Transformers 文档

BioGPT

Hugging Face's logo
加入Hugging Face社区

并获得增强文档体验

开始使用

BioGPT

概述

BioGPT 模型在 BioGPT: 用于生物医学文本生成和挖掘的生成式预训练 Transformer 中提出,作者为 Renqian Luo、Liai Sun、Yingce Xia、Tao Qin、Sheng Zhang、Hoifung Poon 和 Tie-Yan Liu。BioGPT 是一种用于生物医学文本生成和挖掘的领域特定生成式预训练 Transformer 语言模型。BioGPT 采用 Transformer 语言模型作为主干,并从头开始在 1500 万篇 PubMed 摘要上进行预训练。

论文摘要如下:

预训练语言模型在生物医学领域引起了越来越多的关注,其灵感来自于其在通用自然语言领域取得的巨大成功。在通用语言领域的预训练语言模型的两个主要分支中,即 BERT(及其变体)和 GPT(及其变体),第一个分支已在生物医学领域得到广泛研究,例如 BioBERT 和 PubMedBERT。虽然它们在各种判别性下游生物医学任务上取得了巨大的成功,但缺乏生成能力限制了它们的应用范围。在本文中,我们提出了 BioGPT,这是一种在大型生物医学文献上预训练的领域特定生成式 Transformer 语言模型。我们在六个生物医学自然语言处理任务上评估了 BioGPT,并证明了我们的模型在大多数任务上都优于以前的模型。特别是,我们在 BC5CDR、KD-DTI 和 DDI 端到端关系提取任务上分别获得了 44.98%、38.42% 和 40.76% 的 F1 分数,并在 PubMedQA 上获得了 78.2% 的准确率,创造了新的记录。我们关于文本生成的案例研究进一步证明了 BioGPT 在生物医学文献中生成生物医学术语流畅描述的优势。

该模型由 kamalkraj 贡献。原始代码可以 在这里 找到。

使用技巧

  • BioGPT 是一个具有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
  • BioGPT 使用因果语言建模 (CLM) 目标进行训练,因此在预测序列中的下一个标记方面非常强大。利用此功能允许 BioGPT 生成语法连贯的文本,这可以在 run_generation.py 示例脚本中观察到。
  • 该模型可以将 past_key_values(对于 PyTorch)作为输入,它是先前计算的键/值注意力对。使用此 (past_key_values 或 past) 值可防止模型在文本生成上下文中重新计算预先计算的值。对于 PyTorch,请参阅 BioGptForCausalLM.forward() 方法的 past_key_values 参数,以获取有关其用法的更多信息。

使用缩放点积注意力 (SDPA)

PyTorch 将本机缩放点积注意力 (SDPA) 运算符作为 torch.nn.functional 的一部分包含在内。此函数包含可根据输入和使用的硬件应用的多个实现。请参阅 官方文档GPU 推理 页面以获取更多信息。

当实现可用时,torch>=2.1.1 默认使用 SDPA,但您也可以在 from_pretrained() 中设置 attn_implementation="sdpa" 以显式请求使用 SDPA。

from transformers import BioGptForCausalLM
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt", attn_implementation="sdpa", torch_dtype=torch.float16)

在本地基准测试(NVIDIA GeForce RTX 2060-8GB,PyTorch 2.3.1,操作系统 Ubuntu 20.04)中,使用 float16 和带有 CausalLM 头的 microsoft/biogpt 模型,我们在训练期间观察到以下加速。

为了获得最佳加速效果,我们建议以半精度(例如 torch.float16torch.bfloat16)加载模型。

训练步数 批次大小 序列长度 是否使用 CUDA 每个批次的耗时(急切模式 - 秒) 每个批次的耗时(SDPA - 秒) 加速率 (%) 急切模式峰值内存 (MB) SDPA 峰值内存 (MB) 内存节省率 (%)
100 1 128 0.038 0.031 21.301 1601.862 1601.497 0.023
100 1 256 0.039 0.034 15.084 1624.944 1625.296 -0.022
100 2 128 0.039 0.033 16.820 1624.567 1625.296 -0.045
100 2 256 0.065 0.059 10.255 1672.164 1672.164 0.000
100 4 128 0.062 0.058 6.998 1671.435 1672.164 -0.044
100 4 256 0.113 0.100 13.316 2350.179 1848.435 27.144
100 8 128 0.107 0.098 9.883 2098.521 1848.435 13.530
100 8 256 0.222 0.196 13.413 3989.980 2986.492 33.601

在本地基准测试(NVIDIA GeForce RTX 2060-8GB,PyTorch 2.3.1,操作系统 Ubuntu 20.04)中,使用 float16 和带有简单 AutoModel 头的 microsoft/biogpt 模型,我们在推理期间观察到以下加速。

批次数量 批次大小 序列长度 是否使用 CUDA 是否使用半精度 是否使用掩码 每个标记的延迟(急切模式 - 毫秒) 每个标记的延迟(SDPA - 毫秒) 加速率 (%) 急切模式内存 (MB) BT 内存 (MB) 内存节省率 (%)
50 1 64 0.115 0.098 17.392 716.998 716.998 0.000
50 1 128 0.115 0.093 24.640 730.916 730.916 0.000
50 2 64 0.114 0.096 19.204 730.900 730.900 0.000
50 2 128 0.117 0.095 23.529 759.262 759.262 0.000
50 4 64 0.113 0.096 18.325 759.229 759.229 0.000
50 4 128 0.186 0.178 4.289 816.478 816.478 0.000

资源

BioGptConfig

transformers.BioGptConfig

< >

( vocab_size = 42384 hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 intermediate_size = 4096 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 1024 initializer_range = 0.02 layer_norm_eps = 1e-12 scale_embedding = True use_cache = True layerdrop = 0.0 activation_dropout = 0.0 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 42384) — BioGPT 模型的词汇量大小。定义了调用 BioGptModel 时传递的 inputs_ids 可以表示的不同标记的数量。
  • hidden_size (int, 可选, 默认为 1024) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 24) — Transformer 编码器中隐藏层的数量。
  • num_attention_heads (int, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数量。
  • intermediate_size (int, 可选, 默认为 4096) — Transformer 编码器中“中间”(即前馈)层的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持 "gelu""relu""selu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。
  • max_position_embeddings (int, 可选, 默认为 1024) — 此模型可能使用的最大序列长度。通常将此设置为一个较大的值以防万一(例如,512 或 1024 或 2048)。
  • initializer_range (float可选,默认为 0.02) — 初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_eps (float可选,默认为 1e-12) — 层归一化层使用的 epsilon。
  • scale_embedding (bool可选,默认为 True) — 通过除以 sqrt(d_model) 来缩放嵌入。
  • use_cache (bool可选,默认为 True) — 模型是否应该返回最后的键/值注意力(并非所有模型都使用)。仅当 config.is_decoder=True 时才相关。
  • layerdrop (float可选,默认为 0.0) — 请参阅有关 LayerDrop 的论文:https://arxiv.org/abs/1909.11556 以了解更多详细信息
  • activation_dropout (float可选,默认为 0.0) — 全连接层内部激活的 dropout 比率。
  • pad_token_id (int可选,默认为 1) — 填充 token id。
  • bos_token_id (int可选,默认为 0) — 流的开始 token id。
  • eos_token_id (int可选,默认为 2) — 流的结束 token id。

这是用于存储 BioGptModel 配置的配置类。它用于根据指定的参数实例化 BioGPT 模型,定义模型架构。使用默认值实例化配置将产生与 BioGPT microsoft/biogpt 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例

>>> from transformers import BioGptModel, BioGptConfig

>>> # Initializing a BioGPT microsoft/biogpt style configuration
>>> configuration = BioGptConfig()

>>> # Initializing a model from the microsoft/biogpt style configuration
>>> model = BioGptModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

BioGptTokenizer

transformers.BioGptTokenizer

  • vocab_file (str) — 词汇表文件路径。
  • merges_file (str) — 合并文件。
  • unk_token (str, 可选, 默认为 "<unk>") — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。
  • bos_token (str, 可选, 默认为 "<s>") — 在预训练期间使用的序列开始标记。可用作序列分类标记。

    在使用特殊标记构建序列时,这不是用于序列开始的标记。使用的标记是cls_token

  • eos_token (str, 可选, 默认为 "</s>") — 序列结束标记。

    在使用特殊标记构建序列时,这不是用于序列结束的标记。使用的标记是sep_token

  • sep_token (str, 可选, 默认为 "</s>") — 分隔符标记,用于从多个序列构建序列时,例如序列分类的两个序列或问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • pad_token (str, 可选, 默认为 "<pad>") — 用于填充的标记,例如在批处理不同长度的序列时。

构建一个 FAIRSEQ Transformer 分词器。Moses 分词后跟字节对编码。

此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

保存词汇表

< >

( save_directory: str filename_prefix: Optional = None )

BioGptModel

transformers.BioGptModel

  • config (~BioGptConfig) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

BioGPT 模型转换器,输出原始隐藏状态,顶部没有任何特定头部。此模型是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与一般用法和行为相关的所有事项。

前向传播

< >

( input_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示未掩码的标记,
    • 0 表示掩码的标记。

    什么是注意力掩码?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未掩码
    • 0 表示头部掩码
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为关联向量(而不是模型的内部嵌入查找矩阵)有更多控制权,这将非常有用。
  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,以及 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

    如果使用 past_key_values,则用户可以选择仅输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids(其过去键值状态未提供给此模型),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids

  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为关联向量(而不是模型的内部嵌入查找矩阵)有更多控制权,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values 密钥值状态,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstorch.FloatTensor 的元组(如果传递了 return_dict=Falseconfig.return_dict=False),包含根据配置 (BioGptConfig) 和输入的不同元素。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层的输出处的隐藏状态序列。

    如果使用 past_key_values,则仅输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选,在传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True,则可选地具有 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,以及如果 config.is_encoder_decoder=True,则可选地在交叉注意力块中),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选,在传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 元组(一个用于嵌入的输出,如果模型具有嵌入层,则加一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,在传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选,在传递 output_attentions=Trueconfig.add_cross_attention=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

BioGptModel 正向方法,覆盖了 __call__ 特殊方法。

尽管正向传递的配方需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, BioGptModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptModel.from_pretrained("microsoft/biogpt")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

BioGptForCausalLM

transformers.BioGptForCausalLM

< >

( config )

参数

  • config (~BioGptConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

具有用于 CLM 微调的 语言建模 头的 BioGPT 模型。此模型是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有事项。

前向传播

< >

( input_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None past_key_values: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示未掩盖的标记,
    • 0 表示掩盖的标记。

    什么是注意力掩码?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未掩盖
    • 0 表示头部掩盖
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将很有用。
  • past_key_values (tuple(tuple(torch.FloatTensor))可选,在传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,以及 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

    如果使用 past_key_values,用户可以选择仅输入最后一个 decoder_input_ids(未向此模型提供其过去键值状态的那些)形状为 (batch_size, 1),而不是所有 decoder_input_ids 形状为 (batch_size, sequence_length)

  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将很有用。
  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 用于语言建模的标签。请注意,标签在模型内部已移位,即您可以设置labels = input_ids。索引在[-100, 0, ..., config.vocab_size]中选择。所有设置为-100的标签都将被忽略(屏蔽),损失仅针对[0, ..., config.vocab_size]中的标签计算。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor的元组(如果传递了return_dict=False或当config.return_dict=False时),包含取决于配置(BioGptConfig)和输入的各种元素。

  • loss (torch.FloatTensor 形状为 (1,), 可选,当提供labels时返回) — 语言建模损失(用于下一个标记预测)。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax之前每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选,在传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 元组(一个用于嵌入的输出,如果模型具有嵌入层,则加一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,在传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选,当传递output_attentions=True或当config.output_attentions=True时返回) — torch.FloatTensor的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)

    注意力softmax后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选,当传递use_cache=True或当config.use_cache=True时返回) — 长度为config.n_layerstorch.FloatTensor元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置。仅当config.is_decoder = True时才相关。

    包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见past_key_values输入)加速顺序解码。

BioGptForCausalLM 的前向方法,覆盖了__call__特殊方法。

尽管正向传递的配方需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

示例

>>> import torch
>>> from transformers import AutoTokenizer, BioGptForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits

BioGptForTokenClassification

transformers.BioGptForTokenClassification

< >

( config )

参数

  • config (~BioGptConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

BioGPT 模型,顶部有一个令牌分类头部(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。

此模型是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与一般用法和行为相关的所有事项。

前向传播

< >

( input_ids: Optional = None token_type_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 ({0})) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor 形状为 ({0})可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选择在 [0, 1] 中:

    • 1 表示未掩码的标记,
    • 0 表示掩码的标记。

    什么是注意力掩码?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定 head 无效的掩码。掩码值选择在 [0, 1] 中:

    • 1 表示 head未掩码
    • 0 表示 head掩码
  • inputs_embeds (torch.FloatTensor 形状为 ({0}, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将input_ids索引转换为关联向量进行比模型内部嵌入查找矩阵更多的控制,这将非常有用。
  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组都有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,以及 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

    如果使用 past_key_values,则用户可以选择仅输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids(那些没有为此模型提供其过去键值状态的),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids

  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为关联向量进行比模型内部嵌入查找矩阵更多的控制,这将非常有用。
  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • labels (torch.LongTensor 形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方误差损失),如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含取决于配置 (BioGptConfig) 和输入的各种元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.num_labels)) — 分类分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选,在传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 元组(一个用于嵌入的输出,如果模型具有嵌入层,则加一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,在传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

The BioGptForTokenClassification 前向方法,覆盖了 __call__ 特殊方法。

尽管正向传递的配方需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, BioGptForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForTokenClassification.from_pretrained("microsoft/biogpt")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

BioGptForSequenceClassification

transformers.BioGptForSequenceClassification

< >

( config: BioGptConfig )

参数

  • config (~BioGptConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

带有序列分类头的 BioGpt 模型转换器(线性层)。

像其他因果模型(例如 GPT-2)一样,BioGptForSequenceClassification 使用最后一个标记来进行分类。

由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了 pad_token_id,它会找到每行中不是填充标记的最后一个标记。如果没有定义 pad_token_id,它只会获取批次中每行最后一个值。由于它无法在传递 inputs_embeds 而不是 input_ids 时猜测填充标记,因此它会执行相同的操作(获取批次中每行最后一个值)。

此模型是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与一般用法和行为相关的所有事项。

前向传播

< >

( input_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 ({0})) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor 形状为 ({0})可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示未掩码的标记,
    • 0 表示掩码的标记。

    什么是注意力掩码?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的某些头无效的掩码。掩码值选择在 [0, 1] 中:

    • 1 表示头 **未被掩码**,
    • 0 表示头 **被掩码**。
  • inputs_embeds (torch.FloatTensor 形状为 ({0}, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为关联向量(而不是模型的内部嵌入查找矩阵)有更多控制权,这将非常有用。
  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,以及 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

    如果使用 past_key_values,用户可以选择仅输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids(那些没有为此模型提供过去键值状态的),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids

  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为关联向量(而不是模型的内部嵌入查找矩阵)有更多控制权,这将非常有用。
  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor 形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方误差损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

transformers.modeling_outputs.SequenceClassifierOutputWithPasttorch.FloatTensor 的元组(如果传递 return_dict=Falseconfig.return_dict=False),包含根据配置 (BioGptConfig) 和输入而变化的各种元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 分类(或如果 config.num_labels==1 则为回归)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, config.num_labels)) — 分类(或如果 config.num_labels==1 则为回归)分数(在 SoftMax 之前)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)

    包含预先计算的隐藏状态(自注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选,在传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 元组(一个用于嵌入的输出,如果模型具有嵌入层,则加一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,在传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

BioGptForSequenceClassification 的前向方法覆盖了 __call__ 特殊方法。

尽管正向传递的配方需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, BioGptForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForSequenceClassification.from_pretrained("microsoft/biogpt")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BioGptForSequenceClassification.from_pretrained("microsoft/biogpt", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, BioGptForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForSequenceClassification.from_pretrained("microsoft/biogpt", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BioGptForSequenceClassification.from_pretrained(
...     "microsoft/biogpt", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
< > 在 GitHub 上更新