Transformers 文档
GLM
并获得增强的文档体验
开始使用
GLM
概览
GLM 模型在 ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools by GLM Team, THUDM & ZhipuAI. 中被提出。
论文摘要如下
我们介绍了 ChatGLM,这是一个我们随着时间推移而不断发展的大型语言模型系列。本报告主要关注 GLM-4 语言系列,其中包括 GLM-4、GLM-4-Air 和 GLM-4-9B。它们代表了我们最强大的模型,这些模型吸收了前三代 ChatGLM 中获得的全部见解和经验教训进行训练。迄今为止,GLM-4 模型主要在中文和英文的十万亿个 tokens 上进行了预训练,同时还包含一小部分来自 24 种语言的语料库,并且主要针对中文和英文使用进行了对齐。高质量的对齐是通过多阶段的后训练过程实现的,其中包括监督微调和从人类反馈中学习。评估表明,GLM-4 1) 在 MMLU、GSM8K、MATH、BBH、GPQA 和 HumanEval 等通用指标方面,与 GPT-4 旗鼓相当或优于 GPT-4;2) 在 IFEval 衡量的指令遵循方面,接近 GPT-4-Turbo;3) 在长上下文任务方面,与 GPT-4 Turbo (128K) 和 Claude 3 相匹配;4) 在 AlignBench 衡量的中文对齐方面,优于 GPT-4。“GLM-4 All Tools”模型进一步对齐,以理解用户意图并自主决定何时以及使用哪个(哪些)工具(包括 Web 浏览器、Python 解释器、文本到图像模型和用户定义函数)来有效地完成复杂任务。在实际应用中,它在诸如通过 Web 浏览访问在线信息以及使用 Python 解释器解决数学问题等任务中,与 GPT-4 All Tools 相匹配,甚至超越了 GPT-4 All Tools。在此过程中,我们开源了一系列模型,包括 ChatGLM-6B(三代)、GLM-4-9B(128K,1M)、GLM-4V-9B、WebGLM 和 CodeGeeX,仅在 2023 年就在 Hugging Face 上吸引了超过 1000 万次的下载。
提示
使用技巧
GLM-4
可以在 Huggingface Hub 上找到
在下面,我们将演示如何使用 glm-4-9b-chat
进行推理。请注意,我们使用了 ChatML 格式进行对话,在本演示中,我们将展示如何利用 apply_chat_template
来实现此目的。
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("THUDM/glm-4-9b-chat", device_map="auto", trust_remote_code=True)
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat")
>>> prompt = "Give me a short introduction to large language model."
>>> messages = [{"role": "user", "content": prompt}]
>>> text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> model_inputs = tokenizer([text], return_tensors="pt").to(device)
>>> generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True)
>>> generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
>>> response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
GlmConfig
class transformers.GlmConfig
< source >( vocab_size = 151552 hidden_size = 4096 intermediate_size = 13696 num_hidden_layers = 40 num_attention_heads = 32 num_key_value_heads = 2 partial_rotary_factor = 0.5 head_dim = 128 hidden_act = 'silu' attention_dropout = 0.0 max_position_embeddings = 131072 initializer_range = 0.02 rms_norm_eps = 1.5625e-07 use_cache = True tie_word_embeddings = False rope_theta = 10000.0 pad_token_id = 151329 eos_token_id = [151329, 151336, 151338] bos_token_id = None attention_bias = True **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 151552) — Glm 模型的词汇表大小。定义了在调用 GlmModel 时传递的inputs_ids
可以表示的不同 tokens 的数量 - hidden_size (
int
, 可选, 默认为 4096) — 隐藏层表示的维度。 - intermediate_size (
int
, 可选, 默认为 13696) — MLP 表示的维度。 - num_hidden_layers (
int
, 可选, 默认为 40) — Transformer 解码器中隐藏层的数量。 - num_attention_heads (
int
, 可选, 默认为 32) — Transformer 解码器中每个注意力层的注意力头的数量。 - num_key_value_heads (
int
, 可选, 默认为 2) — 这是应用于实现分组查询注意力机制(Grouped Query Attention)的键值头(key_value heads)的数量。如果num_key_value_heads=num_attention_heads
,模型将使用多头注意力机制(Multi Head Attention,MHA);如果num_key_value_heads=1
,模型将使用多查询注意力机制(Multi Query Attention,MQA);否则将使用 GQA。当将多头检查点转换为 GQA 检查点时,每个组的键和值头应通过对该组内所有原始头进行均值池化来构建。有关更多详细信息,请查看这篇论文。如果未指定,则默认为num_attention_heads
。 - partial_rotary_factor (
float
, 可选, 默认为 0.5) — 部分旋转位置的因子。 - head_dim (
int
, 可选, 默认为 128) — 注意力头的维度。 - hidden_act (
str
或function
, 可选, 默认为"silu"
) — 遗留的激活函数。它会被hidden_activation
覆盖。 - attention_dropout (
float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。 - max_position_embeddings (
int
, 可选, 默认为 131072) — 此模型可能使用的最大序列长度。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - rms_norm_eps (
float
, 可选, 默认为 1.5625e-07) — rms 归一化层使用的 epsilon 值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - tie_word_embeddings (
bool
, 可选, 默认为False
) — 是否绑定词嵌入权重 - rope_theta (
float
, 可选, 默认为 10000.0) — RoPE 嵌入的基础周期。 - pad_token_id (
int
, 可选, 默认为 151329) — Padding token id. - eos_token_id (
int
|list
, 可选, 默认为[151329, 151336, 151338]
) — 流结束 token id。 - bos_token_id (
int
, 可选) — 流开始 token id。 - attention_bias (
bool
, 默认为False
, 可选, 默认为True
) — 是否在自注意力期间在 query、key、value 和输出投影层中使用偏置。
这是用于存储 GlmModel 配置的配置类。它用于根据指定的参数实例化 Glm 模型,从而定义模型架构。使用默认值实例化配置将产生与 Glm-4-9b-chat 类似的配置。例如 THUDM/glm-4-9b-chat。配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
>>> from transformers import GlmModel, GlmConfig
>>> # Initializing a Glm glm-4-9b-chat style configuration
>>> configuration = GlmConfig()
>>> # Initializing a model from the glm-4-9b-chat style configuration
>>> model = GlmModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
GlmModel
class transformers.GlmModel
< source >( config: GlmConfig )
参数
- config (GlmConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。
- config — GlmConfig
不带任何特定头部,输出原始隐藏状态的 Glm 模型。此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以获取与常规用法和行为相关的所有事项。
由 config.num_hidden_layers 层组成的 Transformer 解码器。每一层都是一个 GlmDecoderLayer
forward
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。如果您提供填充,默认情况下将忽略填充。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。在[0, 1]
中选择的掩码值:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后一个input_ids
(请参阅past_key_values
)。如果您想更改填充行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示头部未被掩码,
- 0 表示头部被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的缓存格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描述输入序列标记在序列中位置的索引。与position_ids
相反,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整的序列长度。
GlmModel forward 方法覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在此之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
GlmForCausalLM
forward
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.glm.modeling_glm.KwargsForCausalLM] ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。如果您提供填充,默认情况下将忽略填充。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。在[0, 1]
中选择的掩码值:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后一个input_ids
(请参阅past_key_values
)。如果您想更改填充行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示头部未被掩码,
- 0 表示头部被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后input_ids
(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
, 可选) — 索引,描述输入序列 token 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于计算 masked language modeling 损失的标签。 索引应为[0, ..., config.vocab_size]
或 -100(请参阅input_ids
文档字符串)。 索引设置为-100
的 token 将被忽略(masked),损失仅针对标签在[0, ..., config.vocab_size]
中的 token 计算。 - logits_to_keep (
int
或torch.Tensor
, 可选) — 如果是int
,则计算最后logits_to_keep
个 token 的 logits。 如果为0
,则计算所有input_ids
的 logits(特殊情况)。 仅生成最后一个 token logits 是必需的,并且仅针对该 token 计算它们可以节省内存,这对于长序列或大词汇量而言变得非常重要。 如果是torch.Tensor
,则必须是 1D,对应于要在序列长度维度中保留的索引。 这在使用 packed tensor 格式(批次和序列长度的单个维度)时很有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.CausalLMOutputWithPast 或 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GlmConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
, 可选, 当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇 token 的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的隐藏状态(自注意力模块中的键和值),可用于加速顺序解码(请参阅
past_key_values
输入)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出一个,加上每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
GlmForCausalLM forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在此之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, GlmForCausalLM
>>> model = GlmForCausalLM.from_pretrained("meta-glm/Glm-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-glm/Glm-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
GlmForSequenceClassification
class transformers.GlmForSequenceClassification
< source >( config )
参数
- config (GlmConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
Glm 模型转换器,顶部带有序列分类头(线性层)。
GlmForSequenceClassification 使用最后一个 token 进行分类,就像其他因果模型(例如 GPT-2)一样。
由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。 如果在配置中定义了 pad_token_id
,它将查找每行中不是 padding token 的最后一个 token。 如果未定义 pad_token_id
,则只需获取批次每行中的最后一个值。 由于当传递 inputs_embeds
而不是 input_ids
时,它无法猜测 padding token,因此它执行相同的操作(获取批次每行中的最后一个值)。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以获取与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。 默认情况下,如果您提供 padding,则将忽略 padding。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
, 可选) — Mask,以避免对 padding token 索引执行注意力机制。 Mask 值在[0, 1]
中选择:- 1 表示 token 未被 mask,
- 0 表示 token 已被 mask。
可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,则应阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被 mask,
- 0 表示 head 已被 mask。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列 token 在位置嵌入中的位置索引。 在[0, config.n_positions - 1]
范围内选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后input_ids
(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列 tokens 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存,并推断完整的序列长度。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方误差损失);如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
GlmForSequenceClassification 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在此之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
GlmForTokenClassification
class transformers.GlmForTokenClassification
< 源码 >( config )
参数
- config (GlmConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法来加载模型权重。
Glm 模型 Transformer,顶部带有一个 token 分类头(位于 hidden-states 输出顶部的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以获取与常规用法和行为相关的所有事项。
forward
< 源码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。 如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — Mask,以避免在 padding token 索引上执行注意力机制。 Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被 mask,
- 0 表示 tokens 被 mask。
索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后一个input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被 mask,
- 0 表示 head 被 mask。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的 hidden-states(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组都有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 或者,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想比模型的内部嵌入查找矩阵更精确地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回的张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回的张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列 tokens 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存,并推断完整的序列长度。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方误差损失);如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.TokenClassifierOutput 或 torch.FloatTensor
的元组(如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GlmConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出一个,加上每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
GlmForTokenClassification 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在此之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, GlmForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b")
>>> model = GlmForTokenClassification.from_pretrained("THUDM/glm-4-9b")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss