Transformers 文档

Nyströmformer

Hugging Face's logo
加入 Hugging Face 社区

并获取增强的文档体验

开始使用

Nyströmformer

PyTorch

概述

Nyströmformer 模型在 Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention 中提出,作者是 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, 和 Vikas Singh。

论文摘要如下:

Transformers 已经成为各种自然语言处理任务的强大工具。Transformers 令人印象深刻的性能的关键组成部分是自注意力机制,它编码了其他 token 对每个特定 token 的影响或依赖性。虽然自注意力机制很有益,但其在输入序列长度上的二次复杂度限制了它在更长序列中的应用,这是社区正在积极研究的主题。为了解决这个限制,我们提出了 Nyströmformer——一种模型,它表现出良好的可扩展性,是序列长度的函数。我们的想法是基于调整 Nyström 方法,以 O(n) 复杂度近似标准自注意力。Nyströmformer 的可扩展性使其能够应用于包含数千个 token 的更长序列。我们在 GLUE 基准测试和 IMDB 评论的标准序列长度的多个下游任务上进行了评估,发现我们的 Nyströmformer 的性能与标准自注意力相当,甚至在少数情况下略好。在 Long Range Arena (LRA) 基准测试中的更长序列任务中,相对于其他高效的自注意力方法,Nyströmformer 的性能表现良好。我们的代码可以在此 URL 获取。

此模型由 novice03 贡献。原始代码可以在这里找到。

资源

NystromformerConfig

transformers.NystromformerConfig

< >

( vocab_size = 30000 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu_new' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 510 type_vocab_size = 2 segment_means_seq_len = 64 num_landmarks = 64 conv_kernel_size = 65 inv_coeff_init_option = False initializer_range = 0.02 layer_norm_eps = 1e-05 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 30000) — Nystromformer 模型的词汇表大小。定义了调用 NystromformerModel 时传递的 inputs_ids 可以表示的不同 token 的数量。
  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化器层的维度。
  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中隐藏层的数量。
  • num_attention_heads (int, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。
  • intermediate_size (int, 可选, 默认为 3072) — Transformer 编码器中“中间”(即,前馈)层的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持 "gelu", "relu", "selu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — embeddings、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。
  • max_position_embeddings (int, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常为了以防万一,将其设置为较大的值(例如,512、1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 2) — 调用 NystromformerModel 时传递的 token_type_ids 的词汇表大小。
  • segment_means_seq_len (int, 可选, 默认为 64) — 分段均值中使用的序列长度。
  • num_landmarks (int, 可选, 默认为 64) — 在 softmax 自注意力矩阵的 Nystrom 近似中使用的 landmark(或 Nystrom)点的数量。
  • conv_kernel_size (int, 可选, 默认为 65) — Nystrom 近似中使用的深度卷积的内核大小。
  • inv_coeff_init_option (bool, 可选, 默认为 False) — 是否对矩阵的 Moore-Penrose 逆的迭代计算方法的初始值使用精确的系数计算。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。

这是用于存储 NystromformerModel 配置的配置类。它用于根据指定的参数实例化 Nystromformer 模型,定义模型架构。使用默认值实例化配置将产生与 Nystromformer uw-madison/nystromformer-512 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。请阅读 PretrainedConfig 的文档以获取更多信息。

示例

>>> from transformers import NystromformerModel, NystromformerConfig

>>> # Initializing a Nystromformer uw-madison/nystromformer-512 style configuration
>>> configuration = NystromformerConfig()

>>> # Initializing a model from the uw-madison/nystromformer-512 style configuration
>>> model = NystromformerModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

NystromformerModel

transformers.NystromformerModel

< >

( config )

参数

  • config (NystromformerConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

裸 Nyströmformer 模型 transformer 输出原始隐藏状态,顶部没有任何特定的 head。此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch Module,并参阅 PyTorch 文档以了解与常规使用和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 不被 mask
    • 0 表示 tokens 被 mask

    什么是 attention masks?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 sentence A token,
    • 1 对应于 sentence B token。

    什么是 token type IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify self-attention 模块的选定 heads 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 不被 mask
    • 0 表示 head 被 mask
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部 embedding lookup matrix 更好地控制如何将 *input_ids* 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是纯 tuple。

返回

transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstorch.FloatTensor 的 tuple (如果传递了 return_dict=False 或当 config.return_dict=False 时) ,包含各种元素,具体取决于配置 (NystromformerConfig) 和输入。

  • last_hidden_state (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层的输出端的 hidden-states 序列。

