Transformers 文档
BioGPT
并获取增强的文档体验
开始使用
BioGPT
概述
BioGPT 模型在 BioGPT: 用于生物医学文本生成和挖掘的生成式预训练 Transformer 中被提出,作者为 Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon 和 Tie-Yan Liu。BioGPT 是一个领域特定的生成式预训练 Transformer 语言模型,用于生物医学文本生成和挖掘。BioGPT 遵循 Transformer 语言模型骨干结构,并在从头开始的 1500 万 PubMed 摘要上进行预训练。
该论文的摘要如下:
受预训练语言模型在通用自然语言领域取得巨大成功的启发,预训练语言模型在生物医学领域引起了越来越多的关注。在通用语言领域预训练语言模型的两个主要分支中,即 BERT(及其变体)和 GPT(及其变体),第一个分支已在生物医学领域得到广泛研究,例如 BioBERT 和 PubMedBERT。虽然它们在各种判别式下游生物医学任务上取得了巨大成功,但缺乏生成能力限制了它们的应用范围。在本文中,我们提出了 BioGPT,这是一个领域特定的生成式 Transformer 语言模型,在大型生物医学文献上进行了预训练。我们在六个生物医学自然语言处理任务上评估了 BioGPT,并证明我们的模型在大多数任务上优于先前的模型。特别是在 BC5CDR、KD-DTI 和 DDI 端到端关系抽取任务上,我们分别获得了 44.98%、38.42% 和 40.76% 的 F1 分数,并在 PubMedQA 上获得了 78.2% 的准确率,创造了新的记录。我们关于文本生成的案例研究进一步证明了 BioGPT 在生物医学文献中为生物医学术语生成流畅描述的优势。
此模型由 kamalkraj 贡献。原始代码可以在这里找到。
使用技巧
- BioGPT 是一个具有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
- BioGPT 使用因果语言建模 (CLM) 目标进行训练,因此在预测序列中的下一个 token 方面非常强大。利用此功能,BioGPT 可以生成语法连贯的文本,这可以在 run_generation.py 示例脚本中观察到。
- 该模型可以将
past_key_values
(对于 PyTorch)作为输入,这是先前计算的键/值注意力对。使用此值(past_key_values 或 past)可以防止模型在文本生成上下文中重新计算预先计算的值。对于 PyTorch,有关其用法的更多信息,请参阅 BioGptForCausalLM.forward() 方法的 past_key_values 参数。
使用缩放点积注意力 (SDPA)
PyTorch 包含一个原生的缩放点积注意力 (SDPA) 运算符,作为 torch.nn.functional
的一部分。此函数包含多个实现,可以根据输入和正在使用的硬件应用。有关更多信息,请参阅官方文档或 GPU 推理 页面。
当实现可用时,torch>=2.1.1
默认使用 SDPA,但您也可以在 from_pretrained()
中设置 attn_implementation="sdpa"
以显式请求使用 SDPA。
from transformers import BioGptForCausalLM
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt", attn_implementation="sdpa", torch_dtype=torch.float16)
在一个本地基准测试(NVIDIA GeForce RTX 2060-8GB,PyTorch 2.3.1,OS Ubuntu 20.04),使用 float16
和带有 CausalLM 头的 microsoft/biogpt
模型,我们在训练期间看到了以下加速。
为了获得最佳加速,我们建议以半精度(例如 torch.float16
或 torch.bfloat16
)加载模型。
num_training_steps | batch_size | seq_len | is cuda | 每个批次的时间(eager - s) | 每个批次的时间(sdpa - s) | 加速 (%) | Eager 峰值内存 (MB) | sdpa 峰值内存 (MB) | 内存节省 (%) |
---|---|---|---|---|---|---|---|---|---|
100 | 1 | 128 | False | 0.038 | 0.031 | 21.301 | 1601.862 | 1601.497 | 0.023 |
100 | 1 | 256 | False | 0.039 | 0.034 | 15.084 | 1624.944 | 1625.296 | -0.022 |
100 | 2 | 128 | False | 0.039 | 0.033 | 16.820 | 1624.567 | 1625.296 | -0.045 |
100 | 2 | 256 | False | 0.065 | 0.059 | 10.255 | 1672.164 | 1672.164 | 0.000 |
100 | 4 | 128 | False | 0.062 | 0.058 | 6.998 | 1671.435 | 1672.164 | -0.044 |
100 | 4 | 256 | False | 0.113 | 0.100 | 13.316 | 2350.179 | 1848.435 | 27.144 |
100 | 8 | 128 | False | 0.107 | 0.098 | 9.883 | 2098.521 | 1848.435 | 13.530 |
100 | 8 | 256 | False | 0.222 | 0.196 | 13.413 | 3989.980 | 2986.492 | 33.601 |
在一个本地基准测试(NVIDIA GeForce RTX 2060-8GB,PyTorch 2.3.1,OS Ubuntu 20.04),使用 float16
和带有简单 AutoModel 头的 microsoft/biogpt
模型,我们在推理期间看到了以下加速。
num_batches | batch_size | seq_len | is cuda | is half | use mask | 每个 token 的 eager 延迟 (ms) | 每个 token 的 SDPA 延迟 (ms) | 加速 (%) | Mem eager (MB) | Mem BT (MB) | 内存节省 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
50 | 1 | 64 | True | True | True | 0.115 | 0.098 | 17.392 | 716.998 | 716.998 | 0.000 |
50 | 1 | 128 | True | True | True | 0.115 | 0.093 | 24.640 | 730.916 | 730.916 | 0.000 |
50 | 2 | 64 | True | True | True | 0.114 | 0.096 | 19.204 | 730.900 | 730.900 | 0.000 |
50 | 2 | 128 | True | True | True | 0.117 | 0.095 | 23.529 | 759.262 | 759.262 | 0.000 |
50 | 4 | 64 | True | True | True | 0.113 | 0.096 | 18.325 | 759.229 | 759.229 | 0.000 |
50 | 4 | 128 | True | True | True | 0.186 | 0.178 | 4.289 | 816.478 | 816.478 | 0.000 |
资源
BioGptConfig
class transformers.BioGptConfig
< source >( vocab_size = 42384 hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 intermediate_size = 4096 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 1024 initializer_range = 0.02 layer_norm_eps = 1e-12 scale_embedding = True use_cache = True layerdrop = 0.0 activation_dropout = 0.0 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 42384) — BioGPT 模型的词汇表大小。定义了在调用 BioGptModel 时传递的inputs_ids
可以表示的不同 token 的数量。 - hidden_size (
int
, 可选, 默认为 1024) — 编码器层和池化器层的维度。 - num_hidden_layers (
int
, 可选, 默认为 24) — Transformer 编码器中隐藏层的数量。 - num_attention_heads (
int
, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。 - intermediate_size (
int
, 可选, 默认为 4096) — Transformer 编码器中“中间”(即,前馈)层的维度。 - hidden_act (
str
或function
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,则支持"gelu"
,"relu"
,"selu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, 可选, 默认为 0.1) — embeddings, 编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。 - max_position_embeddings (
int
, 可选, 默认为 1024) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。 - scale_embedding (
bool
, 可选, 默认为True
) — 通过除以 sqrt(d_model) 来缩放 embeddings。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - layerdrop (
float
, 可选, 默认为 0.0) — 有关 LayerDrop 的详细信息,请参阅论文: https://arxiv.org/abs/1909.11556 - activation_dropout (
float
, 可选, 默认为 0.0) — 全连接层内部激活的 dropout 比率。 - pad_token_id (
int
, 可选, 默认为 1) — Padding token id. - bos_token_id (
int
,可选,默认为 0) — 流 token id 的起始。 - eos_token_id (
int
,可选,默认为 2) — 流 token id 的结尾。
这是用于存储 BioGptModel 配置的配置类。 它用于根据指定的参数实例化 BioGPT 模型,定义模型架构。 使用默认值实例化配置将产生与 BioGPT microsoft/biogpt 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import BioGptModel, BioGptConfig
>>> # Initializing a BioGPT microsoft/biogpt style configuration
>>> configuration = BioGptConfig()
>>> # Initializing a model from the microsoft/biogpt style configuration
>>> model = BioGptModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
BioGptTokenizer
class transformers.BioGptTokenizer
< source >( vocab_file merges_file unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' pad_token = '<pad>' **kwargs )
参数
- vocab_file (
str
) — 词汇表文件的路径。 - merges_file (
str
) — Merges 文件。 - unk_token (
str
,可选,默认为"<unk>"
) — 未知 token。 词汇表中没有的 token 无法转换为 ID,而是设置为此 token。 - bos_token (
str
,可选,默认为"<s>"
) — 预训练期间使用的序列开始 token。 可用作序列分类器 token。当使用特殊 token 构建序列时,这不是用于序列开始的 token。 使用的 token 是
cls_token
。 - eos_token (
str
,可选,默认为"</s>"
) — 序列结束 token。当使用特殊 token 构建序列时,这不是用于序列结尾的 token。 使用的 token 是
sep_token
。 - sep_token (
str
,可选,默认为"</s>"
) — 分隔符 token,用于从多个序列构建序列时,例如用于序列分类的两个序列,或用于问答的文本和问题。 它也用作使用特殊 token 构建的序列的最后一个 token。 - pad_token (
str
,可选,默认为"<pad>"
) — 用于填充的 token,例如在批量处理不同长度的序列时。
构建 FAIRSEQ Transformer 分词器。 Moses 分词后接 Byte-Pair Encoding。
此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。 用户应参考此超类以获取有关这些方法的更多信息。
BioGptModel
class transformers.BioGptModel
< source >( config: BioGptConfig )
参数
- config (~BioGptConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
裸 BioGPT Model transformer 输出原始隐藏状态,顶部没有任何特定的 head。 此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,以避免在 padding token 索引上执行 attention。 Mask 值在[0, 1]
中选择:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
- head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于 nullify self-attention 模块的选定 head 的掩码。 Mask 值在[0, 1]
中选择:- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)除了传递input_ids
之外,您可以选择直接传递嵌入表示。 如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 *input_ids* 索引转换为关联向量,这将非常有用。 - past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加张量。包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),这些状态可用于(请参阅
past_key_values
输入)加速顺序解码。如果使用
past_key_values
,则用户可以选择仅输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)除了传递input_ids
之外,您可以选择直接传递嵌入表示。 如果您希望比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参阅返回的张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回的张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一个 torch.FloatTensor
的元组 (如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BioGptConfig) 和输入。
-
last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
) — 模型最后一层的输出端的隐藏状态序列。如果使用
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
的元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,并且如果config.is_encoder_decoder=True
,则可选地有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外张量。包含预先计算的隐藏状态(自注意力模块中的键和值,以及如果
config.is_encoder_decoder=True
,则在交叉注意力模块中),这些状态可以用于(参见past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型有嵌入层,则为嵌入输出一个,加上每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
和config.add_cross_attention=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
BioGptModel 的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BioGptModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptModel.from_pretrained("microsoft/biogpt")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
BioGptForCausalLM
class transformers.BioGptForCausalLM
< source >( config )
参数
- config (~BioGptConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有 language modeling
头的 BioGPT 模型,用于 CLM 微调。此模型是一个 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解所有与通用用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.FloatTensor
, 可选) — 用于避免在 padding 标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被掩蔽,
- 0 表示标记被掩蔽。
- head_mask (形状为
(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
, 可选) — 用于使自注意力模块的选定头无效的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被掩蔽,
- 0 表示头被掩蔽。
- inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。 - past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
的元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外张量。包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),这些状态可以用于(参见
past_key_values
输入)加速顺序解码。如果使用
past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 用于语言建模的标签。请注意,标签在模型内部被移位,即您可以设置labels = input_ids
。索引在[-100, 0, ..., config.vocab_size]
中选择。所有设置为-100
的标签都会被忽略(掩蔽),损失仅针对[0, ..., config.vocab_size]
中的标签计算。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
的元组 (如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BioGptConfig) 和输入。
-
loss (形状为
(1,)
的torch.FloatTensor
, 可选, 当提供labels
时返回) — 语言建模损失 (用于预测下一个标记)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头的预测分数(SoftMax 之前每个词汇表标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型有嵌入层,则为嵌入输出一个,加上每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。交叉注意力 softmax 之后的注意力权重,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的torch.FloatTensor
元组的元组,其中每个元组包含自注意力和交叉注意力层的缓存键、值状态(如果模型在编码器-解码器设置中使用)。仅当config.is_decoder = True
时相关。包含预先计算的隐藏状态(注意力模块中的键和值),这些状态可以用于(参见
past_key_values
输入)加速顺序解码。
BioGptForCausalLM 的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> import torch
>>> from transformers import AutoTokenizer, BioGptForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits
BioGptForTokenClassification
class transformers.BioGptForTokenClassification
< source >( config )
参数
- config (~BioGptConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有 token classification 头(隐藏状态输出顶部的线性层)的 BioGPT 模型,例如用于命名实体识别 (NER) 任务。
此模型是一个 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解所有与通用用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为({0})
) —— 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获取。 详见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 获取详细信息。
- attention_mask (
torch.FloatTensor
,形状为({0})
, 可选) —— 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 tokens 不被 mask,
- 0 表示 tokens 被 mask。
- head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) —— 用于 nullify self-attention 模块中选定 head 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 head 不被 mask,
- 0 表示 head 被 mask。
- inputs_embeds (
torch.FloatTensor
,形状为({0}, hidden_size)
, 可选) —— (可选) 您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 *input_ids* 索引转换为相关的向量,这将非常有用。 - past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) —— 长度为config.n_layers
的tuple(torch.FloatTensor)
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加张量。包含预先计算的 hidden-states(self-attention 模块和 cross-attention 模块中的 key 和 values),可以用于(参见
past_key_values
输入)加速顺序解码。如果使用了
past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将其 past key value states 给予此模型的),其形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) —— (可选) 您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为相关的向量,这将非常有用。 - use_cache (
bool
, 可选) —— 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) —— 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) —— 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) —— 是否返回 ModelOutput 而不是普通的 tuple。 - labels (
torch.LongTensor
,形状为(batch_size,)
, 可选) —— 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方损失);如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
的 tuple(如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (BioGptConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
, 可选, 当提供labels
时返回) —— 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) —— 分类得分 (SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型有嵌入层,则为嵌入输出一个,加上每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BioGptForTokenClassification forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BioGptForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForTokenClassification.from_pretrained("microsoft/biogpt")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
BioGptForSequenceClassification
class transformers.BioGptForSequenceClassification
< source >( config: BioGptConfig )
参数
- config (~BioGptConfig) —— 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
带有序列分类 head (线性层) 的 BioGpt 模型 transformer。
BioGptForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型 (例如 GPT-2) 一样。
由于它在最后一个 token 上进行分类,因此需要知道最后一个 token 的位置。 如果在配置中定义了 pad_token_id
,它会找到每行中最后一个不是 padding token 的 token。 如果没有定义 pad_token_id
,它只会获取批次中每行的最后一个值。 由于当传递 inputs_embeds
而不是 input_ids
时,它无法猜测 padding tokens,因此它执行相同的操作(获取批次中每行的最后一个值)。
此模型是一个 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解所有与通用用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为({0})
) —— 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获取。 详见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 获取详细信息。
- attention_mask (
torch.FloatTensor
,形状为({0})
, 可选) —— 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 tokens 不被 mask,
- 0 表示 tokens 被 mask。
- head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) —— 用于 nullify self-attention 模块中选定 head 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 head 不被 mask,
- 0 表示 head 被 mask。
- inputs_embeds (
torch.FloatTensor
,形状为({0}, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。 - past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) —tuple(torch.FloatTensor)
的元组,长度为config.n_layers
,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加张量。包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可以用于(请参阅
past_key_values
输入)加速顺序解码。如果使用
past_key_values
,则用户可以选择仅输入最后一次的decoder_input_ids
(那些没有将其过去键值状态提供给此模型的)形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应为[0, ..., config.num_labels - 1]
。如果config.num_labels == 1
,则计算回归损失(均方误差损失),如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (BioGptConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) —tuple(torch.FloatTensor)
的元组,长度为config.n_layers
,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的隐藏状态(自注意力模块中的键和值),可以用于(请参阅
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组 (如果模型有嵌入层,则为嵌入输出一个,加上每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BioGptForSequenceClassification 前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此方法,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, BioGptForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForSequenceClassification.from_pretrained("microsoft/biogpt")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BioGptForSequenceClassification.from_pretrained("microsoft/biogpt", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, BioGptForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForSequenceClassification.from_pretrained("microsoft/biogpt", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BioGptForSequenceClassification.from_pretrained(
... "microsoft/biogpt", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss