Transformers 文档
GLM
并获得增强的文档体验
开始使用
GLM
概述
GLM 模型由 GLM 团队、THUDM 和 ZhipuAI 在论文 ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools 中提出。
论文摘要如下:
我们介绍 ChatGLM,这是我们一直在开发的一个不断演进的大型语言模型家族。本报告主要关注 GLM-4 语言系列,包括 GLM-4、GLM-4-Air 和 GLM-4-9B。它们代表了我们最强大的模型,这些模型融合了前三代 ChatGLM 中获得的所有见解和经验教训。迄今为止,GLM-4 模型已在十万亿个主要为中文和英文的 token 上进行了预训练,同时还包含来自 24 种语言的小部分语料库,并主要针对中文和英文使用进行了对齐。高质量的对齐是通过一个多阶段的后训练过程实现的,该过程涉及监督微调和从人类反馈中学习。评估表明,GLM-4 1) 在 MMLU、GSM8K、MATH、BBH、GPQA 和 HumanEval 等通用指标方面与 GPT-4 相当或优于 GPT-4,2) 在 IFEval 测量的指令遵循方面接近 GPT-4-Turbo,3) 在长上下文任务上与 GPT-4 Turbo (128K) 和 Claude 3 相当,以及 4) 在 AlignBench 测量的中文对齐方面优于 GPT-4。GLM-4 All Tools 模型进一步对齐,以理解用户意图并自主决定何时以及使用何种工具——包括网络浏览器、Python 解释器、文本到图像模型和用户自定义函数——来有效完成复杂任务。在实际应用中,它在通过网页浏览访问在线信息和使用 Python 解释器解决数学问题等任务中,与 GPT-4 All Tools 相当甚至超越。在此过程中,我们开源了一系列模型,包括 ChatGLM-6B (三代)、GLM-4-9B (128K, 1M)、GLM-4V-9B、WebGLM 和 CodeGeeX,仅在 2023 年就在 Hugging Face 上吸引了超过 1000 万次下载。
技巧
使用技巧
GLM-4
可以在 Huggingface Hub 上找到。
下面,我们将演示如何使用 glm-4-9b-chat
进行推理。请注意,我们对话使用了 ChatML 格式,在此演示中,我们将展示如何利用 apply_chat_template
来实现这一点。
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("THUDM/glm-4-9b-chat", device_map="auto", trust_remote_code=True)
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat")
>>> prompt = "Give me a short introduction to large language model."
>>> messages = [{"role": "user", "content": prompt}]
>>> text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> model_inputs = tokenizer([text], return_tensors="pt").to(device)
>>> generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True)
>>> generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
>>> response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
GlmConfig
class transformers.GlmConfig
< 来源 >( vocab_size = 151552 hidden_size = 4096 intermediate_size = 13696 num_hidden_layers = 40 num_attention_heads = 32 num_key_value_heads = 2 partial_rotary_factor = 0.5 head_dim = 128 hidden_act = 'silu' attention_dropout = 0.0 max_position_embeddings = 131072 initializer_range = 0.02 rms_norm_eps = 1.5625e-07 use_cache = True tie_word_embeddings = False rope_theta = 10000.0 pad_token_id = 151329 eos_token_id = [151329, 151336, 151338] bos_token_id = None attention_bias = True **kwargs )
参数
- vocab_size (
int
,可选,默认为 151552) — Glm 模型的词汇表大小。定义了在调用 GlmModel 时传递的inputs_ids
可以表示的不同 token 的数量。 - hidden_size (
int
,可选,默认为 4096) — 隐藏表示的维度。 - intermediate_size (
int
,可选,默认为 13696) — MLP 表示的维度。 - num_hidden_layers (
int
,可选,默认为 40) — Transformer 解码器中的隐藏层数量。 - num_attention_heads (
int
,可选,默认为 32) — Transformer 解码器中每个注意力层的注意力头数量。 - num_key_value_heads (
int
,可选,默认为 2) — 这是用于实现分组查询注意力 (Grouped Query Attention) 的键值头 (key_value heads) 的数量。如果num_key_value_heads=num_attention_heads
,模型将使用多头注意力 (MHA);如果num_key_value_heads=1
,模型将使用多查询注意力 (MQA);否则使用 GQA。将多头检查点转换为 GQA 检查点时,每个组的键和值头应通过对该组内所有原始头进行均值池化来构建。更多详情,请参阅这篇论文。如果未指定,将默认为num_attention_heads
。 - partial_rotary_factor (
float
,可选,默认为 0.5) — 部分旋转位置的因子。 - head_dim (
int
,可选,默认为 128) — 注意力头的维度。 - hidden_act (
str
或function
,可选,默认为"silu"
) — 传统的激活函数。它被hidden_activation
覆盖。 - attention_dropout (
float
,可选,默认为 0.0) — 注意力概率的 dropout 比率。 - max_position_embeddings (
int
,可选,默认为 131072) — 该模型可能使用的最大序列长度。 - initializer_range (
float
,可选,默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - rms_norm_eps (
float
,可选,默认为 1.5625e-07) — rms 归一化层使用的 epsilon。 - use_cache (
bool
,可选,默认为True
) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。仅在config.is_decoder=True
时相关。 - tie_word_embeddings (
bool
,可选,默认为False
) — 是否绑定词嵌入权重 - rope_theta (
float
,可选,默认为 10000.0) — RoPE 嵌入的基周期。 - pad_token_id (
int
,可选,默认为 151329) — 填充 token 的 ID。 - eos_token_id (
int
|list
,可选,默认为[151329, 151336, 151338]
) — 流结束 token 的 ID。 - bos_token_id (
int
,可选) — 流开始 token 的 ID。 - attention_bias (
bool
,默认为False
,可选,默认为True
) — 在自注意力期间是否在查询、键、值和输出投影层中使用偏置。
这是用于存储 GlmModel 配置的配置类。它用于根据指定的参数实例化 Glm 模型,定义模型架构。使用默认值实例化配置将产生与 Glm-4-9b-chat 类似的配置。例如 THUDM/glm-4-9b-chat 配置对象继承自 PretrainedConfig,可用于控制模型输出。请阅读 PretrainedConfig 的文档以获取更多信息。
>>> from transformers import GlmModel, GlmConfig
>>> # Initializing a Glm glm-4-9b-chat style configuration
>>> configuration = GlmConfig()
>>> # Initializing a model from the glm-4-9b-chat style configuration
>>> model = GlmModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
GlmModel
class transformers.GlmModel
< 来源 >( config: GlmConfig )
参数
- config (GlmConfig) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。
基础 Glm 模型,输出原始的隐藏状态,没有任何特定的头部。
该模型继承自 PreTrainedModel。请查看超类的文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
该模型也是一个 PyTorch torch.nn.Module 的子类。可以像使用常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源代码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) → transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示标记未被遮盖,
- 0 表示标记被遮盖。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可选) — 预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常包括在解码的先前阶段,当use_cache=True
或config.use_cache=True
时,由模型返回的past_key_values
。允许两种格式:
- 一个 Cache 实例,请参阅我们的 KV 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
的元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择只输入最后的input_ids
(那些没有为其提供过去键值状态的标记),形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这会很有用。 - use_cache (
bool
,可选) — 如果设置为True
,则会返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的 `attentions`。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的 `hidden_states`。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
,可选) — 描述输入序列标记在序列中位置的索引。与 `position_ids` 不同,此张量不受填充影响。它用于在正确的位置更新缓存并推断完整的序列长度。
返回
transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPast 或一个 `torch.FloatTensor` 的元组(如果传递了 `return_dict=False` 或当 `config.return_dict=False` 时),根据配置(GlmConfig)和输入包含各种元素。
-
last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。如果使用了
past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
Cache
,可选,当传递 `use_cache=True` 或 `config.use_cache=True` 时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 KV 缓存指南。包含预计算的隐藏状态(自注意力块中的键和值,如果 `config.is_encoder_decoder=True`,则还包括交叉注意力块中的键和值),可用于(参见 `past_key_values` 输入)加速序列解码。
-
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出一个),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
GlmModel 的前向方法,覆盖了 `__call__` 特殊方法。
虽然前向传递的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
GlmForCausalLM
class transformers.GlmForCausalLM
< 源代码 >( config )
参数
- config (GlmForCausalLM) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
用于因果语言建模的 Glm 模型。
该模型继承自 PreTrainedModel。请查看超类的文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
该模型也是一个 PyTorch torch.nn.Module 的子类。可以像使用常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源代码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.glm.modeling_glm.KwargsForCausalLM] ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示标记未被遮盖,
- 0 表示标记被遮盖。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可选) — 预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常包括在解码的先前阶段,当use_cache=True
或config.use_cache=True
时,由模型返回的past_key_values
。允许两种格式:
- 一个 Cache 实例,请参阅我们的 KV 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
的元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择只输入最后的input_ids
(那些没有为其提供过去键值状态的标记),形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这会很有用。 - labels (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 用于计算掩码语言建模损失的标签。索引应在[0, ..., config.vocab_size]
或 -100 之间(请参阅input_ids
文档字符串)。索引设置为 `-100` 的标记将被忽略(遮盖),损失仅对标签在[0, ..., config.vocab_size]
之间的标记计算。 - use_cache (
bool
,可选) — 如果设置为True
,则会返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的 `attentions`。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的 `hidden_states`。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
,可选) — 描述输入序列标记在序列中位置的索引。与 `position_ids` 不同,此张量不受填充影响。它用于在正确的位置更新缓存并推断完整的序列长度。 - logits_to_keep (
Union[int, torch.Tensor]
,默认为0
) — 如果是 `int`,则计算最后 `logits_to_keep` 个标记的 logits。如果是 `0`,则为所有 `input_ids` 计算 logits(特殊情况)。生成时只需要最后一个标记的 logits,仅为该标记计算可以节省内存,这对于长序列或大词汇表来说非常重要。如果是 `torch.Tensor`,则必须是 1D 的,对应于序列长度维度中要保留的索引。这在使用打包张量格式(批处理和序列长度使用单一维度)时很有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个 `torch.FloatTensor` 的元组(如果传递了 `return_dict=False` 或当 `config.return_dict=False` 时),根据配置(GlmConfig)和输入包含各种元素。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
past_key_values (
Cache
,可选,当传递 `use_cache=True` 或 `config.use_cache=True` 时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 KV 缓存指南。包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出一个),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
GlmForCausalLM 的前向方法,覆盖了 `__call__` 特殊方法。
虽然前向传递的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, GlmForCausalLM
>>> model = GlmForCausalLM.from_pretrained("meta-glm/Glm-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-glm/Glm-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
GlmForSequenceClassification
class transformers.GlmForSequenceClassification
< 源代码 >( config )
参数
- config (GlmForSequenceClassification) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
带有一个序列分类头(线性层)的 Glm 模型 Transformer。
GlmForSequenceClassification 使用最后一个标记来进行分类,就像其他因果模型(例如 GPT-2)一样。
由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了 `pad_token_id`,它会找到每行中不是填充标记的最后一个标记。如果未定义 `pad_token_id`,它会简单地取批处理中每行的最后一个值。由于当传递 `inputs_embeds` 而不是 `input_ids` 时它无法猜测填充标记,因此它会做同样的事情(取批处理中每行的最后一个值)。
该模型继承自 PreTrainedModel。请查看超类的文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
该模型也是一个 PyTorch torch.nn.Module 的子类。可以像使用常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源代码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示标记未被遮盖,
- 0 表示标记被遮盖。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可选) — 预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常包括在解码的先前阶段,当use_cache=True
或config.use_cache=True
时,由模型返回的past_key_values
。允许两种格式:
- 一个 Cache 实例,请参阅我们的 KV 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
的元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择只输入最后的input_ids
(那些没有为其提供过去键值状态的标记),形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这会很有用。 - labels (形状为
(batch_size,)
的torch.LongTensor
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
之间。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。 - use_cache (
bool
,可选) — 如果设置为True
,则会返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的 `attentions`。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的 `hidden_states`。
返回
transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
一个 `transformers.modeling_outputs.SequenceClassifierOutputWithPast` 或一个 `torch.FloatTensor` 的元组(如果传递了 `return_dict=False` 或当 `config.return_dict=False` 时),根据配置(GlmConfig)和输入包含各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。 -
logits (形状为
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。 -
past_key_values (
Cache
,可选,当传递 `use_cache=True` 或 `config.use_cache=True` 时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 KV 缓存指南。包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出一个),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
GlmForSequenceClassification 的前向方法,覆盖了 `__call__` 特殊方法。
虽然前向传递的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, GlmForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat")
>>> model = GlmForSequenceClassification.from_pretrained("THUDM/glm-4-9b-chat")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GlmForSequenceClassification.from_pretrained("THUDM/glm-4-9b-chat", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, GlmForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat")
>>> model = GlmForSequenceClassification.from_pretrained("THUDM/glm-4-9b-chat", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GlmForSequenceClassification.from_pretrained(
... "THUDM/glm-4-9b-chat", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
GlmForTokenClassification
class transformers.GlmForTokenClassification
< source >( config )
参数
- config (GlmForTokenClassification) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
Glm transformer 模型,其顶部带有一个 token 分类头(即在 hidden-states 输出之上添加一个线性层),例如用于命名实体识别(NER)任务。
该模型继承自 PreTrainedModel。请查看超类的文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
该模型也是一个 PyTorch torch.nn.Module 的子类。可以像使用常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列 token 的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充 token 索引执行注意力操作的掩码。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩码,
- 0 表示 token 被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - past_key_values (
~cache_utils.Cache
,可选) — 预先计算的隐藏状态(自注意力和交叉注意力块中的键和值),可用于加速序列解码。这通常包括在解码的前一阶段,当use_cache=True
或config.use_cache=True
时,由模型返回的past_key_values
。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 一个长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果没有传入
past_key_values
,将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择只输入最后一个形状为(batch_size, 1)
的input_ids
(那些没有为其提供过去键值状态的 ID),而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为相关向量,这会非常有用。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失);如果config.num_labels > 1
,则计算分类损失(交叉熵)。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或 config.return_dict=False
),根据配置 (GlmConfig) 和输入包含各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分类分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出一个),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
GlmForTokenClassification 的 forward 方法会覆盖 __call__
特殊方法。
虽然前向传递的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, GlmForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat")
>>> model = GlmForTokenClassification.from_pretrained("THUDM/glm-4-9b-chat")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...