Transformers 文档

Gemma

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

Gemma

概述

Gemma 模型由 Google 的 Gemma 团队在 Gemma: Open Models Based on Gemini Technology and Research 中提出。Gemma 模型使用 6T tokens 进行训练,并发布了 2 个版本:2b 和 7b。

论文摘要如下:

本文介绍了 Gemma,这是一个新的开放语言模型系列,在语言理解、推理和安全性的学术基准测试中表现出色。我们发布了两种尺寸的模型(20 亿和 70 亿参数),并提供预训练和微调的检查点。Gemma 在 18 项基于文本的任务中的 11 项上优于同等规模的开放模型,并且我们全面评估了模型的安全性和责任方面,同时详细描述了我们的模型开发过程。我们认为,负责任地发布 LLM 对于提高前沿模型的安全性以及推动下一波 LLM 创新至关重要。

提示

  • 原始检查点可以使用转换脚本 src/transformers/models/gemma/convert_gemma_weights_to_hf.py 进行转换。

此模型由 Arthur ZuckerYounes BelkadaSanchit GandhiPedro Cuenca 贡献。

GemmaConfig

class transformers.GemmaConfig

< >

( vocab_size = 256000 hidden_size = 3072 intermediate_size = 24576 num_hidden_layers = 28 num_attention_heads = 16 num_key_value_heads = 16 head_dim = 256 hidden_act = 'gelu_pytorch_tanh' hidden_activation = None max_position_embeddings = 8192 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = 0 eos_token_id = 1 bos_token_id = 2 tie_word_embeddings = True rope_theta = 10000.0 attention_bias = False attention_dropout = 0.0 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 256000) — Gemma 模型的词汇表大小。 定义了在调用 GemmaModel 时传递的 inputs_ids 可以表示的不同 token 的数量。
  • hidden_size (int, 可选, 默认为 3072) — 隐藏层表示的维度。
  • intermediate_size (int, 可选, 默认为 24576) — MLP 表示的维度。
  • num_hidden_layers (int, 可选, 默认为 28) — Transformer 解码器中的隐藏层数。
  • num_attention_heads (int, 可选, 默认为 16) — Transformer 解码器中每个注意力层的注意力头数。
  • num_key_value_heads (int, 可选, 默认为 16) — 这是用于实现分组查询注意力(Grouped Query Attention)的 key_value 头部的数量。如果 num_key_value_heads=num_attention_heads,模型将使用多头注意力(Multi Head Attention,MHA);如果 num_key_value_heads=1,模型将使用多查询注意力(Multi Query Attention,MQA);否则使用 GQA。当将多头检查点转换为 GQA 检查点时,每个组 key 和 value 头部应通过对该组内所有原始头部进行平均池化来构建。更多详情请查看本文。如果未指定,则默认为 num_attention_heads
  • head_dim (int, 可选, 默认为 256) — 注意力头的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu_pytorch_tanh") — 遗留的激活函数。它会被 hidden_activation 覆盖。
  • hidden_activation (strfunction, 可选) — 解码器中的非线性激活函数(函数或字符串)。如果未指定,则默认为 "gelu_pytorch_tanh""gelu_pytorch_tanh" 使用 "gelu" 激活函数的近似值。
  • max_position_embeddings (int, 可选, 默认为 8192) — 此模型可能使用的最大序列长度。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • rms_norm_eps (float, 可选, 默认为 1e-06) — rms 归一化层使用的 epsilon 值。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的 key/values 注意力 (并非所有模型都使用)。仅当 config.is_decoder=True 时相关。
  • pad_token_id (int, 可选, 默认为 0) — Padding token id(填充 token id)。
  • eos_token_id (int, 可选, 默认为 1) — End of stream token id(流结束 token id)。
  • bos_token_id (int, 可选, 默认为 2) — Beginning of stream token id(流开始 token id)。
  • tie_word_embeddings (bool, 可选, 默认为 True) — 是否绑定词嵌入权重
  • rope_theta (float, 可选, 默认为 10000.0) — RoPE 嵌入的基础周期。
  • attention_bias (bool, 默认为 False, 可选, 默认为 False) — 在自注意力期间,是否在 query、key、value 和输出投影层中使用偏置。
  • attention_dropout (float, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。

这是用于存储 GemmaModel 配置的配置类。它用于根据指定的参数实例化 Gemma 模型,定义模型架构。使用默认值实例化配置将产生与 Gemma-7B 类似的配置,例如 google/gemma-7b。配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

>>> from transformers import GemmaModel, GemmaConfig
>>> # Initializing a Gemma gemma-7b style configuration
>>> configuration = GemmaConfig()
>>> # Initializing a model from the gemma-7b style configuration
>>> model = GemmaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

GemmaTokenizer

class transformers.GemmaTokenizer

< >

( vocab_file unk_token = '<unk>' bos_token = '<bos>' eos_token = '<eos>' pad_token = '<pad>' sp_model_kwargs: Optional = None add_bos_token = True add_eos_token = False clean_up_tokenization_spaces = False use_default_system_prompt = False spaces_between_special_tokens = False **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • unk_token (strtokenizers.AddedToken, 可选, 默认为 "<unk>") — 未知 token。词汇表中不存在的 token 无法转换为 ID,而是设置为此 token。
  • bos_token (strtokenizers.AddedToken, 可选, 默认为 "<bos>") — 预训练期间使用的序列开始 token。可以用作序列分类器 token。
  • eos_token (strtokenizers.AddedToken, 可选, 默认为 "<eos>") — 序列结束符 token。
  • pad_token (strtokenizers.AddedToken, 可选, 默认为 "<pad>") — 用于使 token 数组大小相同的特殊 token,以便进行批处理。之后会被注意力机制或损失计算忽略。
  • sp_model_kwargs (Dict[str, Any], Optional, 可选) — 将会传递给 SentencePieceProcessor.__init__() 方法的参数。SentencePiece 的 Python 封装器 可以用于设置,包括:

    • enable_sampling: 启用子词正则化。

    • nbest_size: 用于 unigram 的采样参数。对 BPE-Dropout 无效。

      • nbest_size = {0,1}: 不执行采样。
      • nbest_size > 1: 从 nbest_size 结果中采样。
      • nbest_size < 0: 假设 nbest_size 是无限的,并使用前向过滤和后向采样算法从所有假设(lattice)中采样。
    • alpha: 用于 unigram 采样的平滑参数,以及 BPE-dropout 的合并操作的 dropout 概率。

  • add_bos_token (bool, 可选, 默认为 True) — 是否在序列的开头添加 bos_token
  • add_eos_token (bool, 可选, 默认为 False) — 是否在序列的末尾添加 eos_token
  • clean_up_tokenization_spaces (bool, 可选, 默认为 False) — 是否在解码后清理空格,清理包括删除潜在的伪像,如多余的空格。
  • use_default_system_prompt (bool, 可选, 默认为 False) — 是否应使用 Gemma 的默认系统提示。
  • spaces_between_special_tokens (bool, 可选, 默认为 False) — 是否在特殊 token 之间添加空格。

构建 Gemma tokenizer。基于字节级 Byte-Pair-Encoding。默认的 padding token 未设置,因为原始模型中没有 padding token。

convert_tokens_to_string

< >

( tokens )

将 token 序列(字符串)转换为单个字符串。

create_token_type_ids_from_sequences

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 用于序列对的可选的第二个 ID 列表。

返回值

List[int]

根据给定的序列,返回 token 类型 ID 列表。

从传递的两个序列创建掩码,用于序列对分类任务。ALBERT

序列对掩码具有以下格式

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1 为 None,则仅返回掩码的第一部分(0)。

get_special_tokens_mask

< >

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 用于序列对的可选的第二个 ID 列表。
  • already_has_special_tokens (bool, 可选, 默认为 False) — token 列表是否已使用模型的特殊 token 格式化。

返回值

List[int]

一个整数列表,范围为 [0, 1]:1 表示特殊 token,0 表示序列 token。

从没有添加特殊 token 的 token 列表中检索序列 ID。当使用 tokenizer prepare_for_model 方法添加特殊 token 时,会调用此方法。

get_vocab

< >

( )

将 vocab 作为 dict 返回

save_vocabulary

< >

( save_directory filename_prefix: Optional = None ) Tuple(str)

已保存文件的路径。

将词汇表和特殊 token 文件保存到目录中。

GemmaTokenizerFast

class transformers.GemmaTokenizerFast

< >

( vocab_file = None tokenizer_file = None clean_up_tokenization_spaces = False unk_token = '<unk>' bos_token = '<bos>' eos_token = '<eos>' pad_token = '<pad>' add_bos_token = True add_eos_token = False **kwargs )

参数

  • vocab_file (str, 可选) — SentencePiece 文件(通常具有 .model 扩展名),其中包含实例化 tokenizer 所需的词汇表。
  • tokenizer_file (str, 可选) — tokenizers 文件(通常具有 .json 扩展名),其中包含加载 tokenizer 所需的一切。
  • clean_up_tokenization_spaces (bool, 可选, 默认为 False) — 是否在解码后清理空格,清理包括移除潜在的伪像,如额外的空格。
  • unk_token (strtokenizers.AddedToken, 可选, 默认为 "<unk>") — 未知 token。词汇表中不存在的 token 无法转换为 ID,并将设置为此 token。
  • bos_token (strtokenizers.AddedToken, 可选, 默认为 "<bos>") — 序列开始 token,在预训练期间使用。可以用作序列分类器 token。
  • eos_token (strtokenizers.AddedToken, 可选, 默认为 "<eos>") — 序列结束 token。
  • pad_token (str, 可选, 默认为 "<pad>") — padding token。
  • add_bos_token (bool, 可选, 默认为 True) — 是否在序列的开头添加 bos_token
  • add_eos_token (bool, 可选, 默认为 False) — 是否在序列的末尾添加 eos_token

构建一个 Gemma tokenizer fast。基于字节级 Byte-Pair-Encoding。

此 tokenizer 特别使用了 ByteFallback 且没有前缀空格。应用了标准化来将 " " 替换为 " "

>>> from transformers import GemmaTokenizerFast

>>> tokenizer = GemmaTokenizerFast.from_pretrained("hf-internal-testing/dummy-gemma")
>>> tokenizer.encode("Hello this is a test")
[2, 4521, 736, 603, 476, 2121]

如果您想更改 bos_tokeneos_token,请确保在初始化模型时指定它们,或调用 tokenizer.update_post_processor() 以确保正确完成后处理(否则,编码序列的第一个 token 和最后一个 token 的值将不正确)。有关更多详细信息,请查看 [后处理器] (http://huggingface.co/docs/tokenizers/api/post-processors) 文档。

此 tokenizer 继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

update_post_processor

< >

( )

使用当前的 bos_tokeneos_token 更新底层后处理器。

GemmaModel

class transformers.GemmaModel

< >

( config: GemmaConfig )

参数

  • config (GemmaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。 config — GemmaConfig

裸 Gemma 模型,输出原始隐藏状态,顶部没有任何特定的 head。此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch Module,并参考 PyTorch 文档了解与常规用法和行为相关的所有事项。

Transformer 解码器,由 config.num_hidden_layers 层组成。每一层都是一个 GemmaDecoderLayer

forward

< >

( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Union = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None cache_position: Optional = None )

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。如果您提供 padding,默认情况下将被忽略。

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。Mask 值在 [0, 1] 中选择:

    • 1 代表 未被 Mask 的 token,
    • 0 代表 已被 Mask 的 token。

    什么是 attention masks?

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用 past_key_values,则可以选择仅输入最后一个 input_ids(请参阅 past_key_values)。

    如果您想更改 padding 行为,则应阅读 modeling_opt._prepare_decoder_attention_mask 并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。

    • 1 表示 head 未被 Mask
    • 0 表示 head 已被 Mask
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 每个输入序列 token 在位置嵌入中的位置索引。 在范围 [0, config.n_positions - 1] 中选择。

    什么是位置 IDs?

  • past_key_values (Cachetuple(tuple(torch.FloatTensor)), 可选) — 预先计算的隐藏状态(self-attention 块和 cross-attention 块中的 key 和 values),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv cache 指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 的元组,每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。 这也称为旧版缓存格式。

    模型将输出与输入格式相同的缓存格式。 如果未传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,则用户可以选择仅输入最后一个 input_ids(那些没有将其过去 key value 状态提供给此模型的)形状为 (batch_size, 1) 而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values 键值状态,并且可以用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回的张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回的张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length), 可选) — 描述输入序列 token 在序列中位置的索引。 与 position_ids 相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。

GemmaModel forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

GemmaForCausalLM

class transformers.GemmaForCausalLM

< >

( config )

forward

< >

( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Union = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None cache_position: Optional = None num_logits_to_keep: int = 0 ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。 如果您提供 padding,默认情况下 padding 将被忽略。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 掩码,用于避免在 padding token 索引上执行注意力机制。 掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩码 的 tokens,
    • 0 表示 已被掩码 的 tokens。

    什么是注意力掩码?

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了 past_key_values,则可以选择仅输入最后的 input_ids(请参阅 past_key_values)。

    如果您想更改 padding 行为,您应该阅读 modeling_opt._prepare_decoder_attention_mask 并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。

    • 1 表示 head 未被掩码
    • 0 表示 head 已被掩码
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围 [0, config.n_positions - 1] 中选择。

    什么是位置 IDs?

  • past_key_values (Cachetuple(tuple(torch.FloatTensor))可选) — 预先计算的 hidden-states(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) 元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的张量。 这也称为旧版缓存格式。

    模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,用户可以选择仅输入最后 input_ids(那些没有将其过去的键值状态提供给此模型的)形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并且可以用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通的元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 索引,描述输入序列 tokens 在序列中的位置。 与 position_ids 相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。

    Args — labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选): 用于计算掩码语言建模损失的标签。 索引应在 [0, ..., config.vocab_size] 或 -100 中(请参阅 input_ids 文档字符串)。 索引设置为 -100 的 tokens 将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的 tokens 计算。

    num_logits_to_keep (int可选): 计算最后 num_logits_to_keep 个 tokens 的 logits。 如果为 0,则计算所有 input_ids 的 logits(特殊情况)。 只有最后一个 token logits 是生成所需的,并且仅针对该 token 计算它们可以节省内存,这对于长序列或大词汇量大小而言变得非常重要。

返回值

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPasttorch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包括各种元素,具体取决于配置 (GemmaConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个 token 预测)。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表 token 的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) 元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的张量

    包含预先计算的 hidden-states(自注意力模块中的键和值),可用于加速顺序解码(请参阅 past_key_values 输入)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型具有嵌入层,则为嵌入输出的一个,+ 每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出以及可选的初始嵌入输出处的 hidden-states。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。

GemmaForCausalLM forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, GemmaForCausalLM

>>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")

>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"

GemmaForSequenceClassification

class transformers.GemmaForSequenceClassification

< >

( config )

参数

  • config (GemmaConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,而只会加载配置。 查看 from_pretrained() 方法以加载模型权重。

带有序列分类 head 的 Gemma Model transformer(线性层)。

GemmaForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型(例如 GPT-2)一样。

由于它对最后一个 token 进行分类,因此它需要知道最后一个 token 的位置。 如果在配置中定义了 pad_token_id,它会在每一行中找到不是 padding token 的最后一个 token。 如果未定义 pad_token_id,它只会获取批处理中每一行的最后一个值。 由于当传递 inputs_embeds 而不是 input_ids 时,它无法猜测 padding tokens,因此它也会执行相同的操作(获取批处理中每一行的最后一个值)。

此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch Module,并参考 PyTorch 文档了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Union = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。 如果您提供 padding,默认情况下 padding 将被忽略。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 掩码,用于避免在 padding token 索引上执行注意力机制。 掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩码 的 tokens,
    • 0 表示 已被掩码 的 tokens。

    什么是注意力掩码?

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了 past_key_values,则可以选择仅输入最后的 input_ids(请参阅 past_key_values)。

    如果您想更改 padding 行为,您应该阅读 modeling_opt._prepare_decoder_attention_mask 并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。

    • 1 表示 head 未被掩码
    • 0 表示 head 已被掩码
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围 [0, config.n_positions - 1] 中选择。

    什么是位置 IDs?

  • past_key_values (Cachetuple(tuple(torch.FloatTensor))可选) — 预先计算的 hidden-states(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) 元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的张量。 这也称为旧版缓存格式。

    模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,用户可以选择仅输入最后 input_ids(那些没有将其过去的键值状态提供给此模型的)形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • use_cache (bool, optional) — 如果设置为 True,则返回 past_key_values 键值状态,并且可以用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通的元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)optional) — 索引描述输入序列标记在序列中的位置。 与 position_ids 相反,此张量不受填充的影响。 它用于在正确的位置更新缓存,并推断完整的序列长度。
  • labels (torch.LongTensor,形状为 (batch_size,)optional) — 用于计算序列分类/回归损失的标签。 索引应为 [0, ..., config.num_labels - 1]。 如果 config.num_labels == 1,则计算回归损失(均方损失)。 如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

GemmaForSequenceClassification 的 forward 方法覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

GemmaForTokenClassification

class transformers.GemmaForTokenClassification

< >

( config )

参数

  • config (GemmaConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

Gemma 模型转换器,顶部带有一个标记分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。

此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch Module,并参考 PyTorch 文档了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。 默认情况下,如果您提供填充,则会忽略填充。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.__call__()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)optional) — 用于避免在填充标记索引上执行注意力的掩码。 在 [0, 1] 中选择的掩码值:

    • 1 表示 未被掩盖 的标记,
    • 0 表示 被掩盖 的标记。

    什么是注意力掩码?

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.__call__()

    如果使用 past_key_values,则可以选择仅输入最后的 input_ids(请参阅 past_key_values)。

    如果您想更改填充行为,则应阅读 modeling_opt._prepare_decoder_attention_mask 并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。

    • 1 表示头部 未被掩盖
    • 0 表示头部 被掩盖
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)optional) — 每个输入序列标记在位置嵌入中的位置索引。 在范围 [0, config.n_positions - 1] 中选择。

    什么是位置 ID?

  • past_key_values (Cachetuple(tuple(torch.FloatTensor))optional) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) 元组,每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的张量。 这也称为旧版缓存格式。

    模型将输出与作为输入馈送的缓存格式相同的缓存格式。 如果未传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,则用户可以选择仅输入最后的 input_ids(那些没有将其过去的键值状态提供给此模型的 input_ids),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)optional) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • use_cache (bool, optional) — 如果设置为 True,则返回 past_key_values 键值状态,并且可以用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通的元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)optional) — 索引描述输入序列标记在序列中的位置。 与 position_ids 相反,此张量不受填充的影响。 它用于在正确的位置更新缓存,并推断完整的序列长度。
  • labels (torch.LongTensor,形状为 (batch_size,)optional) — 用于计算序列分类/回归损失的标签。 索引应为 [0, ..., config.num_labels - 1]。 如果 config.num_labels == 1,则计算回归损失(均方损失)。 如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

GemmaForTokenClassification 的 forward 方法覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

FlaxGemmaModel

class transformers.FlaxGemmaModel

< >

( config: GemmaConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (GemmaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16jax.numpy.bfloat16 之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。

    如果您希望更改模型参数的 dtype,请参阅 to_fp16()to_bf16()

裸 Gemma 模型 Transformer,输出原始的隐藏状态,顶部没有任何特定的头部。

此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。

此模型也是 Flax Linen flax.nn.Module 子类。将其用作常规 Flax 模块,并参阅 Flax 文档以获取与一般用法和行为相关的所有事项。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None position_ids = None params: dict = None past_key_values: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, input_ids_length)numpy.ndarray) — 词汇表中输入序列 tokens 的索引。默认情况下,如果您提供填充,则会忽略填充。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.__call__()

    什么是输入 IDs?

  • attention_mask (形状为 (batch_size, sequence_length)numpy.ndarray, 可选) — 掩码,以避免在填充 token 索引上执行 attention。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩盖 的 tokens,
    • 0 表示 被掩盖 的 tokens。

    什么是 attention 掩码?

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.__call__()

    如果使用 past_key_values,则可以选择仅输入最后的 decoder_input_ids(请参阅 past_key_values)。

    如果您想更改填充行为,您应该阅读 modeling_opt._prepare_decoder_attention_mask 并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。

    • 1 表示头 未被掩盖
    • 0 表示头 被掩盖
  • position_ids (形状为 (batch_size, sequence_length)numpy.ndarray, 可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。在范围 [0, config.n_positions - 1] 中选择。

    什么是位置 IDs?

  • past_key_values (Dict[str, np.ndarray], 可选, 由 init_cache 返回或在传递先前的 past_key_values 时返回) — 预先计算的隐藏状态(attention 块中的键和值)的字典,可用于快速自回归解码。预先计算的键和值隐藏状态的形状为[batch_size, max_length]
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通的元组。

返回值

transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个 torch.FloatTensor 元组(如果传递 return_dict=False 或当 config.return_dict=False 时),其中包含取决于配置 (GemmaConfig) 和输入的各种元素。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray) — 模型最后一层的输出处的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(每个嵌入输出一个,每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出的隐藏状态,加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。

FlaxGemmaPreTrainedModel 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

此示例使用随机模型,因为真实模型都非常大。要获得正确的结果,您应该使用 openlm-research/open_llama_3b_v2 而不是 google/gemma-2b。如果在加载该检查点时内存不足,您可以尝试在 from_pretrained 调用中添加 device_map="auto"

示例

>>> from transformers import AutoTokenizer, FlaxGemmaModel

>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
>>> model = FlaxGemmaModel.from_pretrained("google/gemma-2b")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxGemmaForCausalLM

class transformers.FlaxGemmaForCausalLM

< >

( config: GemmaConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (GemmaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16jax.numpy.bfloat16 之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。

    如果您希望更改模型参数的 dtype,请参阅 to_fp16()to_bf16()

带有语言建模头(线性层)的 Gemma 模型 Transformer。

此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。

此模型也是 Flax Linen flax.nn.Module 子类。将其用作常规 Flax 模块,并参阅 Flax 文档以获取与一般用法和行为相关的所有事项。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None position_ids = None params: dict = None past_key_values: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_flax_outputs.FlaxMaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, input_ids_length)numpy.ndarray) — 词汇表中输入序列 tokens 的索引。默认情况下,如果您提供填充,则会忽略填充。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.__call__()

    什么是输入 IDs?

  • attention_mask (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 用于避免对填充 token 索引执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩盖 的 token,
    • 0 表示 已被掩盖 的 token。

    什么是 attention 掩码?

    可以使用 AutoTokenizer 获取索引。 请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 了解详细信息。

    如果使用 past_key_values,则可以选择仅输入最后的 decoder_input_ids(请参阅 past_key_values)。

    如果要更改填充行为,您应该阅读 modeling_opt._prepare_decoder_attention_mask 并根据需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。

    • 1 表示 head 未被掩盖
    • 0 表示 head 已被掩盖
  • position_ids (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列 token 的位置索引。 在范围 [0, config.n_positions - 1] 中选择。

    什么是位置 ID?

  • past_key_values (Dict[str, np.ndarray]可选,由 init_cache 返回或在传递之前的 past_key_values 时返回) — 预先计算的隐藏状态字典(attention 块中的键和值),可用于快速自回归解码。 预先计算的键和值隐藏状态的形状为 *[batch_size, max_length]* 。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

返回值

transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutputtorch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GemmaConfig) 和输入。

  • logits (jnp.ndarray,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测得分(SoftMax 之前每个词汇 token 的得分)。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(每个嵌入输出一个,每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出的隐藏状态,加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力 head 中的加权平均值。

FlaxGemmaPreTrainedModel 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

此示例使用随机模型,因为真实模型都非常大。要获得正确的结果,您应该使用 openlm-research/open_llama_3b_v2 而不是 google/gemma-2b。如果在加载该检查点时内存不足,您可以尝试在 from_pretrained 调用中添加 device_map="auto"

示例

>>> from transformers import AutoTokenizer, FlaxGemmaForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
>>> model = FlaxGemmaForCausalLM.from_pretrained("google/gemma-2b")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]
< > 在 GitHub 上更新