Transformers 文档
Phi-3
并获取增强的文档体验
开始使用
Phi-3
概述
Phi-3 模型由 Microsoft 在Phi-3 技术报告:一款在您的手机本地即可运行的高性能语言模型中提出。
总结
以下是 Phi-3 论文的摘要
我们介绍了 phi-3-mini,这是一个在 3.3 万亿个 token 上训练的 38 亿参数语言模型,其总体性能(通过学术基准和内部测试衡量)可与 Mixtral 8x7B 和 GPT-3.5 等模型相媲美(例如,phi-3-mini 在 MMLU 上达到 69%,在 MT-bench 上达到 8.38),尽管它足够小,可以部署在手机上。创新完全在于我们的训练数据集,它是用于 phi-2 的数据集的放大版本,由经过大量过滤的网络数据和合成数据组成。该模型还进一步针对鲁棒性、安全性和聊天格式进行了对齐。我们还提供了一些使用 7B 和 14B 模型(分别称为 phi-3-small 和 phi-3-medium)进行 4.8T 个 token 训练的初始参数缩放结果,这两个模型都明显比 phi-3-mini 功能更强大(例如,在 MMLU 上分别达到 75% 和 78%,在 MT-bench 上分别达到 8.7 和 8.9)。
Phi-3 的原始代码可以在这里找到。
使用技巧
- 此模型与
Llama
非常相似,主要区别在于Phi3SuScaledRotaryEmbedding
和Phi3YarnScaledRotaryEmbedding
,它们用于扩展旋转嵌入的上下文。查询、键和值被融合,MLP 的向上和门控投影层也被融合。 - 此模型使用的 tokenizer 与 LlamaTokenizer 相同,但添加了一些额外的 token。
如何使用 Phi-3
Phi-3 已集成到 transformers
的开发版本 (4.40.0.dev) 中。在官方版本通过 pip
发布之前,请确保您正在执行以下操作之一
加载模型时,请确保将
trust_remote_code=True
作为from_pretrained()
函数的参数传递。将您的本地
transformers
更新到开发版本:pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers
。前面的命令是克隆并从源代码安装的替代方法。
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
>>> messages = [{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}]
>>> inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
>>> outputs = model.generate(inputs, max_new_tokens=32)
>>> text = tokenizer.batch_decode(outputs)[0]
>>> print(text)
<|user|> Can you provide ways to eat combinations of bananas and dragonfruits?<|end|><|assistant|> Certainly! Bananas and dragonfruits can be combined in various delicious ways. Here are some creative ideas for incorporating both fruits
Phi3Config
class transformers.Phi3Config
< source >( vocab_size = 32064 hidden_size = 3072 intermediate_size = 8192 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = None resid_pdrop = 0.0 embd_pdrop = 0.0 attention_dropout = 0.0 hidden_act = 'silu' max_position_embeddings = 4096 original_max_position_embeddings = 4096 initializer_range = 0.02 rms_norm_eps = 1e-05 use_cache = True tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None partial_rotary_factor = 1.0 bos_token_id = 1 eos_token_id = 32000 pad_token_id = 32000 sliding_window = None **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 32064) — Phi-3 模型的词汇表大小。 定义了在调用 Phi3Model 时传递的inputs_ids
可以表示的不同 token 的数量。 - hidden_size (
int
, 可选, 默认为 3072) — 隐藏层表示的维度。 - intermediate_size (
int
, 可选, 默认为 8192) — MLP 表示的维度。 - num_hidden_layers (
int
, 可选, 默认为 32) — Transformer 解码器中的隐藏层数。 - num_attention_heads (
int
, 可选, 默认为 32) — Transformer 解码器中每个注意力层的注意力头数。 - num_key_value_heads (
int
, 可选) — 这是应用于实现分组查询注意力机制(Grouped Query Attention)的键值头(key_value heads)的数量。如果num_key_value_heads=num_attention_heads
,模型将使用多头注意力机制(Multi Head Attention,MHA);如果num_key_value_heads=1
,模型将使用多查询注意力机制(Multi Query Attention,MQA);否则将使用 GQA。当将多头检查点(multi-head checkpoint)转换为 GQA 检查点时,每个组键和值头应通过对该组内所有原始头进行平均池化来构建。有关更多详细信息,请查看本文。如果未指定,则默认为num_attention_heads
。 - resid_pdrop (
float
, 可选, 默认为 0.0) — mlp 输出的 dropout 概率。 - embd_pdrop (
int
, 可选, 默认为 0.0) — 嵌入层的 dropout 比率。 - attention_dropout (
float
, 可选, 默认为 0.0) — 计算注意力分数后的 dropout 比率。 - hidden_act (
str
或function
, 可选, 默认为"silu"
) — 解码器中的非线性激活函数(函数或字符串)。 - max_position_embeddings (
int
, 可选, 默认为 4096) — 此模型可能使用的最大序列长度。 - original_max_position_embeddings (
int
, 可选, 默认为 4096) — 此模型训练使用的最大序列长度。 这用于在使用长程缩放时确定原始 RoPE 嵌入的大小。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - rms_norm_eps (
float
, 可选, 默认为 1e-05) — 用于 RMSNorm 的 epsilon 值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回上次的键/值注意力(并非所有模型都使用)。 仅在config.is_decoder=True
时相关。 是否绑定权重嵌入。 - tie_word_embeddings (
bool
, 可选, 默认为False
) — 是否绑定权重嵌入 - rope_theta (
float
, 可选, 默认为 10000.0) — RoPE 嵌入的基期。 - rope_scaling (
dict
, 可选) — RoPE 嵌入的缩放策略。 如果为None
,则不应用缩放。 如果为字典,则必须包含以下键:type
、short_factor
和long_factor
。type
必须为longrope
,short_factor
和long_factor
必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 相同。 - partial_rotary_factor (
float
, 可选, 默认为 1.0) — 查询和键将应用旋转嵌入的百分比。必须介于 0.0 和 1.0 之间。 - bos_token_id (
int
, 可选, 默认为 1) — “sequence_start” (序列开始) 标记的 id。 - eos_token_id (
int
, 可选, 默认为 32000) — “sequence_end” (序列结束) 标记的 id。 - pad_token_id (
int
, 可选, 默认为 32000) — padding (填充) 标记的 id。 - sliding_window (
int
, 可选) — 滑动窗口注意力窗口大小。如果为None
,则不应用滑动窗口。
这是用于存储 Phi3Model 配置的配置类。 它用于根据指定的参数实例化 Phi-3 模型,定义模型架构。 使用默认值实例化配置将产生与 microsoft/Phi-3-mini-4k-instruct 类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import Phi3Model, Phi3Config
>>> # Initializing a Phi-3 style configuration
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
>>> # Initializing a model from the configuration
>>> model = Phi3Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Phi3Model
class transformers.Phi3Model
< source >( config: Phi3Config )
参数
- config (Phi3Config) — 具有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 请查看 from_pretrained() 方法来加载模型权重。
- config — Phi3Config
裸 Phi3 模型输出原始隐藏状态,顶部没有任何特定的 head。 此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch Module,并参阅 PyTorch 文档,了解与常规使用和行为相关的所有事项。
Transformer 解码器由 config.num_hidden_layers 层组成。 每层都是一个 Phi3DecoderLayer
forward (前向传播)
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] )
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。 如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
, 可选) — Mask (掩码),用于避免在 padding 标记索引上执行 attention。 Mask 值在[0, 1]
中选择:- 1 表示标记未被掩盖,
- 0 表示标记被掩盖。
索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后一个input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 位置嵌入中每个输入序列标记的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。 这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有将其 past key value 状态提供给此模型的input_ids
),而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可选) — 或者,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通的元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
, 可选) — 描述输入序列标记在序列中位置的索引。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。
Phi3Model 的 forward 方法覆盖了 __call__
特殊方法。
尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
Phi3ForCausalLM
forward (前向传播)
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.phi3.modeling_phi3.KwargsForCausalLM] ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列 tokens 的索引。如果您提供填充,默认情况下会忽略填充。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
, 可选) — 用于避免在填充 token 索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示 未被掩码 的 tokens,
- 0 表示 已被掩码 的 tokens。
索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用了
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改填充行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 位置嵌入中每个输入序列 tokens 的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可以用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其过去键值状态提供给此模型的输入 IDs),其形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
, 可选) — 描述输入序列 tokens 在序列中位置的索引。 与position_ids
相反,此张量不受填充的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 用于计算掩码语言建模损失的标签。 索引应为[0, ..., config.vocab_size]
或 -100(请参阅input_ids
文档字符串)。 索引设置为-100
的 tokens 将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的 tokens 计算。 - logits_to_keep (
int
或torch.Tensor
, 可选) — 如果是int
,则计算最后logits_to_keep
个 tokens 的 logits。 如果为0
,则计算所有input_ids
的 logits(特殊情况)。 生成只需要最后一个 token logits,并且仅针对该 token 计算它们可以节省内存,这对于长序列或大型词汇表大小而言变得非常重要。 如果是torch.Tensor
,则必须是 1D,对应于要在序列长度维度中保留的索引。 这在使用打包张量格式(批次和序列长度的单个维度)时很有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包括各种元素,具体取决于配置 (Phi3Config) 和输入。
-
loss (形状为
(1,)
的torch.FloatTensor
, 可选, 当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的隐藏状态(自注意力模块中的键和值),可以用于(请参阅
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出之一,+ 每个层的输出之一),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出端的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。
Phi3ForCausalLM 前向方法,覆盖了 __call__
特殊方法。
尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
>>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
generate
< source >( inputs: typing.Optional[torch.Tensor] = None generation_config: typing.Optional[transformers.generation.configuration_utils.GenerationConfig] = None logits_processor: typing.Optional[transformers.generation.logits_process.LogitsProcessorList] = None stopping_criteria: typing.Optional[transformers.generation.stopping_criteria.StoppingCriteriaList] = None prefix_allowed_tokens_fn: typing.Optional[typing.Callable[[int, torch.Tensor], typing.List[int]]] = None synced_gpus: typing.Optional[bool] = None assistant_model: typing.Optional[ForwardRef('PreTrainedModel')] = None streamer: typing.Optional[ForwardRef('BaseStreamer')] = None negative_prompt_ids: typing.Optional[torch.Tensor] = None negative_prompt_attention_mask: typing.Optional[torch.Tensor] = None use_model_defaults: typing.Optional[bool] = None **kwargs ) → ModelOutput 或 torch.LongTensor
参数
- inputs (
torch.Tensor
,形状取决于模态, 可选) — 用作生成的提示或作为模型编码器输入的序列。 如果为None
,则该方法使用bos_token_id
和批次大小 1 初始化它。 对于仅解码器模型,inputs
应为input_ids
格式。 对于编码器-解码器模型,inputs 可以表示input_ids
、input_values
、input_features
或pixel_values
中的任何一个。 - generation_config (GenerationConfig, 可选) — 要用作生成调用的基本参数化的生成配置。 传递给 generate 的
**kwargs
,如果与generation_config
的属性匹配,将覆盖它们。 如果未提供generation_config
,将使用默认值,默认值具有以下加载优先级: 1) 来自generation_config.json
模型文件(如果存在); 2) 来自模型配置。 请注意,未指定的参数将继承 GenerationConfig 的默认值,应检查其文档以参数化生成。 - logits_processor (
LogitsProcessorList
, 可选) — 自定义 logits 处理器,用于补充从参数和生成配置构建的默认 logits 处理器。 如果传递的 logits 处理器已使用参数或生成配置创建,则会抛出错误。 此功能适用于高级用户。 - stopping_criteria (
StoppingCriteriaList
, 可选) — 自定义停止标准,用于补充从参数和生成配置构建的默认停止标准。 如果传递的停止标准已使用参数或生成配置创建,则会抛出错误。 如果您的停止标准取决于scores
输入,请确保将return_dict_in_generate=True, output_scores=True
传递给generate
。 此功能适用于高级用户。 - prefix_allowed_tokens_fn (
Callable[[int, torch.Tensor], List[int]]
, 可选) — 如果提供,此函数会在每个步骤将 beam search 约束为仅允许的 tokens。 如果未提供,则不应用约束。 此函数接受 2 个参数:批次 IDbatch_id
和input_ids
。 它必须返回一个列表,其中包含基于批次 IDbatch_id
和先前生成的 tokensinputs_ids
的下一个生成步骤的允许 tokens。 此参数对于基于前缀的约束生成很有用,如 自回归实体检索 中所述。 - synced_gpus (
bool
, 可选) — 是否继续运行 while 循环直到 max_length。 除非被覆盖,否则如果使用FullyShardedDataParallel
或 DeepSpeed ZeRO Stage 3 与多个 GPU,则此标志将设置为True
,以避免当一个 GPU 在其他 GPU 之前完成生成时发生死锁。 否则,默认为False
。 - assistant_model (
PreTrainedModel
, 可选) — 可用于加速生成的辅助模型。 辅助模型必须具有完全相同的 tokenizer。 当使用辅助模型预测候选 tokens 比使用您正在从中调用 generate 的模型运行生成快得多时,可以实现加速。 因此,辅助模型应该小得多。 - streamer (
BaseStreamer
, 可选) — 流式器对象,用于流式传输生成的序列。生成的 token 会传递给streamer.put(token_ids)
,流式器负责任何进一步的处理。 - negative_prompt_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 一些处理器(如 CFG)所需的负面提示。批次大小必须与输入批次大小匹配。这是一个实验性功能,未来版本中的 API 可能会发生重大更改。 - negative_prompt_attention_mask (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) —negative_prompt_ids
的 attention_mask。 - use_model_defaults (
bool
,可选) — 当设置为True
时,generation_config
中未设置的参数将设置为模型特定的默认生成配置 (model.generation_config
),而不是全局默认值 (GenerationConfig()
)。如果未设置,则从v4.50
开始保存的模型将认为此标志为True
。 - kwargs (
Dict[str, Any]
,可选) —generation_config
的临时参数化和/或将转发到模型的forward
函数的其他模型特定 kwargs。如果模型是编码器-解码器模型,则编码器特定 kwargs 不应添加前缀,解码器特定 kwargs 应添加 decoder_ 前缀。
返回
ModelOutput 或 torch.LongTensor
一个 ModelOutput (如果 return_dict_in_generate=True
或当 config.return_dict_in_generate=True
时) 或一个 torch.LongTensor
。
如果模型不是编码器-解码器模型 (model.config.is_encoder_decoder=False
),则可能的 ModelOutput 类型为
如果模型是编码器-解码器模型 (model.config.is_encoder_decoder=True
),则可能的 ModelOutput 类型为
为具有语言建模头的模型生成 token id 序列。
大多数生成控制参数在 generation_config
中设置,如果未传递,则将设置为模型的默认生成配置。您可以通过将相应的参数传递给 generate() 来覆盖任何 generation_config
,例如 .generate(inputs, num_beams=4, do_sample=True)
。
有关生成策略和代码示例的概述,请查看以下指南。
Phi3ForSequenceClassification
class transformers.Phi3ForSequenceClassification
< source >( config )
参数
- config (Phi3Config) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
Phi3 模型转换器,顶部带有一个序列分类头(线性层)。
Phi3ForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型(例如 GPT-2)一样。
由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。如果在配置中定义了 pad_token_id
,它会在每行中找到不是填充 token 的最后一个 token。如果未定义 pad_token_id
,它只会获取批次中每行的最后一个值。由于当传递 inputs_embeds
而不是 input_ids
时,它无法猜测填充 token,因此它会执行相同的操作(获取批次中每行的最后一个值)。
此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch Module,并参阅 PyTorch 文档,了解与常规使用和行为相关的所有事项。
forward (前向传播)
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列 token 的索引。如果您提供填充,默认情况下将忽略填充。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 用于避免在填充 token 索引上执行 attention 的掩码。在[0, 1]
中选择的掩码值:- 1 表示 未被掩盖 的 token,
- 0 表示 被掩盖 的 token。
索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改填充行为,则应阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后的input_ids
(那些没有将其过去的键值状态提供给此模型的input_ids
),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
,可选) — 描述输入序列 token 在序列中位置的索引。与position_ids
相反,此张量不受填充的影响。它用于在正确的位置更新缓存,并推断完整的序列长度。 - labels (形状为
(batch_size,)
的torch.LongTensor
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方误差损失),如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
Phi3ForSequenceClassification forward 方法,覆盖了 __call__
特殊方法。
尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
Phi3ForTokenClassification
class transformers.Phi3ForTokenClassification
< source >( config )
参数
- config (Phi3Config) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
Phi3 模型转换器,顶部带有一个 token 分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch Module,并参阅 PyTorch 文档,了解与常规使用和行为相关的所有事项。
forward (前向传播)
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。 如果提供,默认情况下会忽略 padding。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被 mask,
- 0 表示 tokens 被 mask。
索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用了
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果你想更改 padding 行为,你应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据你的需求进行修改。 有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示 head 未被 mask,
- 0 表示 head 被 mask。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置 embeddings 中每个输入序列 token 的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的 hidden-states(self-attention 块和 cross-attention 块中的 key 和 values),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组都有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后input_ids
(那些没有将其过去 key value 状态提供给此模型的)形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示而不是传递input_ids
。 如果你想比模型的内部 embedding 查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描述输入序列 tokens 在序列中位置的索引。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方误差损失)。 如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (Phi3Config) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出之一,+ 每个层的输出之一),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出端的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。
Phi3ForTokenClassification forward 方法,覆盖了 __call__
特殊方法。
尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, Phi3ForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
>>> model = Phi3ForTokenClassification.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss