPTNeoXDecoderLayer

前向传播

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) transformers.modeling_outputs.BaseModelOutputWithPast or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 用于避免对 padding token 索引执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩盖 的 tokens,
    • 0 表示 被掩盖 的 tokens。

    什么是 attention masks?

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用 past_key_values,则可以选择仅输入最后的 input_ids (参见 past_key_values)。

    如果您想更改 padding 行为,您应该阅读 modeling_opt._prepare_decoder_attention_mask 并根据您的需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。

    • 1 表示 head 是未被掩盖的
    • 0 表示 head 是被掩盖的
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 每个输入序列 token 在位置 embeddings 中的位置索引。在范围 [0, config.n_positions - 1] 中选择。

    什么是 position IDs?

  • past_key_values (Cachetuple(tuple(torch.FloatTensor)), 可选) — 预先计算的 hidden-states (self-attention 块和 cross-attention 块中的 key 和 values),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv cache 指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的 tensors。 这也称为旧版 cache 格式。

    模型将输出与作为输入提供的 cache 格式相同的格式。 如果没有传递 past_key_values,将返回旧版 cache 格式。

    如果使用 past_key_values,用户可以选择仅输入最后的 input_ids (那些没有将其过去的 key value 状态提供给此模型的 input_ids),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部 embedding 查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values key value 状态,并且可以用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length), 可选) — 描述输入序列 tokens 在序列中位置的索引。与 position_ids 相反,此 tensor 不受 padding 的影响。它用于在正确的位置更新 cache 并推断完整的序列长度。

返回

transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

transformers.modeling_outputs.BaseModelOutputWithPasttorch.FloatTensor 的元组 (如果传递 return_dict=False 或当 config.return_dict=False 时),包括各种元素,具体取决于配置 (GPTNeoXConfig) 和输入。

  • last_hidden_state (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出端的 hidden-states 序列。

    如果使用 past_key_values,则仅输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个 hidden-state。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选,当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的 tensors),并且可选地,如果 config.is_encoder_decoder=True,则还有 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的 tensors。

    包含预先计算的 hidden-states (self-attention 块中的 key 和 values,以及可选地,如果 config.is_encoder_decoder=True,则在 cross-attention 块中),可用于加速顺序解码(请参阅 past_key_values 输入)。

  • hidden_states (tuple(torch.FloatTensor), 可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组 (如果模型具有 embedding 层,则为 embedding 输出的元组 + 每个层输出的元组),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states,以及可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组 (每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attentions 权重,用于计算 self-attention heads 中的加权平均值。

GPTNeoXModel 的 forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

此示例使用随机模型,因为真正的模型都非常大。要获得正确的结果,您应该使用 EleutherAI/gpt-neox-20b 而不是 trl-internal-testing/tiny-random-GPTNeoXForCausalLM。如果您在加载该 checkpoint 时遇到内存不足的问题,您可以尝试在 from_pretrained 调用中添加 device_map="auto"

示例

>>> from transformers import AutoTokenizer, GPTNeoXModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> model = GPTNeoXModel.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

GPTNeoXForCausalLM

class transformers.GPTNeoXForCausalLM

< >

( config )

参数

  • config (GPTNeoXConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

带有 language modeling head 的 GPTNeoX 模型,用于 CLM 微调。此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 heads 等)。

这个模型也是 PyTorch 的一个 torch.nn.Module 子类。您可以像使用常规 PyTorch 模块一样使用它,并参考 PyTorch 文档以了解有关通用用法和行为的所有事项。

前向传播

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.FloatTensor]], NoneType] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.gpt_neox.modeling_gpt_neox.KwargsForCausalLM] ) transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 用于避免对 padding token 索引执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩盖 的 tokens,
    • 0 表示 被掩盖 的 tokens。

    什么是 attention masks?

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用 past_key_values,则可以选择仅输入最后的 input_ids (参见 past_key_values)。

    如果您想更改 padding 行为,您应该阅读 modeling_opt._prepare_decoder_attention_mask 并根据您的需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。

    • 1 表示 head 是未被掩盖的
    • 0 表示 head 是被掩盖的
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 每个输入序列 token 在位置 embeddings 中的位置索引。在范围 [0, config.n_positions - 1] 中选择。

    什么是 position IDs?

  • past_key_values (Cachetuple(tuple(torch.FloatTensor)), 可选) — 预先计算的隐藏状态(self-attention 模块和 cross-attention 模块中的键和值),可用于加速顺序解码。 这通常包含模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) 元组,其中每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。 这也称为旧版缓存格式。

    模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,则用户可以选择仅输入最后一次的 input_ids(那些没有将其过去的键值状态提供给此模型的)形状为 (batch_size, 1),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (形状为 (sequence_length)torch.LongTensor, 可选) — 索引描述输入序列标记在序列中的位置。 与 position_ids 相反,此张量不受填充的影响。 它用于在正确的位置更新缓存,并推断完整序列长度。
  • labels (形状为 (batch_size, sequence_length)torch.LongTensor, 可选) — 用于计算从左到右语言建模损失(下一个单词预测)的标签。 索引应在 [-100, 0, ..., config.vocab_size] 中(请参阅 input_ids 文档字符串) 索引设置为 -100 的标记将被忽略(掩码),损失仅针对标签为 n [0, ..., config.vocab_size] 的标记计算。
  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPasttorch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (GPTNeoXConfig) 和输入。

  • loss (形状为 (1,)torch.FloatTensor, 可选, 当提供 labels 时返回) — 语言建模损失(用于下一个标记预测)。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头的预测分数(SoftMax 之前每个词汇表标记的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) 元组,其中每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)

    包含预先计算的隐藏状态(self-attention 模块中的键和值),可用于(请参阅 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组 (如果模型具有 embedding 层,则为 embedding 输出的元组 + 每个层输出的元组),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states,以及可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组 (每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attentions 权重,用于计算 self-attention heads 中的加权平均值。

GPTNeoXForCausalLM 前向方法,覆盖了 __call__ 特殊方法。

虽然 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config.is_decoder = True
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits

GPTNeoXForQuestionAnswering

class transformers.GPTNeoXForQuestionAnswering

< >

( config )

参数

  • config (GPTNeoXConfig) — 具有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

带有跨度分类头的 GPT-NeoX 模型转换器,用于执行抽取式问答任务,如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logitsspan end logits)。

此模型继承自 PreTrainedModel。 查看超类文档,了解库为所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝头等)。

这个模型也是 PyTorch 的一个 torch.nn.Module 子类。您可以像使用常规 PyTorch 模块一样使用它,并参考 PyTorch 文档以了解有关通用用法和行为的所有事项。

前向传播

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列标记的索引。 如果您提供填充,默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (形状为 (batch_size, sequence_length)torch.Tensor, 可选) — 掩码,以避免对填充令牌索引执行注意力机制。 在 [0, 1] 中选择的掩码值:

    • 1 表示未被掩盖的令牌,
    • 0 表示被掩盖的令牌。

    什么是注意力掩码?

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用 past_key_values,则可以选择仅输入最后一次的 input_ids(请参阅 past_key_values)。

    如果您想更改填充行为,则应阅读 modeling_opt._prepare_decoder_attention_mask 并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。

    • 1 表示头未被掩盖
    • 0 表示头被掩盖
  • position_ids (形状为 (batch_size, sequence_length)torch.LongTensor, 可选) — 每个输入序列标记在位置嵌入中的位置索引。 在范围 [0, config.n_positions - 1] 中选择。

    什么是位置 ID?

  • past_key_values (Cachetuple(tuple(torch.FloatTensor)), 可选) — 预先计算的隐藏状态(self-attention 模块和 cross-attention 模块中的键和值),可用于加速顺序解码。 这通常包含模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) 元组,其中每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。 这也称为旧版缓存格式。

    模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,则用户可以选择仅输入最后一次的 input_ids(那些没有将其过去的键值状态提供给此模型的)形状为 (batch_size, 1),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (形状为 (sequence_length)torch.LongTensor, 可选) — 索引描述输入序列标记在序列中的位置。 与 position_ids 相反,此张量不受填充的影响。 它用于在正确的位置更新缓存,并推断完整序列长度。
  • start_positions (torch.LongTensor, 形状为 (batch_size,)可选) — 用于计算 token 分类损失的标注跨度起始位置(索引)的标签。位置被限制在序列的长度 (sequence_length) 内。序列之外的位置在计算损失时不会被考虑。
  • end_positions (torch.LongTensor, 形状为 (batch_size,)可选) — 用于计算 token 分类损失的标注跨度结束位置(索引)的标签。位置被限制在序列的长度 (sequence_length) 内。序列之外的位置在计算损失时不会被考虑。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor 的元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GPTNeoXConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 总跨度提取损失是起始和结束位置的交叉熵损失之和。

  • start_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 跨度起始得分 (SoftMax 之前)。

  • end_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 跨度结束得分 (SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组 (如果模型具有 embedding 层,则为 embedding 输出的元组 + 每个层输出的元组),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states,以及可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组 (每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attentions 权重,用于计算 self-attention heads 中的加权平均值。

GPTNeoXForQuestionAnswering 的 forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

此示例使用随机模型,因为真正的模型都非常大。要获得正确的结果,您应该使用 EleutherAI/gpt-neox-20b 而不是 trl-internal-testing/tiny-random-GPTNeoXForCausalLM。如果您在加载该 checkpoint 时遇到内存不足的问题,您可以尝试在 from_pretrained 调用中添加 device_map="auto"

示例

>>> from transformers import AutoTokenizer, GPTNeoXForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> model = GPTNeoXForQuestionAnswering.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss

GPTNeoXForSequenceClassification

class transformers.GPTNeoXForSequenceClassification

< >

( config )

参数

  • config (GPTNeoXConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

带有序列分类头的 GPTNeoX 模型 Transformer(线性层)。

GPTNeoXForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型(例如 GPT-1)一样。

由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。如果在配置中定义了 pad_token_id,它会找到每行中最后一个不是 padding token 的 token。如果未定义 pad_token_id,它只会取每行批次的最后一个值。由于当传递 inputs_embeds 而不是 input_ids 时,它无法猜测 padding token,因此它执行相同的操作(取每行批次的最后一个值)。

此模型继承自 PreTrainedModel。 查看超类文档,了解库为所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝头等)。

这个模型也是 PyTorch 的一个 torch.nn.Module 子类。您可以像使用常规 PyTorch 模块一样使用它,并参考 PyTorch 文档以了解有关通用用法和行为的所有事项。

前向传播

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.FloatTensor]], NoneType] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。如果您提供 padding,默认情况下 padding 将被忽略。

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。Mask 值在 [0, 1] 中选择:

    • 1 表示 token 未被 Mask
    • 0 表示 token 被 Mask

    什么是 attention masks?

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用 past_key_values,则可以选择仅输入最后的 input_ids(请参阅 past_key_values)。

    如果您想更改 padding 行为,您应该阅读 modeling_opt._prepare_decoder_attention_mask 并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。

    • 1 表示 head 未被 Mask
    • 0 表示 head 被 Mask
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围 [0, config.n_positions - 1] 中选择。

    什么是 position IDs?

  • past_key_values (Cachetuple(tuple(torch.FloatTensor))可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在解码的先前阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv cache 指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量。 这也称为旧版缓存格式。

    模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,则用户可以选择仅输入最后的 input_ids(那些没有将其 past key value 状态提供给此模型的 input_ids),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您想要比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是纯元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 描述输入序列 token 在序列中位置的索引。 与 position_ids 相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。 索引应在 [0, ..., config.num_labels - 1] 中。 如果 config.num_labels == 1,则计算回归损失(均方误差损失),如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutputWithPast 或一个 torch.FloatTensor 的元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GPTNeoXConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类损失(或回归损失,如果 config.num_labels==1)。

  • logits (torch.FloatTensor,形状为 (batch_size, config.num_labels)) — 分类得分(或回归得分,如果 config.num_labels==1)(SoftMax 之前)。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) 元组,其中每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)

    包含预先计算的隐藏状态(self-attention 模块中的键和值),可用于(请参阅 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组 (如果模型具有 embedding 层,则为 embedding 输出的元组 + 每个层输出的元组),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states,以及可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组 (每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attentions 权重,用于计算 self-attention heads 中的加权平均值。

GPTNeoXForSequenceClassification 的 forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, GPTNeoXForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> model = GPTNeoXForSequenceClassification.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTNeoXForSequenceClassification.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, GPTNeoXForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> model = GPTNeoXForSequenceClassification.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTNeoXForSequenceClassification.from_pretrained(
...     "trl-internal-testing/tiny-random-GPTNeoXForCausalLM", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

GPTNeoXForTokenClassification

class transformers.GPTNeoXForTokenClassification

< >

( config )

前向传播

< >

( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.Tensor]], NoneType] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。如果您提供 padding,默认情况下 padding 将被忽略。

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 Mask 值在 [0, 1] 中选择:

    • 1 代表 token 未被掩码
    • 0 代表 token 已被掩码

    什么是 attention mask?

    索引可以使用 AutoTokenizer 获得。 参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    如果使用了 past_key_values,则可以选择只输入最后的 input_ids (参见 past_key_values)。

    如果您想更改 padding 行为,您应该阅读 modeling_opt._prepare_decoder_attention_mask 并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。

    • 1 表示 head 未被掩码
    • 0 表示 head 已被掩码
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在 position embeddings 中的位置索引。 在范围 [0, config.n_positions - 1] 中选择。

    什么是 position IDs?

  • past_key_values (Cachetuple(tuple(torch.FloatTensor))可选) — 预先计算的 hidden-states(self-attention 块和 cross-attention 块中的 key 和 values),可用于加速顺序解码。 这通常包含模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv cache 指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,其中每个元组都有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量。 这也称为旧版缓存格式。

    模型将输出与作为输入提供的缓存格式相同的格式。 如果未传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,用户可以选择仅输入最后的 input_ids(那些没有将其 past key value states 提供给此模型的输入),形状为 (batch_size, 1),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 描述输入序列 token 在序列中位置的索引。 与 position_ids 相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算序列分类/回归损失的标签。 索引应在 [0, ..., config.num_labels - 1] 中。 如果 config.num_labels == 1,则计算回归损失(均方误差损失),如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GPTNeoXConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.num_labels)) — 分类得分(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组 (如果模型具有 embedding 层,则为 embedding 输出的元组 + 每个层输出的元组),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states,以及可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组 (每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attentions 权重,用于计算 self-attention heads 中的加权平均值。

GPTNeoXForTokenClassification forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, GPTNeoXForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("LarsJonasson/pythia-410m-deduped-sft-swedish")
>>> model = GPTNeoXForTokenClassification.from_pretrained("LarsJonasson/pythia-410m-deduped-sft-swedish")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.25
< > 在 GitHub 上更新