Transformers 文档

BioGPT

Hugging Face's logo
加入 Hugging Face 社区

并获取增强的文档体验

开始使用

BioGPT

PyTorch SDPA

概述

BioGPT 模型在 BioGPT: 用于生物医学文本生成和挖掘的生成式预训练 Transformer 中被提出,作者为 Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon 和 Tie-Yan Liu。BioGPT 是一个领域特定的生成式预训练 Transformer 语言模型,用于生物医学文本生成和挖掘。BioGPT 遵循 Transformer 语言模型骨干结构,并在从头开始的 1500 万 PubMed 摘要上进行预训练。

该论文的摘要如下:

受预训练语言模型在通用自然语言领域取得巨大成功的启发,预训练语言模型在生物医学领域引起了越来越多的关注。在通用语言领域预训练语言模型的两个主要分支中,即 BERT(及其变体)和 GPT(及其变体),第一个分支已在生物医学领域得到广泛研究,例如 BioBERT 和 PubMedBERT。虽然它们在各种判别式下游生物医学任务上取得了巨大成功,但缺乏生成能力限制了它们的应用范围。在本文中,我们提出了 BioGPT,这是一个领域特定的生成式 Transformer 语言模型,在大型生物医学文献上进行了预训练。我们在六个生物医学自然语言处理任务上评估了 BioGPT,并证明我们的模型在大多数任务上优于先前的模型。特别是在 BC5CDR、KD-DTI 和 DDI 端到端关系抽取任务上,我们分别获得了 44.98%、38.42% 和 40.76% 的 F1 分数,并在 PubMedQA 上获得了 78.2% 的准确率,创造了新的记录。我们关于文本生成的案例研究进一步证明了 BioGPT 在生物医学文献中为生物医学术语生成流畅描述的优势。

此模型由 kamalkraj 贡献。原始代码可以在这里找到。

使用技巧

  • BioGPT 是一个具有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
  • BioGPT 使用因果语言建模 (CLM) 目标进行训练,因此在预测序列中的下一个 token 方面非常强大。利用此功能,BioGPT 可以生成语法连贯的文本,这可以在 run_generation.py 示例脚本中观察到。
  • 该模型可以将 past_key_values(对于 PyTorch)作为输入,这是先前计算的键/值注意力对。使用此值(past_key_values 或 past)可以防止模型在文本生成上下文中重新计算预先计算的值。对于 PyTorch,有关其用法的更多信息,请参阅 BioGptForCausalLM.forward() 方法的 past_key_values 参数。

使用缩放点积注意力 (SDPA)

PyTorch 包含一个原生的缩放点积注意力 (SDPA) 运算符,作为 torch.nn.functional 的一部分。此函数包含多个实现,可以根据输入和正在使用的硬件应用。有关更多信息,请参阅官方文档GPU 推理 页面。

当实现可用时,torch>=2.1.1 默认使用 SDPA,但您也可以在 from_pretrained() 中设置 attn_implementation="sdpa" 以显式请求使用 SDPA。

from transformers import BioGptForCausalLM
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt", attn_implementation="sdpa", torch_dtype=torch.float16)

在一个本地基准测试(NVIDIA GeForce RTX 2060-8GB,PyTorch 2.3.1,OS Ubuntu 20.04),使用 float16 和带有 CausalLM 头的 microsoft/biogpt 模型,我们在训练期间看到了以下加速。

为了获得最佳加速,我们建议以半精度(例如 torch.float16torch.bfloat16)加载模型。

num_training_steps batch_size seq_len is cuda 每个批次的时间(eager - s) 每个批次的时间(sdpa - s) 加速 (%) Eager 峰值内存 (MB) sdpa 峰值内存 (MB) 内存节省 (%)
100 1 128 False 0.038 0.031 21.301 1601.862 1601.497 0.023
100 1 256 False 0.039 0.034 15.084 1624.944 1625.296 -0.022
100 2 128 False 0.039 0.033 16.820 1624.567 1625.296 -0.045
100 2 256 False 0.065 0.059 10.255 1672.164 1672.164 0.000
100 4 128 False 0.062 0.058 6.998 1671.435 1672.164 -0.044
100 4 256 False 0.113 0.100 13.316 2350.179 1848.435 27.144
100 8 128 False 0.107 0.098 9.883 2098.521 1848.435 13.530
100 8 256 False 0.222 0.196 13.413 3989.980 2986.492 33.601

在一个本地基准测试(NVIDIA GeForce RTX 2060-8GB,PyTorch 2.3.1,OS Ubuntu 20.04),使用 float16 和带有简单 AutoModel 头的 microsoft/biogpt 模型,我们在推理期间看到了以下加速。

num_batches batch_size seq_len is cuda is half use mask 每个 token 的 eager 延迟 (ms) 每个 token 的 SDPA 延迟 (ms) 加速 (%) Mem eager (MB) Mem BT (MB) 内存节省 (%)
50 1 64 True True True 0.115 0.098 17.392 716.998 716.998 0.000
50 1 128 True True True 0.115 0.093 24.640 730.916 730.916 0.000
50 2 64 True True True 0.114 0.096 19.204 730.900 730.900 0.000
50 2 128 True True True 0.117 0.095 23.529 759.262 759.262 0.000
50 4 64 True True True 0.113 0.096 18.325 759.229 759.229 0.000
50 4 128 True True True 0.186 0.178 4.289 816.478 816.478 0.000

资源

BioGptConfig

class transformers.BioGptConfig

< >

( vocab_size = 42384 hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 intermediate_size = 4096 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 1024 initializer_range = 0.02 layer_norm_eps = 1e-12 scale_embedding = True use_cache = True layerdrop = 0.0 activation_dropout = 0.0 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 42384) — BioGPT 模型的词汇表大小。定义了在调用 BioGptModel 时传递的 inputs_ids 可以表示的不同 token 的数量。
  • hidden_size (int, 可选, 默认为 1024) — 编码器层和池化器层的维度。
  • num_hidden_layers (int, 可选, 默认为 24) — Transformer 编码器中隐藏层的数量。
  • num_attention_heads (int, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。
  • intermediate_size (int, 可选, 默认为 4096) — Transformer 编码器中“中间”(即,前馈)层的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,则支持 "gelu", "relu", "selu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — embeddings, 编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。
  • max_position_embeddings (int, 可选, 默认为 1024) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。
  • scale_embedding (bool, 可选, 默认为 True) — 通过除以 sqrt(d_model) 来缩放 embeddings。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅当 config.is_decoder=True 时相关。
  • layerdrop (float, 可选, 默认为 0.0) — 有关 LayerDrop 的详细信息,请参阅论文: https://arxiv.org/abs/1909.11556
  • activation_dropout (float, 可选, 默认为 0.0) — 全连接层内部激活的 dropout 比率。
  • pad_token_id (int, 可选, 默认为 1) — Padding token id.
  • bos_token_id (int可选,默认为 0) — 流 token id 的起始。
  • eos_token_id (int可选,默认为 2) — 流 token id 的结尾。

这是用于存储 BioGptModel 配置的配置类。 它用于根据指定的参数实例化 BioGPT 模型,定义模型架构。 使用默认值实例化配置将产生与 BioGPT microsoft/biogpt 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import BioGptModel, BioGptConfig

>>> # Initializing a BioGPT microsoft/biogpt style configuration
>>> configuration = BioGptConfig()

>>> # Initializing a model from the microsoft/biogpt style configuration
>>> model = BioGptModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

BioGptTokenizer

class transformers.BioGptTokenizer

< >

( vocab_file merges_file unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' pad_token = '<pad>' **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • merges_file (str) — Merges 文件。
  • unk_token (str可选,默认为 "<unk>") — 未知 token。 词汇表中没有的 token 无法转换为 ID,而是设置为此 token。
  • bos_token (str可选,默认为 "<s>") — 预训练期间使用的序列开始 token。 可用作序列分类器 token。

    当使用特殊 token 构建序列时,这不是用于序列开始的 token。 使用的 token 是 cls_token

  • eos_token (str可选,默认为 "</s>") — 序列结束 token。

    当使用特殊 token 构建序列时,这不是用于序列结尾的 token。 使用的 token 是 sep_token

  • sep_token (str可选,默认为 "</s>") — 分隔符 token,用于从多个序列构建序列时,例如用于序列分类的两个序列,或用于问答的文本和问题。 它也用作使用特殊 token 构建的序列的最后一个 token。
  • pad_token (str可选,默认为 "<pad>") — 用于填充的 token,例如在批量处理不同长度的序列时。

构建 FAIRSEQ Transformer 分词器。 Moses 分词后接 Byte-Pair Encoding。

此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。 用户应参考此超类以获取有关这些方法的更多信息。

save_vocabulary

< >

( save_directory: str filename_prefix: typing.Optional[str] = None )

BioGptModel

class transformers.BioGptModel

< >

( config: BioGptConfig )

参数

  • config (~BioGptConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

裸 BioGPT Model transformer 输出原始隐藏状态,顶部没有任何特定的 head。 此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,以避免在 padding token 索引上执行 attention。 Mask 值在 [0, 1] 中选择:

    • 1 表示 token 未被掩码
    • 0 表示 token 已被掩码

    什么是 attention 掩码?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify self-attention 模块的选定 head 的掩码。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 未被掩码
    • 0 表示 head 已被掩码
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)除了传递 input_ids 之外,您可以选择直接传递嵌入表示。 如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 *input_ids* 索引转换为关联向量,这将非常有用。
  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) 元组,每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),这些状态可用于(请参阅 past_key_values 输入)加速顺序解码。

    如果使用 past_key_values,则用户可以选择仅输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids (那些没有将其过去的键值状态提供给此模型的),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)除了传递 input_ids 之外,您可以选择直接传递嵌入表示。 如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参阅返回的张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回的张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一个 torch.FloatTensor 的元组 (如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含各种元素,具体取决于配置 (BioGptConfig) 和输入。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor) — 模型最后一层的输出端的隐藏状态序列。

    如果使用 past_key_values,则仅输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 的元组,其中每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True,则可选地有 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力模块中的键和值,以及如果 config.is_encoder_decoder=True,则在交叉注意力模块中),这些状态可以用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组 (如果模型有嵌入层,则为嵌入输出一个,加上每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组 (每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组 (每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

BioGptModel 的 forward 方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在该函数中定义,但应该在之后调用 Module 实例而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, BioGptModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptModel.from_pretrained("microsoft/biogpt")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

BioGptForCausalLM

class transformers.BioGptForCausalLM

< >

( config )

参数

  • config (~BioGptConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

带有 language modeling 头的 BioGPT 模型,用于 CLM 微调。此模型是一个 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (形状为 (batch_size, sequence_length)torch.FloatTensor, 可选) — 用于避免在 padding 标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩蔽
    • 0 表示标记被掩蔽

    什么是注意力掩码?

  • head_mask (形状为 (num_heads,)(num_layers, num_heads)torch.FloatTensor, 可选) — 用于使自注意力模块的选定头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被掩蔽
    • 0 表示头被掩蔽
  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 的元组,其中每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,以及 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),这些状态可以用于(参见 past_key_values 输入)加速顺序解码。

    如果使用 past_key_values,用户可以选择仅输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids (那些没有将其过去的键值状态提供给此模型的),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids

  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values 键值状态,并且可以用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (形状为 (batch_size, sequence_length)torch.LongTensor, 可选) — 用于语言建模的标签。请注意,标签在模型内部被移位,即您可以设置 labels = input_ids。索引在 [-100, 0, ..., config.vocab_size] 中选择。所有设置为 -100 的标签都会被忽略(掩蔽),损失仅针对 [0, ..., config.vocab_size] 中的标签计算。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 的元组 (如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含各种元素,具体取决于配置 (BioGptConfig) 和输入。

  • loss (形状为 (1,)torch.FloatTensor, 可选, 当提供 labels 时返回) — 语言建模损失 (用于预测下一个标记)。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头的预测分数(SoftMax 之前每个词汇表标记的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组 (如果模型有嵌入层,则为嵌入输出一个,加上每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组 (每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组 (每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    交叉注意力 softmax 之后的注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstorch.FloatTensor 元组的元组,其中每个元组包含自注意力和交叉注意力层的缓存键、值状态(如果模型在编码器-解码器设置中使用)。仅当 config.is_decoder = True 时相关。

    包含预先计算的隐藏状态(注意力模块中的键和值),这些状态可以用于(参见 past_key_values 输入)加速顺序解码。

BioGptForCausalLM 的 forward 方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在该函数中定义,但应该在之后调用 Module 实例而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> import torch
>>> from transformers import AutoTokenizer, BioGptForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits

BioGptForTokenClassification

class transformers.BioGptForTokenClassification

< >

( config )

参数

  • config (~BioGptConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

带有 token classification 头(隐藏状态输出顶部的线性层)的 BioGPT 模型,例如用于命名实体识别 (NER) 任务。

此模型是一个 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 ({0})) —— 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获取。 详见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 获取详细信息。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 ({0}), 可选) —— 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 不被 mask
    • 0 表示 tokens 被 mask

    什么是 attention masks?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads), 可选) —— 用于 nullify self-attention 模块中选定 head 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 不被 mask
    • 0 表示 head 被 mask
  • inputs_embeds (torch.FloatTensor,形状为 ({0}, hidden_size), 可选) —— (可选) 您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 *input_ids* 索引转换为相关的向量,这将非常有用。
  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) —— 长度为 config.n_layerstuple(torch.FloatTensor) 的元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的 hidden-states(self-attention 模块和 cross-attention 模块中的 key 和 values),可以用于(参见 past_key_values 输入)加速顺序解码。

    如果使用了 past_key_values,用户可以选择仅输入最后的 decoder_input_ids(那些没有将其 past key value states 给予此模型的),其形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size), 可选) —— (可选) 您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为相关的向量,这将非常有用。
  • use_cache (bool, 可选) —— 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, 可选) —— 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool, 可选) —— 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool, 可选) —— 是否返回 ModelOutput 而不是普通的 tuple。
  • labels (torch.LongTensor,形状为 (batch_size,), 可选) —— 用于计算序列分类/回归损失的标签。 索引应在 [0, ..., config.num_labels - 1] 中。 如果 config.num_labels == 1,则计算回归损失(均方损失);如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 的 tuple(如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含各种元素,具体取决于配置 (BioGptConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,), 可选, 当提供 labels 时返回) —— 分类损失。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.num_labels)) —— 分类得分 (SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组 (如果模型有嵌入层,则为嵌入输出一个,加上每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组 (每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

BioGptForTokenClassification forward 方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在该函数中定义,但应该在之后调用 Module 实例而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, BioGptForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForTokenClassification.from_pretrained("microsoft/biogpt")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

BioGptForSequenceClassification

class transformers.BioGptForSequenceClassification

< >

( config: BioGptConfig )

参数

  • config (~BioGptConfig) —— 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

带有序列分类 head (线性层) 的 BioGpt 模型 transformer。

BioGptForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型 (例如 GPT-2) 一样。

由于它在最后一个 token 上进行分类,因此需要知道最后一个 token 的位置。 如果在配置中定义了 pad_token_id,它会找到每行中最后一个不是 padding token 的 token。 如果没有定义 pad_token_id,它只会获取批次中每行的最后一个值。 由于当传递 inputs_embeds 而不是 input_ids 时,它无法猜测 padding tokens,因此它执行相同的操作(获取批次中每行的最后一个值)。

此模型是一个 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 ({0})) —— 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获取。 详见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 获取详细信息。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 ({0}), 可选) —— 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 不被 mask
    • 0 表示 tokens 被 mask

    什么是 attention masks?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads), 可选) —— 用于 nullify self-attention 模块中选定 head 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 不被 mask
    • 0 表示 head 被 mask
  • inputs_embeds (torch.FloatTensor,形状为 ({0}, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — tuple(torch.FloatTensor) 的元组,长度为 config.n_layers,其中每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可以用于(请参阅 past_key_values 输入)加速顺序解码。

    如果使用 past_key_values,则用户可以选择仅输入最后一次的 decoder_input_ids(那些没有将其过去键值状态提供给此模型的)形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并且可以用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应为 [0, ..., config.num_labels - 1]。如果 config.num_labels == 1,则计算回归损失(均方误差损失),如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutputWithPasttorch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (BioGptConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (torch.FloatTensor,形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — tuple(torch.FloatTensor) 的元组,长度为 config.n_layers,其中每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)

    包含预先计算的隐藏状态(自注意力模块中的键和值),可以用于(请参阅 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组 (如果模型有嵌入层,则为嵌入输出一个,加上每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组 (每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

BioGptForSequenceClassification 前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在该函数中定义,但应该在之后调用 Module 实例而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, BioGptForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForSequenceClassification.from_pretrained("microsoft/biogpt")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BioGptForSequenceClassification.from_pretrained("microsoft/biogpt", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, BioGptForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForSequenceClassification.from_pretrained("microsoft/biogpt", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BioGptForSequenceClassification.from_pretrained(
...     "microsoft/biogpt", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
< > 在 GitHub 上更新