    如果使用 past_key_values,则仅输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个 hidden-state。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 的 Tuple,每个 tuple 具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的 tensors,并且如果 config.is_encoder_decoder=True,则可选地具有 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的 tensors。

    包含预先计算的 hidden-states(self-attention 块中的 key 和 values,以及可选地,如果 config.is_encoder_decoder=True,则在 cross-attention 块中),这些 hidden-states 可以用于(请参阅 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 Tuple(如果模型具有 embedding 层,则为 embedding 的输出提供一个,+ 每个层的输出提供一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states,加上可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 Tuple(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递了 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 Tuple(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    decoder 的 cross-attention 层的 Attention 权重,在 attention softmax 之后,用于计算 cross-attention heads 中的加权平均值。

NystromformerModel forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是此函数,因为前者负责运行 pre and post processing 步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, NystromformerModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerModel.from_pretrained("uw-madison/nystromformer-512")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

NystromformerForMaskedLM

class transformers.NystromformerForMaskedLM

< >

( config )

参数

  • config (NystromformerConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

带有 language modeling head 的 Nyströmformer 模型。 此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch Module,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 不被 mask
    • 0 表示 tokens 被 mask

    什么是 attention masks?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 sentence A token,
    • 1 对应于 sentence B token。

    什么是 token type IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify self-attention 模块的选定 heads 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 不被 mask
    • 0 表示 head 被 mask
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部 embedding lookup matrix 更好地控制如何将 *input_ids* 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。 详见返回张量下的 attentions 部分了解更多详情。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 详见返回张量下的 hidden_states 部分了解更多详情。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是纯粹的元组。
  • labels (形状为 (batch_size, sequence_length)torch.LongTensor, 可选) — 用于计算掩码语言建模损失的标签。 索引应在 [-100, 0, ..., config.vocab_size] 中 (参见 input_ids 的文档字符串)。 索引设置为 -100 的 tokens 将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的 tokens 计算。

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor 元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (NystromformerConfig) 和输入。

  • loss (形状为 (1,)torch.FloatTensor, 可选, 当提供 labels 时返回) — 掩码语言建模 (MLM) 损失。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头的预测分数(SoftMax 之前每个词汇表 token 的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 Tuple(如果模型具有 embedding 层,则为 embedding 的输出提供一个,+ 每个层的输出提供一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states,加上可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 Tuple(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

NystromformerForMaskedLM 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是此函数,因为前者负责运行 pre and post processing 步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, NystromformerForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

NystromformerForSequenceClassification

class transformers.NystromformerForSequenceClassification

< >

( config )

参数

  • config (NystromformerConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法来加载模型权重。

Nyströmformer 模型转换器,顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。

此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 详见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 IDs?

  • attention_mask (形状为 (batch_size, sequence_length)torch.FloatTensor, 可选) — 用于避免在 padding token 索引上执行注意力的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 tokens 未被掩码
    • 0 表示 tokens 已被掩码

    什么是注意力掩码?

  • token_type_ids (形状为 (batch_size, sequence_length)torch.LongTensor, 可选) — 用于指示输入的第一部分和第二部分的片段 token 索引。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 IDs?

  • position_ids (形状为 (batch_size, sequence_length)torch.LongTensor, 可选) — 每个输入序列 token 在位置嵌入中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (形状为 (num_heads,)(num_layers, num_heads)torch.FloatTensor, 可选) — 用于使自注意力模块的选定 head 无效的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩码
    • 0 表示 head 已被掩码
  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。 详见返回张量下的 attentions 部分了解更多详情。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 详见返回张量下的 hidden_states 部分了解更多详情。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是纯粹的元组。
  • labels (形状为 (batch_size,)torch.LongTensor, 可选) — 用于计算序列分类/回归损失的标签。 索引应在 [0, ..., config.num_labels - 1] 中。 如果 config.num_labels == 1,则计算回归损失(均方误差损失);如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor 元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (NystromformerConfig) 和输入。

  • loss (形状为 (1,)torch.FloatTensor, 可选, 当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (形状为 (batch_size, config.num_labels)torch.FloatTensor) — 分类(或回归,如果 config.num_labels==1)分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 Tuple(如果模型具有 embedding 层,则为 embedding 的输出提供一个,+ 每个层的输出提供一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states,加上可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 Tuple(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

NystromformerForSequenceClassification 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是此函数,因为前者负责运行 pre and post processing 步骤,而后者会默默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, NystromformerForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForSequenceClassification.from_pretrained("uw-madison/nystromformer-512")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NystromformerForSequenceClassification.from_pretrained("uw-madison/nystromformer-512", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, NystromformerForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForSequenceClassification.from_pretrained("uw-madison/nystromformer-512", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NystromformerForSequenceClassification.from_pretrained(
...     "uw-madison/nystromformer-512", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

NystromformerForMultipleChoice

class transformers.NystromformerForMultipleChoice

< >

( config )

参数

  • config (NystromformerConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

Nyströmformer 模型,顶部带有多项选择分类头(池化输出顶部的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 未被 Mask
    • 0 表示 tokens 已被 Mask

    什么是 attention masks?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — Segment token 索引,用于指示输入的第一个和第二个部分。 索引在 [0, 1] 中选择:

    • 0 对应于 sentence A token,
    • 1 对应于 sentence B token。

    什么是 token type IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify self-attention 模块的选定 head 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 未被 Mask
    • 0 表示 head 已被 Mask
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, num_choices, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将 *input_ids* 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回 tensors 下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是纯粹的 tuple。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算多项选择分类损失的标签。 索引应为 [0, ..., num_choices-1],其中 num_choices 是输入 tensors 的第二个维度的大小。(请参阅上面的 input_ids

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor 的 tuple (如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含取决于配置 (NystromformerConfig) 和输入的各种元素。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor,形状为 (batch_size, num_choices)) — num_choices 是输入 tensors 的第二个维度。(参见上面的 input_ids)。

    分类得分(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 Tuple(如果模型具有 embedding 层,则为 embedding 的输出提供一个,+ 每个层的输出提供一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states,加上可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 Tuple(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

NystromformerForMultipleChoice forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是此函数,因为前者负责运行 pre and post processing 步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, NystromformerForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForMultipleChoice.from_pretrained("uw-madison/nystromformer-512")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

NystromformerForTokenClassification

class transformers.NystromformerForTokenClassification

< >

( config )

参数

  • config (NystromformerConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

Nyströmformer 模型,顶部带有 token 分类头(hidden-states 输出顶部的线性层),例如用于命名实体识别 (NER) 任务。

此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 未被 Mask
    • 0 表示 tokens 已被 Mask

    什么是 attention masks?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — Segment token 索引,用于指示输入的第一个和第二个部分。 索引在 [0, 1] 中选择:

    • 0 对应于 sentence A token,
    • 1 对应于 sentence B token。

    什么是 token type IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify self-attention 模块的选定 head 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 未被 Mask
    • 0 表示 head 已被 Mask
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将 *input_ids* 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回 tensors 下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是一个普通元组。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算 token 分类损失的标签。索引应该在 [0, ..., config.num_labels - 1] 中。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 元组 (如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含各种元素,具体取决于配置 (NystromformerConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.num_labels)) — 分类得分 (在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 Tuple(如果模型具有 embedding 层,则为 embedding 的输出提供一个,+ 每个层的输出提供一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states,加上可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 Tuple(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

NystromformerForTokenClassification 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是此函数,因为前者负责运行 pre and post processing 步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, NystromformerForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForTokenClassification.from_pretrained("uw-madison/nystromformer-512")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

NystromformerForQuestionAnswering

class transformers.NystromformerForQuestionAnswering

< >

( config )

参数

  • config (NystromformerConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

带有跨度分类头的 Nyströmformer 模型,用于抽取式问答任务,如 SQuAD (在 hidden-states 输出之上添加线性层以计算 span start logitsspan end logits)。

此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。

    可以使用 AutoTokenizer 获取索引。请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以获取详细信息。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 token 未被掩盖
    • 0 表示 token 已被掩盖

    什么是 attention 掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定 head 失效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩盖
    • 0 表示 head 已被掩盖
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions 张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是一个普通元组。
  • start_positions (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算 token 分类损失的标签跨度起点的标签位置(索引)。位置被限制在序列的长度 (sequence_length) 内。序列外部的位置不计入损失计算。
  • end_positions (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算 token 分类损失的标签跨度终点的标签位置(索引)。位置被限制在序列的长度 (sequence_length) 内。序列外部的位置不计入损失计算。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor 元组 (如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含各种元素,具体取决于配置 (NystromformerConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 总跨度提取损失是起始和结束位置的交叉熵损失之和。

  • start_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 跨度起始得分 (在 SoftMax 之前)。

  • end_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 跨度结束得分 (在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 Tuple(如果模型具有 embedding 层,则为 embedding 的输出提供一个,+ 每个层的输出提供一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states,加上可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 Tuple(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

NystromformerForQuestionAnswering 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是此函数,因为前者负责运行 pre and post processing 步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, NystromformerForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForQuestionAnswering.from_pretrained("uw-madison/nystromformer-512")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
< > 在 GitHub 上更新