Transformers 文档
mT5
并获得增强的文档体验
开始使用
mT5
概述
mT5 模型由 Linting Xue、Noah Constant、Adam Roberts、Mihir Kale、Rami Al-Rfou、Aditya Siddhant、Aditya Barua、Colin Raffel 在论文 mT5:一个大规模多语言预训练文本到文本转换器 中提出。
论文摘要如下:
最近,“文本到文本迁移转换器”(T5)利用统一的文本到文本格式和规模,在各种英语自然语言处理任务上取得了最先进的结果。在本文中,我们介绍了 mT5,它是 T5 的一个多语言变体,它在一个基于 Common Crawl 的新数据集上进行了预训练,该数据集涵盖了 101 种语言。我们详细介绍了 mT5 的设计和改进的训练方法,并展示了其在许多多语言基准测试中的最先进性能。我们还描述了一种简单的技术,用于在零样本设置下防止“意外翻译”,即生成模型选择(部分)将其预测翻译成错误的语言。本工作中使用的所有代码和模型检查点都已公开可用。
注意:mT5 仅在 mC4 上进行了预训练,不包含任何有监督的训练。因此,与原始的 T5 模型不同,该模型在使用于下游任务之前必须进行微调。由于 mT5 是无监督预训练的,因此在单任务微调期间使用任务前缀并没有实际的好处。如果您正在进行多任务微调,则应使用前缀。
Google 发布了以下变体:
该模型由 patrickvonplaten 贡献。原始代码可以在这里找到。
资源
MT5Config
class transformers.MT5Config
< 源 >( vocab_size = 250112 d_model = 512 d_kv = 64 d_ff = 1024 num_layers = 8 num_decoder_layers = None num_heads = 6 relative_attention_num_buckets = 32 relative_attention_max_distance = 128 dropout_rate = 0.1 layer_norm_epsilon = 1e-06 initializer_factor = 1.0 feed_forward_proj = 'gated-gelu' is_encoder_decoder = True use_cache = True tokenizer_class = 'T5Tokenizer' tie_word_embeddings = False pad_token_id = 0 eos_token_id = 1 decoder_start_token_id = 0 classifier_dropout = 0.0 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 250112) — T5 模型的词汇表大小。定义了在调用 T5Model 或 TFT5Model 时,可以通过inputs_ids
表示的不同 token 的数量。 - d_model (
int
, 可选, 默认为 512) — 编码器层和池化层的大小。 - d_kv (
int
, 可选, 默认为 64) — 每个注意力头中键、查询、值投影的大小。在传统情况下,通常期望 `d_kv` 等于 `d_model // num_heads`。但在 mt5-small 的架构中,`d_kv` 不等于 `d_model // num_heads`。投影层的 `inner_dim` 将定义为 `num_heads * d_kv`。 - d_ff (
int
, 可选, 默认为 1024) — 每个 `T5Block` 中中间前馈层的大小。 - num_layers (
int
, 可选, 默认为 8) — Transformer 编码器中的隐藏层数量。 - num_decoder_layers (
int
, 可选) — Transformer 解码器中的隐藏层数量。如果未设置,将使用与 `num_layers` 相同的值。 - num_heads (
int
, 可选, 默认为 6) — Transformer 编码器中每个注意力层的注意力头数量。 - relative_attention_num_buckets (
int
, 可选, 默认为 32) — 用于每个注意力层的桶(bucket)的数量。 - relative_attention_max_distance (
int
, 可选, 默认为 128) — 用于桶分离的较长序列的最大距离。 - dropout_rate (
float
, 可选, 默认为 0.1) — 所有 dropout 层的比率。 - classifier_dropout (
float
, 可选, 默认为 0.0) — 分类器的 dropout 比率。 - layer_norm_eps (
float
, 可选, 默认为 1e-6) — 层归一化层使用的 epsilon 值。 - initializer_factor (
float
, 可选, 默认为 1) — 用于初始化所有权重矩阵的因子(应保持为 1,内部用于初始化测试)。 - feed_forward_proj (
string
, 可选, 默认为"gated-gelu"
) — 要使用的前馈层类型。应为"relu"
或"gated-gelu"
之一。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。
这是一个用于存储 MT5Model 或 TFMT5Model 配置的配置类。它用于根据指定的参数实例化一个 mT5 模型,定义模型架构。使用默认值实例化一个配置将产生与 mT5 google/mt5-small 架构相似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
MT5Tokenizer
class transformers.MT5Tokenizer
< 源 >( vocab_file eos_token = '</s>' unk_token = '<unk>' pad_token = '<pad>' extra_ids = 100 additional_special_tokens = None sp_model_kwargs: typing.Optional[dict[str, typing.Any]] = None legacy = None add_prefix_space = True **kwargs )
查看 T5Tokenizer 了解所有详细信息。
MT5TokenizerFast
class transformers.MT5TokenizerFast
< 源 >( vocab_file = None tokenizer_file = None eos_token = '</s>' unk_token = '<unk>' pad_token = '<pad>' extra_ids = 100 additional_special_tokens = None add_prefix_space = None **kwargs )
有关所有详细信息,请参阅 T5TokenizerFast。
MT5Model
class transformers.MT5Model
< 来源 >( config: MT5Config )
参数
- config (MT5Config) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
裸的Mt5模型,输出原始的隐藏状态,顶部没有任何特定的头。
此模型继承自 PreTrainedModel。请查看超类文档,了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 的子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
将模型从模型并行状态移至 CPU。
示例
# On a 4 GPU machine with mt5-xl:
model = MT5ForConditionalGeneration.from_pretrained("Mt5-xl")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map) # Splits the model across several devices
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
forward
< 来源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None decoder_head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None inputs_embeds: typing.Optional[torch.Tensor] = None decoder_inputs_embeds: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) → transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。MT5 是一个具有相对位置嵌入的模型,因此您应该能够在输入的左侧和右侧进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解更多关于如何为预训练准备
input_ids
的信息,请查看 MT5 训练。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记已被掩码。
- decoder_input_ids (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
, 可选) — 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
MT5 使用
pad_token_id
作为生成decoder_input_ids
的起始标记。如果使用past_key_values
,则可以选择只输入最后一个decoder_input_ids
(参见past_key_values
)。要了解更多关于如何为预训练准备
decoder_input_ids
的信息,请查看 MT5 训练。 - decoder_attention_mask (
torch.BoolTensor
,形状为(batch_size, target_sequence_length)
, 可选) — 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。默认情况下也会使用因果掩码。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于置零自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示该头未被掩码,
- 0 表示该头已被掩码。
- decoder_head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于置零解码器中自注意力模块选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示该头未被掩码,
- 0 表示该头已被掩码。
- cross_attn_head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于置零解码器中交叉注意力模块选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示该头未被掩码,
- 0 表示该头已被掩码。
- encoder_outputs (
tuple[tuple[torch.FloatTensor]]
, 可选) — 元组包含 (last_hidden_state
, 可选:hidden_states
, 可选:attentions
)last_hidden_state
形状为(batch_size, sequence_length, hidden_size)
,可选) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 - past_key_values (
tuple[tuple[torch.FloatTensor]]
, 可选) — 预先计算的隐藏状态(自注意力和交叉注意力块中的键和值),可用于加速顺序解码。这通常是在解码的前一个阶段,当use_cache=True
或config.use_cache=True
时,由模型返回的past_key_values
。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也被称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果没有传递
past_key_values
,将返回传统缓存格式。如果使用
past_key_values
,用户可以选择只输入最后一个input_ids
(那些没有给出其过去键值状态的 ID),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 或者,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这会很有用。 - decoder_inputs_embeds (
torch.Tensor
,形状为(batch_size, target_sequence_length, hidden_size)
, 可选) — 或者,您可以选择直接传递嵌入表示,而不是传递decoder_input_ids
。如果使用past_key_values
,可以选择只输入最后一个decoder_inputs_embeds
(参见past_key_values
)。如果您想比模型内部的嵌入查找矩阵更好地控制如何将decoder_input_ids
索引转换为关联向量,这会很有用。如果
decoder_input_ids
和decoder_inputs_embeds
都未设置,decoder_inputs_embeds
将取inputs_embeds
的值。 - use_cache (
bool
, 可选) — 如果设置为True
,将返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
, 可选) — 描绘输入序列标记在序列中位置的索引。与position_ids
相反,此张量不受填充影响。它用于在正确的位置更新缓存并推断完整的序列长度。
返回
transformers.modeling_outputs.Seq2SeqModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置 (MT5Config) 和输入包含各种元素。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层输出的隐藏状态序列。如果使用了
past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
EncoderDecoderCache
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 EncoderDecoderCache 实例。更多详情,请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。解码器在每个层输出的隐藏状态,加上可选的初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
-
encoder_last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层输出的隐藏状态序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。编码器在每个层输出的隐藏状态,加上可选的初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
MT5Model 的 forward 方法重写了 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应该调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MT5Model
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5Model.from_pretrained("google/mt5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for MT5Model.
>>> # This is not needed for torch's MT5ForConditionalGeneration as it does this internally using labels arg.
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
parallelize
< 来源 >( device_map = None )
这是一个实验性功能,随时可能更改。
使用设备映射将模型的注意力模块分布到多个设备上。如果没有给出设备映射,它将均匀地将块分布到所有设备上。
示例
# Here is an example of a device map on a machine with 4 GPUs using mt5-xl, which has a total of 24 attention modules:
model = MT5ForConditionalGeneration.from_pretrained("mt5-xl")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)
MT5ForConditionalGeneration
class transformers.MT5ForConditionalGeneration
< 来源 >( config: MT5Config )
参数
- config (MT5Config) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
MT5 模型,顶部带有一个 `语言建模` 头。
此模型继承自 PreTrainedModel。请查看超类文档,了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 的子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
将模型从模型并行状态移至 CPU。
示例
# On a 4 GPU machine with mt5-xl:
model = MT5ForConditionalGeneration.from_pretrained("Mt5-xl")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map) # Splits the model across several devices
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
forward
< 来源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None decoder_head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[tuple[tuple[torch.Tensor]]] = None past_key_values: typing.Optional[tuple[tuple[torch.Tensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) → transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。MT5 是一个具有相对位置嵌入的模型,因此您应该能够在输入的左侧和右侧进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解更多关于如何为预训练准备
input_ids
的信息,请查看 MT5 训练。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记已被掩码。
- decoder_input_ids (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
, 可选) — 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
MT5 使用
pad_token_id
作为生成decoder_input_ids
的起始标记。如果使用past_key_values
,则可以选择只输入最后一个decoder_input_ids
(参见past_key_values
)。要了解更多关于如何为预训练准备
decoder_input_ids
的信息,请查看 MT5 训练。 - decoder_attention_mask (
torch.BoolTensor
,形状为(batch_size, target_sequence_length)
, 可选) — 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。默认情况下也会使用因果掩码。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于置零自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示该头未被掩码,
- 0 表示该头已被掩码。
- decoder_head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于置零解码器中自注意力模块选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示该头未被掩码,
- 0 表示该头已被掩码。
- cross_attn_head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于置零解码器中交叉注意力模块选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示该头未被掩码,
- 0 表示该头已被掩码。
- encoder_outputs (
tuple[tuple[torch.Tensor]]
, 可选) — 元组包含 (last_hidden_state
, 可选:hidden_states
, 可选:attentions
)last_hidden_state
形状为(batch_size, sequence_length, hidden_size)
,可选) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 - past_key_values (
tuple[tuple[torch.Tensor]]
, 可选) — 预先计算的隐藏状态(自注意力和交叉注意力块中的键和值),可用于加速顺序解码。这通常是在解码的前一个阶段,当use_cache=True
或config.use_cache=True
时,由模型返回的past_key_values
。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也被称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果没有传递
past_key_values
,将返回传统缓存格式。如果使用
past_key_values
,用户可以选择只输入最后一个input_ids
(那些没有给出其过去键值状态的 ID),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 或者,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这会很有用。 - decoder_inputs_embeds (
torch.FloatTensor
,形状为(batch_size, target_sequence_length, hidden_size)
, 可选) — 或者,您可以选择直接传递嵌入表示,而不是传递decoder_input_ids
。如果使用past_key_values
,可以选择只输入最后一个decoder_inputs_embeds
(参见past_key_values
)。如果您想比模型内部的嵌入查找矩阵更好地控制如何将decoder_input_ids
索引转换为关联向量,这会很有用。如果
decoder_input_ids
和decoder_inputs_embeds
都未设置,decoder_inputs_embeds
将取inputs_embeds
的值。 - labels (
torch.LongTensor
,形状为(batch_size,)
, 可选) — 用于计算序列分类/回归损失的标签。索引应在[-100, 0, ..., config.vocab_size - 1]
范围内。所有设置为-100
的标签都会被忽略(掩码),损失仅针对[0, ..., config.vocab_size]
范围内的标签计算。 - use_cache (
bool
, 可选) — 如果设置为True
,将返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
, 可选) — 描绘输入序列标记在序列中位置的索引。与position_ids
相反,此张量不受填充影响。它用于在正确的位置更新缓存并推断完整的序列长度。
返回
transformers.modeling_outputs.Seq2SeqLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置 (MT5Config) 和输入包含各种元素。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
past_key_values (
EncoderDecoderCache
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 EncoderDecoderCache 实例。更多详情,请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。解码器在每一层输出时的隐藏状态以及初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
-
encoder_last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层输出的隐藏状态序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。编码器在每一层输出时的隐藏状态以及初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
MT5ForConditionalGeneration 的 forward 方法重写了 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应该调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
>>> # inference
>>> input_ids = tokenizer(
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> # studies have shown that owning a dog is good for you.
parallelize
< 源代码 >( device_map = None )
这是一个实验性功能,随时可能更改。
使用设备映射将模型的注意力模块分布到多个设备上。如果没有给出设备映射,它将均匀地将块分布到所有设备上。
示例
# Here is an example of a device map on a machine with 4 GPUs using mt5-xl, which has a total of 24 attention modules:
model = MT5ForConditionalGeneration.from_pretrained("mt5-xl")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)
MT5EncoderModel
class transformers.MT5EncoderModel
< 源代码 >( config: MT5Config )
参数
- config (MT5Config) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
裸的Mt5模型,输出原始的隐藏状态,顶部没有任何特定的头。
此模型继承自 PreTrainedModel。请查看超类文档,了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 的子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
将模型从模型并行状态移至 CPU。
示例
# On a 4 GPU machine with mt5-xl:
model = MT5ForConditionalGeneration.from_pretrained("Mt5-xl")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map) # Splits the model across several devices
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
forward
< 源代码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。MT5 是一个具有相对位置嵌入的模型,因此您应该能够在输入的左右两侧进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解如何为预训练准备
input_ids
,请参阅 MT5 训练。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示标记未被遮蔽,
- 0 表示标记被遮蔽。
- head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自[0, 1]
:- 1 表示头未被遮蔽,
- 0 表示头被遮蔽。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型的内部嵌入查找矩阵更多地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置(MT5Config)和输入的不同元素。
-
last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入层的输出(如果模型有嵌入层),另一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MT5EncoderModel 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应该调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MT5EncoderModel
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5EncoderModel.from_pretrained("google/mt5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
parallelize
< 源代码 >( device_map = None )
这是一个实验性功能,随时可能更改。
使用设备映射将模型的注意力模块分布到多个设备上。如果没有给出设备映射,它将均匀地将块分布到所有设备上。
示例
# Here is an example of a device map on a machine with 4 GPUs using mt5-xl, which has a total of 24 attention modules:
model = MT5ForConditionalGeneration.from_pretrained("mt5-xl")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)
MT5ForSequenceClassification
class transformers.MT5ForSequenceClassification
< 源代码 >( config: MT5Config )
参数
- config (MT5Config) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
带序列分类/头的 MT5 模型(在池化输出之上加一个线性层),例如用于 GLUE 任务。
此模型继承自 PreTrainedModel。请查看超类文档,了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 的子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< 源代码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。MT5 是一个具有相对位置嵌入的模型,因此您应该能够在输入的左右两侧进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解如何为预训练准备
input_ids
,请参阅 MT5 训练。 - attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示标记未被遮蔽,
- 0 表示标记被遮蔽。
- decoder_input_ids (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 解码器输入序列标记在词汇表中的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
MT5 使用
pad_token_id
作为生成decoder_input_ids
的起始标记。如果使用past_key_values
,可以选择只输入最后一个decoder_input_ids
(请参阅past_key_values
)。要了解如何为预训练准备
decoder_input_ids
,请参阅 MT5 训练。 - decoder_attention_mask (
torch.BoolTensor
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。默认情况下也会使用因果掩码。 - head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自[0, 1]
:- 1 表示头未被遮蔽,
- 0 表示头被遮蔽。
- decoder_head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置零解码器中自注意力模块选定头的掩码。掩码值选自[0, 1]
:- 1 表示头未被遮蔽,
- 0 表示头被遮蔽。
- cross_attn_head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置零解码器中交叉注意力模块选定头的掩码。掩码值选自[0, 1]
:- 1 表示头未被遮蔽,
- 0 表示头被遮蔽。
- encoder_outputs (
list[torch.FloatTensor]
,可选) — 元组包含 (last_hidden_state
,可选:hidden_states
,可选:attentions
)。last_hidden_state
形状为(batch_size, sequence_length, hidden_size)
,可选) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型的内部嵌入查找矩阵更多地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - decoder_inputs_embeds (
torch.FloatTensor
,形状为(batch_size, target_sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递decoder_input_ids
。如果使用past_key_values
,可以选择只输入最后一个decoder_inputs_embeds
(请参阅past_key_values
)。如果您想比模型的内部嵌入查找矩阵更多地控制如何将decoder_input_ids
索引转换为关联向量,这将非常有用。如果
decoder_input_ids
和decoder_inputs_embeds
都未设置,则decoder_inputs_embeds
将取inputs_embeds
的值。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels > 1
,则计算分类损失(交叉熵)。 - use_cache (
bool
,可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置(MT5Config)和输入的不同元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供label
时返回) — 分类 (如果 config.num_labels==1 则为回归) 损失。 -
logits (形状为
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。 -
past_key_values (
EncoderDecoderCache
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 EncoderDecoderCache 实例。更多详情,请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。解码器在每一层输出时的隐藏状态以及初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
-
encoder_last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层输出的隐藏状态序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。编码器在每一层输出时的隐藏状态以及初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
MT5ForSequenceClassification 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应该调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, MT5ForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForSequenceClassification.from_pretrained("google/mt5-small")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MT5ForSequenceClassification.from_pretrained("google/mt5-small", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, MT5ForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForSequenceClassification.from_pretrained("google/mt5-small", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MT5ForSequenceClassification.from_pretrained(
... "google/mt5-small", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
MT5ForTokenClassification
class transformers.MT5ForTokenClassification
< 源代码 >( config: MT5Config )
参数
- config (MT5Config) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
带标记分类头的 Mt5 transformer 模型(在隐藏状态输出之上加一个线性层),例如用于命名实体识别(NER)任务。
此模型继承自 PreTrainedModel。请查看超类文档,了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 的子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< 源代码 >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。MT5 是一个具有相对位置嵌入的模型,因此您应该能够在输入的左右两侧进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解如何为预训练准备
input_ids
,请参阅 MT5 训练。 - attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示标记未被遮蔽,
- 0 表示标记被遮蔽。
- head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自[0, 1]
:- 1 表示头未被遮蔽,
- 0 表示头被遮蔽。
- inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型的内部嵌入查找矩阵更多地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含根据配置(MT5Config)和输入而异的各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分类分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入层的输出(如果模型有嵌入层),另一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MT5ForTokenClassification 的 forward 方法会覆盖 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应该调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MT5ForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForTokenClassification.from_pretrained("google/mt5-small")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
MT5ForQuestionAnswering
class transformers.MT5ForQuestionAnswering
< 来源 >( config: MT5Config )
参数
- config (MT5Config) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法以加载模型权重。
Mt5 transformer,顶部带有一个用于抽取式问答任务(如 SQuAD)的片段分类头(一个位于隐藏状态输出之上的线性层,用于计算 `span start logits` 和 `span end logits`)。
此模型继承自 PreTrainedModel。请查看超类文档,了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是一个 PyTorch torch.nn.Module 的子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。
forward
< 来源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None decoder_head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[tuple[tuple[torch.Tensor]]] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。T5 是一个带有相对位置嵌入的模型,因此你应该能够对输入的左右两侧进行填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
要了解更多关于如何为预训练准备
input_ids
的信息,请参阅 T5 训练。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,用于避免对填充标记索引执行注意力操作。掩码值选自[0, 1]
:- 1 表示标记未被遮盖,
- 0 表示标记被遮盖。
- decoder_input_ids (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
T5 使用 `pad_token_id` 作为生成 `decoder_input_ids` 的起始标记。如果使用了 `past_key_values`,则可以选择只输入最后的 `decoder_input_ids`(参见 `past_key_values`)。
要了解更多关于如何为预训练准备 `decoder_input_ids` 的信息,请参阅 T5 训练。
- decoder_attention_mask (
torch.BoolTensor
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个忽略 `decoder_input_ids` 中填充标记的张量。默认情况下也会使用因果掩码。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码,用于将自注意力模块中选定的头置零。掩码值选自[0, 1]
:- 1 表示头未被遮盖,
- 0 表示头被遮盖。
- decoder_head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码,用于将解码器中自注意力模块的选定头置零。掩码值选自[0, 1]
:- 1 表示头未被遮盖,
- 0 表示头被遮盖。
- cross_attn_head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码,用于将解码器中交叉注意力模块的选定头置零。掩码值选自[0, 1]
:- 1 表示头未被遮盖,
- 0 表示头被遮盖。
- encoder_outputs (
tuple[tuple[torch.Tensor]]
, 可选) — 元组包含 (last_hidden_state
, 可选:hidden_states
, 可选:attentions
)。形状为(batch_size, sequence_length, hidden_size)
的 `last_hidden_state` 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力机制中。 - start_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 标记片段开始位置(索引)的标签,用于计算标记分类损失。位置被限制在序列长度(sequence_length
)范围内。序列之外的位置不计入损失计算。 - end_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 标记片段结束位置(索引)的标签,用于计算标记分类损失。位置被限制在序列长度(sequence_length
)范围内。序列之外的位置不计入损失计算。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示而不是传递input_ids
。如果你希望对如何将input_ids
索引转换为关联向量进行更多控制,而不是使用模型的内部嵌入查找矩阵,这会很有用。 - decoder_inputs_embeds (
torch.FloatTensor
,形状为(batch_size, target_sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示而不是传递 `decoder_input_ids`。如果使用了 `past_key_values`,则可以选择只输入最后的 `decoder_inputs_embeds`(参见 `past_key_values`)。如果你希望对如何将 `decoder_input_ids` 索引转换为关联向量进行更多控制,而不是使用模型的内部嵌入查找矩阵,这会很有用。如果 `decoder_input_ids` 和 `decoder_inputs_embeds` 都未设置,`decoder_inputs_embeds` 将取 `inputs_embeds` 的值。
- use_cache (
bool
, 可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 `attentions`。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 `hidden_states`。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含根据配置(MT5Config)和输入而异的各种元素。
-
loss (
torch.FloatTensor
of shape(1,)
, 可选, 当提供labels
时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 范围起始分数(SoftMax 之前)。 -
end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 范围结束分数(SoftMax 之前)。 -
past_key_values (
EncoderDecoderCache
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 EncoderDecoderCache 实例。更多详情,请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。解码器在每一层输出时的隐藏状态以及初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
-
encoder_last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层输出的隐藏状态序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。编码器在每一层输出时的隐藏状态以及初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。
MT5ForQuestionAnswering 的 forward 方法会覆盖 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应该调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MT5ForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForQuestionAnswering.from_pretrained("google/mt5-small")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
TFMT5Model
此类覆盖了 TFT5Model。请查阅父类文档以获取相应的文档和用法示例。
示例
>>> from transformers import TFMT5Model, AutoTokenizer
>>> model = TFMT5Model.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="tf")
>>> labels = tokenizer(text_target=summary, return_tensors="tf")
>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"])
>>> hidden_states = outputs.last_hidden_state
TFMT5ForConditionalGeneration
此类覆盖了 TFT5ForConditionalGeneration。请查阅父类文档以获取相应的文档和用法示例。
示例
>>> from transformers import TFMT5ForConditionalGeneration, AutoTokenizer
>>> model = TFMT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, text_target=summary, return_tensors="tf")
>>> outputs = model(**inputs)
>>> loss = outputs.loss
TFMT5EncoderModel
此类覆盖了 TFT5EncoderModel。请查阅父类文档以获取相应的文档和用法示例。
示例
>>> from transformers import TFMT5EncoderModel, AutoTokenizer
>>> model = TFMT5EncoderModel.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> input_ids = tokenizer(article, return_tensors="tf").input_ids
>>> outputs = model(input_ids)
>>> hidden_state = outputs.last_hidden_state
FlaxMT5Model
class transformers.FlaxMT5Model
< 来源 >( config: T5Config input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
此类覆盖了 FlaxT5Model。请查阅父类文档以获取相应的文档和用法示例。
示例
>>> from transformers import FlaxMT5Model, AutoTokenizer
>>> model = FlaxMT5Model.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="np")
>>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids
>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=decoder_input_ids)
>>> hidden_states = outputs.last_hidden_state
FlaxMT5ForConditionalGeneration
class transformers.FlaxMT5ForConditionalGeneration
< 来源 >( config: T5Config input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
此类覆盖了 FlaxT5ForConditionalGeneration。请查阅父类文档以获取相应的文档和用法示例。
示例
>>> from transformers import FlaxMT5ForConditionalGeneration, AutoTokenizer
>>> model = FlaxMT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="np")
>>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids
>>> outputs = model(**inputs, decoder_input_ids=decoder_input_ids)
>>> logits = outputs.logits
FlaxMT5EncoderModel
class transformers.FlaxMT5EncoderModel
< 来源 >( config: T5Config input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
此类覆盖了 FlaxT5EncoderModel。请查阅父类文档以获取相应的文档和用法示例。
示例
>>> from transformers import FlaxT5EncoderModel, AutoTokenizer
>>> model = FlaxT5EncoderModel.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="np")
>>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids
>>> outputs = model(input_ids=inputs["input_ids"])
>>> hidden_states = outputs.last_hidden_state