Nyströmformer
概述
Nyströmformer 模型在 Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh 中被提出。
论文摘要如下:
Transformer 已经成为各种自然语言处理任务的强大工具。 Transformer 令人印象深刻的性能背后的关键组件是自注意力机制,它编码了其他标记对每个特定标记的影响或依赖关系。虽然自注意力机制很有益,但其在输入序列长度上的二次复杂度限制了其在更长序列中的应用——这是社区正在积极研究的主题。为了解决这个限制,我们提出了 Nyströmformer——一个模型,它在序列长度的函数中表现出良好的可扩展性。我们的想法是基于调整 Nyström 方法,以 O(n) 复杂度逼近标准自注意力。 Nyströmformer 的可扩展性使其能够应用于具有数千个标记的更长序列。我们在 GLUE 基准测试和 IMDB 评论的多个下游任务上使用标准序列长度进行了评估,发现我们的 Nyströmformer 的性能与标准自注意力相当,甚至在少数情况下略好于标准自注意力。在 Long Range Arena (LRA) 基准测试中的更长序列任务中,Nyströmformer 相对于其他高效的自注意力方法表现良好。我们的代码可在此 链接 中找到。
此模型由 novice03 贡献。 原始代码可以在这里找到。
资源
NystromformerConfig
class transformers.NystromformerConfig
< source >( vocab_size = 30000 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu_new' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 510 type_vocab_size = 2 segment_means_seq_len = 64 num_landmarks = 64 conv_kernel_size = 65 inv_coeff_init_option = False initializer_range = 0.02 layer_norm_eps = 1e-05 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )
Parameters
- vocab_size (
int
, optional, defaults to 30000) — Nystromformer 模型的词汇表大小。 定义了在调用 NystromformerModel 时传递的inputs_ids
可以表示的不同 tokens 的数量。 - hidden_size (
int
, optional, defaults to 768) — 编码器层和池化器层的维度。 - num_hidden_layers (
int
, optional, defaults to 12) — Transformer 编码器中的隐藏层数。 - num_attention_heads (
int
, optional, defaults to 12) — Transformer 编码器中每个注意力层的注意力头数。 - intermediate_size (
int
, optional, defaults to 3072) — Transformer 编码器中“中间”(即,前馈)层的维度。 - hidden_act (
str
orfunction
, optional, defaults to"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。 如果是字符串,则支持"gelu"
,"relu"
,"selu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, optional, defaults to 0.1) — 注意力概率的 dropout 比率。 - max_position_embeddings (
int
, optional, defaults to 512) — 此模型可能使用的最大序列长度。 通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - type_vocab_size (
int
, optional, defaults to 2) — 调用 NystromformerModel 时传递的token_type_ids
的词汇表大小。 - segment_means_seq_len (
int
, optional, defaults to 64) — 段均值中使用的序列长度。 - num_landmarks (
int
, optional, defaults to 64) — 在 softmax 自注意力矩阵的 Nystrom 近似中使用的地标(或 Nystrom)点的数量。 - conv_kernel_size (
int
, optional, defaults to 65) — Nystrom 近似中使用的深度卷积的内核大小。 - inv_coeff_init_option (
bool
, optional, defaults toFalse
) — 是否对计算矩阵 Moore-Penrose 逆的迭代方法的初始值使用精确系数计算。 - initializer_range (
float
, optional, defaults to 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, optional, defaults to 1e-12) — layer normalization 层使用的 epsilon 值。
这是用于存储 NystromformerModel 配置的配置类。 它用于根据指定的参数实例化 Nystromformer 模型,定义模型架构。 使用默认值实例化配置将产生与 Nystromformer uw-madison/nystromformer-512 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 中的文档。
Example
>>> from transformers import NystromformerModel, NystromformerConfig
>>> # Initializing a Nystromformer uw-madison/nystromformer-512 style configuration
>>> configuration = NystromformerConfig()
>>> # Initializing a model from the uw-madison/nystromformer-512 style configuration
>>> model = NystromformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
NystromformerModel
class transformers.NystromformerModel
< source >( config )
Parameters
- config (NystromformerConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
裸机 Nyströmformer 模型,输出原始隐藏状态,顶部没有任何特定的 head。 此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.__call__()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.FloatTensor
, optional) — Mask,以避免在 padding token 索引上执行注意力机制。 Mask 值在[0, 1]
中选择:- 1 表示 未被 mask 的 tokens,
- 0 表示 已被 mask 的 tokens。
- token_type_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, optional) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, optional) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定 head 的掩码。掩码值应在[0, 1]
中选择:- 1 表示 head 未被掩码,
- 0 表示 head 被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将 input_ids 索引转换为关联向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (NystromformerConfig) 和输入。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的输出处的隐藏状态序列。如果使用
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,如果config.is_encoder_decoder=True
,则可以选择性地具有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加张量。包含预先计算的隐藏状态(自注意力块中的键和值,以及如果
config.is_encoder_decoder=True
,则在交叉注意力块中),这些状态可用于(参见past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入的输出,+ 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
且config.add_cross_attention=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
NystromformerModel forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
Example
>>> from transformers import AutoTokenizer, NystromformerModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerModel.from_pretrained("uw-madison/nystromformer-512")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
NystromformerForMaskedLM
class transformers.NystromformerForMaskedLM
< source >( config )
Parameters
- config (NystromformerConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有 language modeling
head 的 Nyströmformer 模型。此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 避免对 padding 标记索引执行注意力的掩码。掩码值应在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 分段标记索引,用于指示输入的第一个和第二个部分。索引应在[0, 1]
中选择:- 0 对应于 sentence A 标记,
- 1 对应于 sentence B 标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定 head 的掩码。掩码值应在[0, 1]
中选择:- 1 表示 head 未被掩码,
- 0 表示 head 被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将 input_ids 索引转换为关联向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(请参阅input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的标记计算。
返回值
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (NystromformerConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 掩码语言建模 (MLM) 损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入的输出,+ 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
NystromformerForMaskedLM forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
Example
>>> from transformers import AutoTokenizer, NystromformerForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
NystromformerForSequenceClassification
class transformers.NystromformerForSequenceClassification
< source >( config )
Parameters
- config (NystromformerConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有序列分类/回归 head 的 Nyströmformer 模型 transformer(pooled 输出顶部的线性层),例如用于 GLUE 任务。
此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
, 形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 获取详细信息。
- attention_mask (
torch.FloatTensor
, 形状为(batch_size, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:1
表示 tokens 未被掩盖,0
表示 tokens 已被掩盖。
- token_type_ids (
torch.LongTensor
, 形状为(batch_size, sequence_length)
, 可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:0
对应于 sentence A token,1
对应于 sentence B token。
- position_ids (
torch.LongTensor
, 形状为(batch_size, sequence_length)
, 可选) — 位置 embeddings 中每个输入序列 tokens 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
, 形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于 nullify self-attention 模块的选定 heads 的掩码。 掩码值在[0, 1]
中选择:1
表示 head 未被掩盖,0
表示 head 已被掩盖。
- inputs_embeds (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部 embedding lookup 矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回的 tensors 下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的 tensors 下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通的 tuple。 - labels (
torch.LongTensor
, 形状为(batch_size,)
, 可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方损失);如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回值
transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor
的 tuple (如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (NystromformerConfig) 和输入。
-
loss (
torch.FloatTensor
, 形状为(1,)
, 可选, 当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
, 形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入的输出,+ 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
NystromformerForSequenceClassification
的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, NystromformerForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForSequenceClassification.from_pretrained("uw-madison/nystromformer-512")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NystromformerForSequenceClassification.from_pretrained("uw-madison/nystromformer-512", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, NystromformerForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForSequenceClassification.from_pretrained("uw-madison/nystromformer-512", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NystromformerForSequenceClassification.from_pretrained(
... "uw-madison/nystromformer-512", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
NystromformerForMultipleChoice
class transformers.NystromformerForMultipleChoice
< source >( config )
Parameters
- config (NystromformerConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
Nyströmformer 模型,顶部带有多项选择分类 head(pooled 输出顶部的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
, 形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 获取详细信息。
- attention_mask (
torch.FloatTensor
, 形状为(batch_size, num_choices, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:1
表示 tokens 未被掩盖,0
表示 tokens 已被掩盖。
- token_type_ids (
torch.LongTensor
, 形状为(batch_size, num_choices, sequence_length)
, 可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:0
对应于 sentence A token,1
对应于 sentence B token。
- position_ids (
torch.LongTensor
, 形状为(batch_size, num_choices, sequence_length)
, 可选) — 位置 embeddings 中每个输入序列 tokens 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
, 形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于 nullify self-attention 模块的选定 heads 的掩码。 掩码值在[0, 1]
中选择:1
表示 head 未被掩盖,0
表示 head 已被掩盖。
- inputs_embeds (
torch.FloatTensor
, 形状为(batch_size, num_choices, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部 embedding lookup 矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回的 tensors 下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的 tensors 下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是一个普通的元组。 - labels (
torch.LongTensor
,形状为(batch_size,)
, 可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
范围内,其中num_choices
是输入张量第二维的大小。(参见上面的input_ids
)
返回值
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (NystromformerConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为 (1,), 可选, 当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二维。(参见上面的 input_ids)。分类得分(在 SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入的输出,+ 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
NystromformerForMultipleChoice 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
Example
>>> from transformers import AutoTokenizer, NystromformerForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForMultipleChoice.from_pretrained("uw-madison/nystromformer-512")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
NystromformerForTokenClassification
class transformers.NystromformerForTokenClassification
< source >( config )
Parameters
- config (NystromformerConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
Nyströmformer 模型,顶部带有一个 token 分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。
此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于 nullify (无效化) self-attention 模块的选定 head 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是一个普通的元组。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于计算 token 分类损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。
返回值
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (NystromformerConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
, 可选, 当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入的输出,+ 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
NystromformerForTokenClassification 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
Example
>>> from transformers import AutoTokenizer, NystromformerForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForTokenClassification.from_pretrained("uw-madison/nystromformer-512")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
NystromformerForQuestionAnswering
class transformers.NystromformerForQuestionAnswering
< source >( config )
Parameters
- config (NystromformerConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
Nyströmformer 模型,顶部带有一个 span 分类头,用于抽取式问答任务,如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 片段 token 索引,用于指示输入的第一部分和第二部分。索引从[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于 nullify self-attention 模块中选定 head 的掩码。掩码值从[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将 input_ids 索引转换为关联向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden state。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - start_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算 token 分类损失的标记跨度开始位置(索引)的标签。位置被限制在序列的长度 (sequence_length
) 内。序列之外的位置不计入损失计算。 - end_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算 token 分类损失的标记跨度结束位置(索引)的标签。位置被限制在序列的长度 (sequence_length
) 内。序列之外的位置不计入损失计算。
返回值
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 torch.FloatTensor
元组(如果传递了 return_dict=False
或者当 config.return_dict=False
时),包括取决于配置 (NystromformerConfig) 和输入的各种元素。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 总跨度提取损失是开始和结束位置的交叉熵损失之和。 -
start_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度开始得分(SoftMax 之前)。 -
end_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度结束得分(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入的输出,+ 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
NystromformerForQuestionAnswering forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
Example
>>> from transformers import AutoTokenizer, NystromformerForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForQuestionAnswering.from_pretrained("uw-madison/nystromformer-512")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss