Transformers 文档
M2M100
并获取增强的文档体验
开始入门
M2M100
概述
M2M100 模型在 Beyond English-Centric Multilingual Machine Translation 一文中被提出,作者是 Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin。
以下是论文的摘要:
现有的翻译工作证明了大规模多语言机器翻译的潜力,通过训练单个模型即可在任意两种语言之间进行翻译。然而,大部分工作是“以英语为中心”的,仅在从英语翻译或翻译成英语的数据上进行训练。虽然这得到了大型训练数据源的支持,但这并不能反映全球范围内的翻译需求。在这项工作中,我们创建了一个真正的多对多语言翻译模型,可以直接在 100 种语言中的任意两种语言之间进行翻译。我们构建并开源了一个训练数据集,该数据集涵盖了数千个语言方向的监督数据,这些数据是通过大规模挖掘创建的。然后,我们探索如何通过密集缩放和特定于语言的稀疏参数的组合来有效提高模型容量,从而创建高质量的模型。我们对非“以英语为中心”的模型的关注,在非英语方向之间的直接翻译中带来了超过 10 个 BLEU 的增益,同时在 WMT 的最佳单系统上表现出竞争力。我们开源了我们的脚本,以便其他人可以复现数据、评估和最终的 M2M-100 模型。
此模型由 valhalla 贡献。
使用技巧和示例
M2M100 是一个多语言编码器-解码器 (seq-to-seq) 模型,主要用于翻译任务。由于该模型是多语言的,因此它期望序列采用特定格式:特殊的语言 ID 令牌用作源文本和目标文本的前缀。源文本格式为 [lang_code] X [eos]
,其中 lang_code
是源文本的源语言 ID 和目标文本的目标语言 ID,X
是源文本或目标文本。
M2M100Tokenizer 依赖于 sentencepiece
,因此请务必在运行示例之前安装它。要安装 sentencepiece
,请运行 pip install sentencepiece
。
监督式训练
from transformers import M2M100Config, M2M100ForConditionalGeneration, M2M100Tokenizer
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="en", tgt_lang="fr")
src_text = "Life is like a box of chocolates."
tgt_text = "La vie est comme une boîte de chocolat."
model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
loss = model(**model_inputs).loss # forward pass
生成
M2M100 使用 eos_token_id
作为生成的 decoder_start_token_id
,并将目标语言 ID 强制作为第一个生成的令牌。要强制将目标语言 ID 作为第一个生成的令牌,请将 forced_bos_token_id 参数传递给 generate 方法。以下示例演示如何使用 facebook/m2m100_418M 检查点在印地语到法语和中文到英语之间进行翻译。
>>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
>>> hi_text = "जीवन एक चॉकलेट बॉक्स की तरह है।"
>>> chinese_text = "生活就像一盒巧克力。"
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
>>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
>>> # translate Hindi to French
>>> tokenizer.src_lang = "hi"
>>> encoded_hi = tokenizer(hi_text, return_tensors="pt")
>>> generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.get_lang_id("fr"))
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
"La vie est comme une boîte de chocolat."
>>> # translate Chinese to English
>>> tokenizer.src_lang = "zh"
>>> encoded_zh = tokenizer(chinese_text, return_tensors="pt")
>>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en"))
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
"Life is like a box of chocolate."
资源
M2M100Config
class transformers.M2M100Config
< source >( vocab_size = 128112 max_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.05 decoder_layerdrop = 0.05 use_cache = True is_encoder_decoder = True activation_function = 'relu' d_model = 1024 dropout = 0.1 attention_dropout = 0.1 activation_dropout = 0.0 init_std = 0.02 decoder_start_token_id = 2 scale_embedding = True pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 50265) — M2M100 模型的词汇表大小。定义了在调用 M2M100Model 或 时传递的inputs_ids
可以表示的不同令牌的数量 - d_model (
int
, 可选, 默认为 1024) — 层和池化器层的维度。 - encoder_layers (
int
, 可选, 默认为 12) — 编码器层数。 - decoder_layers (
int
, 可选, 默认为 12) — 解码器层数。 - encoder_attention_heads (
int
, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。 - decoder_attention_heads (
int
, 可选, 默认为 16) — Transformer 解码器中每个注意力层的注意力头数。 - decoder_ffn_dim (
int
, 可选, 默认为 4096) — 解码器中“中间”(通常称为前馈)层的维度。 - encoder_ffn_dim (
int
, 可选, 默认为 4096) — 解码器中“中间”(通常称为前馈)层的维度。 - activation_function (
str
或function
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 - dropout (
float
, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 - attention_dropout (
float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。 - activation_dropout (
float
, 可选, 默认为 0.0) — 全连接层内部激活的 dropout 比率。 - classifier_dropout (
float
, 可选, 默认为 0.0) — 分类器的 dropout 比率。 - max_position_embeddings (
int
, 可选, 默认为 1024) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - init_std (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - encoder_layerdrop (
float
, 可选, 默认为 0.0) — 编码器的 LayerDrop 概率。有关更多详细信息,请参阅 [LayerDrop 论文](see https://arxiv.org/abs/1909.11556)。 - decoder_layerdrop (
float
, 可选, 默认为 0.0) — 解码器的 LayerDrop 概率。有关更多详细信息,请参阅 [LayerDrop 论文](see https://arxiv.org/abs/1909.11556)。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回上次的键/值注意力(并非所有模型都使用)。
这是用于存储 M2M100Model 配置的配置类。它用于根据指定的参数实例化 M2M100 模型,定义模型架构。使用默认值实例化配置将产生与 M2M100 facebook/m2m100_418M 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 中的文档。
示例
>>> from transformers import M2M100Config, M2M100Model
>>> # Initializing a M2M100 facebook/m2m100_418M style configuration
>>> configuration = M2M100Config()
>>> # Initializing a model (with random weights) from the facebook/m2m100_418M style configuration
>>> model = M2M100Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
M2M100Tokenizer
class transformers.M2M100Tokenizer
< source >( vocab_file spm_file src_lang = None tgt_lang = None bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' pad_token = '<pad>' unk_token = '<unk>' language_codes = 'm2m100' sp_model_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None num_madeup_words = 8 **kwargs )
参数
- vocab_file (
str
) — 词汇表文件的路径。 - spm_file (
str
) — SentencePiece 文件的路径(通常具有 .spm 扩展名),其中包含词汇表。 - src_lang (
str
, 可选) — 表示源语言的字符串。 - tgt_lang (
str
, 可选) — 表示目标语言的字符串。 - eos_token (
str
, 可选, 默认为"</s>"
) — 序列结束符 token。 - sep_token (
str
, 可选, 默认为"</s>"
) — 分隔符 token,用于从多个序列构建序列时,例如用于序列分类的两个序列,或者用于问答的文本和问题。它也用作使用特殊 token 构建的序列的最后一个 token。 - unk_token (
str
, 可选, 默认为"<unk>"
) — 未知 token。词汇表中没有的 token 无法转换为 ID,而是设置为此 token。 - pad_token (
str
, 可选, 默认为"<pad>"
) — 用于填充的 token,例如在批量处理不同长度的序列时。 - language_codes (
str
, 可选, 默认为"m2m100"
) — 要使用的语言代码。应为"m2m100"
或"wmt21"
之一。 - sp_model_kwargs (
dict
, 可选) — 将传递给SentencePieceProcessor.__init__()
方法。 SentencePiece 的 Python 包装器 可用于设置:-
enable_sampling
: 启用子词正则化。 -
nbest_size
: unigram 的采样参数。对 BPE-Dropout 无效。nbest_size = {0,1}
: 不执行采样。nbest_size > 1
: 从 nbest_size 结果中采样。nbest_size < 0
: 假设 nbest_size 是无限的,并使用前向过滤和后向采样算法从所有假设(lattice)中采样。
-
alpha
: unigram 采样的平滑参数,以及 BPE-dropout 的合并操作的 dropout 概率。
-
构建 M2M100 tokenizer。基于 SentencePiece。
此 tokenizer 继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。
示例
>>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
>>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="en", tgt_lang="ro")
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
>>> outputs = model(**model_inputs) # should work
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
通过连接并添加特殊 token,从序列或序列对构建模型输入,以用于序列分类任务。 MBART 序列具有以下格式,其中 X
表示序列
input_ids
(对于编码器)X [eos, src_lang_code]
decoder_input_ids
: (对于解码器)X [eos, tgt_lang_code]
永远不会使用 BOS。序列对不是预期的用例,但它们将在没有分隔符的情况下处理。
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → List[int]
从没有添加特殊 token 的 token 列表中检索序列 ID。当使用 tokenizer prepare_for_model
方法添加特殊 token 时,将调用此方法。
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
创建与传递的序列对应的 token 类型 ID。 什么是 token 类型 ID?
如果模型具有构建这些 ID 的特殊方式,则应在子类中覆盖。
M2M100Model
class transformers.M2M100Model
< source >( config: M2M100Config )
参数
- config (M2M100Config) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
裸 M2M100 模型输出原始隐藏状态,顶部没有任何特定的 head。此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch Module,并参阅 PyTorch 文档以了解所有与常规用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.Seq2SeqModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。如果您提供填充,默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩盖,
- 0 表示 token 已被掩盖。
- decoder_input_ids (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 解码器输入序列 token 在词汇表中的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
M2M100 使用
eos_token_id
作为decoder_input_ids
生成的起始 token。 如果使用past_key_values
,则可以选择仅输入最后的decoder_input_ids
(请参阅past_key_values
)。 - decoder_attention_mask (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个 tensor,该 tensor 忽略decoder_input_ids
中的 pad token。因果掩码也将默认使用。 - head_mask (
torch.Tensor
,形状为(encoder_layers, encoder_attention_heads)
,可选) — 用于使 encoder 中 attention 模块的选定 head 失效的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 已被掩盖。
- decoder_head_mask (
torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 用于使 decoder 中 attention 模块的选定 head 失效的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 已被掩盖。
- cross_attn_head_mask (
torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 用于使 decoder 中 cross-attention 模块的选定 head 失效的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 已被掩盖。
- encoder_outputs (
tuple(tuple(torch.FloatTensor)
,可选) — 元组由 (last_hidden_state
,可选:hidden_states
,可选:attentions
) 组成。last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选) 是 encoder 最后一层的输出处的 hidden-states 序列。在 decoder 的 cross-attention 中使用。 - past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
) 的 tensor 和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加 tensor。包含预先计算的 hidden-states (self-attention 块和 cross-attention 块中的 key 和 values),这些 hidden-states 可用于(参见
past_key_values
输入)加速顺序解码。如果使用
past_key_values
,则用户可以选择仅输入最后的decoder_input_ids
(那些没有将其过去 key value 状态提供给此模型的)形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - decoder_inputs_embeds (
torch.FloatTensor
,形状为(batch_size, target_sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递decoder_input_ids
。 如果使用past_key_values
,则可以选择仅输入最后的decoder_inputs_embeds
(请参阅past_key_values
)。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将decoder_input_ids
索引转换为关联的向量,这将非常有用。如果
decoder_input_ids
和decoder_inputs_embeds
均未设置,则decoder_inputs_embeds
的值取inputs_embeds
的值。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention tensors。 有关更多详细信息,请参阅返回的 tensors 下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.modeling_outputs.Seq2SeqModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqModelOutput 或 torch.FloatTensor
的元组(如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (M2M100Config) 和输入。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型 decoder 最后一层的输出处的 hidden-states 序列。如果使用
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个 hidden-state。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
) 的 tensor 和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加 tensor。包含预先计算的 hidden-states (self-attention 块和 cross-attention 块中的 key 和 values),这些 hidden-states 可用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型具有嵌入层,则一个用于嵌入的输出;+ 每个层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。decoder 在每一层输出处的 Hidden-states,加上可选的初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。decoder 的 attention 权重,在 attention softmax 之后,用于计算 self-attention head 中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。decoder 的 cross-attention 层的 attention 权重,在 attention softmax 之后,用于计算 cross-attention head 中的加权平均值。
-
encoder_last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型 encoder 最后一层的输出处的 hidden-states 序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型具有嵌入层,则一个用于嵌入的输出;+ 每个层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。encoder 在每一层输出处的 Hidden-states,加上可选的初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。encoder 的 attention 权重,在 attention softmax 之后,用于计算 self-attention head 中的加权平均值。
M2M100Model forward 方法,覆盖了 __call__
特殊方法。
尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, M2M100Model
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M")
>>> model = M2M100Model.from_pretrained("facebook/m2m100_418M")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
M2M100ForConditionalGeneration
class transformers.M2M100ForConditionalGeneration
< source >( config: M2M100Config )
参数
- config (M2M100Config) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
带有语言建模 head 的 M2M100 模型。 可用于摘要。 此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch Module,并参阅 PyTorch 文档以了解所有与常规用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.Seq2SeqLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 输入序列 token 在词汇表中的索引。 默认情况下,如果您提供 padding,则会忽略 padding。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩盖,
- 0 表示 token 被掩盖。
- decoder_input_ids (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 词汇表中 decoder 输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 获取详细信息。
M2M100 使用
eos_token_id
作为decoder_input_ids
生成的起始 token。如果使用了past_key_values
,则可以选择仅输入最后的decoder_input_ids
(请参阅past_key_values
)。 - decoder_attention_mask (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个 tensor,该 tensor 忽略decoder_input_ids
中的 pad tokens。因果掩码也将默认使用。 - head_mask (
torch.Tensor
,形状为(encoder_layers, encoder_attention_heads)
,可选) — 用于 nullify encoder 中 attention 模块的选定 heads 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- decoder_head_mask (
torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 用于 nullify decoder 中 attention 模块的选定 heads 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- cross_attn_head_mask (
torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 用于 nullify decoder 中 cross-attention 模块的选定 heads 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- encoder_outputs (
tuple(tuple(torch.FloatTensor)
,可选) — Tuple 由 (last_hidden_state
,可选:hidden_states
,可选:attentions
) 组成。last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选) 是 encoder 最后一层的输出端的 hidden-states 序列。在 decoder 的 cross-attention 中使用。 - past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
,其中每个 tuple 有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的 tensors 和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的 tensors。包含预先计算的 hidden-states(self-attention 块和 cross-attention 块中的 keys 和 values),可以用于(参见
past_key_values
输入)加速顺序解码。如果使用了
past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将其 past key value states 提供给此模型的),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - decoder_inputs_embeds (
torch.FloatTensor
,形状为(batch_size, target_sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递decoder_input_ids
。如果使用了past_key_values
,则可以选择仅输入最后的decoder_inputs_embeds
(请参阅past_key_values
)。如果您想要比模型的内部嵌入查找矩阵更好地控制如何将decoder_input_ids
索引转换为关联的向量,这将非常有用。如果
decoder_input_ids
和decoder_inputs_embeds
均未设置,则decoder_inputs_embeds
取inputs_embeds
的值。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
key value states,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通 tuple。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算 masked language modeling loss 的标签。索引应在[0, ..., config.vocab_size]
或 -100 中(请参阅input_ids
文档字符串)。索引设置为-100
的 tokens 将被忽略(掩盖),loss 仅针对标签在[0, ..., config.vocab_size]
中的 tokens 计算。
返回值
transformers.modeling_outputs.Seq2SeqLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个 torch.FloatTensor
的 tuple (如果传递了 return_dict=False
或当 config.return_dict=False
时) ,包含各种元素,具体取决于配置 (M2M100Config) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
) 的 tensor 和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加 tensor。包含预先计算的 hidden-states (self-attention 块和 cross-attention 块中的 key 和 values),这些 hidden-states 可用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型具有嵌入层,则一个用于嵌入的输出;+ 每个层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。decoder 在每一层输出端的 Hidden-states 以及初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。decoder 的 attention 权重,在 attention softmax 之后,用于计算 self-attention head 中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。decoder 的 cross-attention 层的 attention 权重,在 attention softmax 之后,用于计算 cross-attention head 中的加权平均值。
-
encoder_last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型 encoder 最后一层的输出处的 hidden-states 序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型具有嵌入层,则一个用于嵌入的输出;+ 每个层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。encoder 在每一层输出端的 Hidden-states 以及初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。encoder 的 attention 权重,在 attention softmax 之后,用于计算 self-attention head 中的加权平均值。
The M2M100ForConditionalGeneration forward 方法,覆盖了 __call__
特殊方法。
尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
翻译示例
>>> from transformers import AutoTokenizer, M2M100ForConditionalGeneration
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M")
>>> text_to_translate = "Life is like a box of chocolates"
>>> model_inputs = tokenizer(text_to_translate, return_tensors="pt")
>>> # translate to French
>>> gen_tokens = model.generate(**model_inputs, forced_bos_token_id=tokenizer.get_lang_id("fr"))
>>> print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True))
使用 Flash Attention 2
Flash Attention 2 是 attention 分数计算的更快、优化的版本,它依赖于 cuda
kernels。
安装
首先,检查您的硬件是否与 Flash Attention 2 兼容。最新的兼容硬件列表可以在 官方文档 中找到。
接下来,安装 最新版本的 Flash Attention 2
pip install -U flash-attn --no-build-isolation
用法
要使用 Flash Attention 2 加载模型,我们可以将参数 attn_implementation="flash_attention_2"
传递给 .from_pretrained
。您可以使用 torch.float16
或 torch.bfloat16
精度。
>>> import torch
>>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to("cuda").eval()
>>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
>>> # translate Hindi to French
>>> hi_text = "जीवन एक चॉकलेट बॉक्स की तरह है।"
>>> tokenizer.src_lang = "hi"
>>> encoded_hi = tokenizer(hi_text, return_tensors="pt").to("cuda")
>>> generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.get_lang_id("fr"))
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
"La vie est comme une boîte de chocolat."
预期加速
下面是一个预期加速图表,比较了原生实现和 Flash Attention 2 之间的纯推理时间。

使用缩放点积注意力 (SDPA)
PyTorch 包括一个原生缩放点积注意力 (SDPA) 运算符,作为 torch.nn.functional
的一部分。此函数包含多种实现,可以根据输入和正在使用的硬件应用。 有关更多信息,请参阅 官方文档 或 GPU 推理 页面。
当实现可用时,torch>=2.1.1
默认使用 SDPA,但您也可以在 from_pretrained()
中设置 attn_implementation="sdpa"
以显式请求使用 SDPA。
from transformers import M2M100ForConditionalGeneration
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M", torch_dtype=torch.float16, attn_implementation="sdpa")
...
为了获得最佳加速,我们建议以半精度加载模型(例如 torch.float16
或 torch.bfloat16
)。