MarianMT
概述
一个用于翻译模型的框架,使用与 BART 相同的模型。翻译结果应该相似,但不完全等同于每个模型卡中链接的测试集中的输出。此模型由 sshleifer 贡献。
实现说明
每个模型在磁盘上大约 298 MB,共有 1,000 多个模型。
支持的语言对列表可以在这里找到。
模型最初由 Jörg Tiedemann 使用 Marian C++ 库训练,该库支持快速训练和翻译。
所有模型都是 Transformer 编码器-解码器,每个组件中有 6 层。每个模型的性能都记录在模型卡中。
不支持需要 BPE 预处理的 80 个 opus 模型。
建模代码与 BartForConditionalGeneration 相同,只有一些细微的修改
- 静态(正弦曲线)位置嵌入 (
MarianConfig.static_position_embeddings=True
) - 无 layernorm_embedding (
MarianConfig.normalize_embedding=False
) - 模型开始生成时,使用
pad_token_id
(其 token_embedding 为 0)作为前缀(Bart 使用<s/>
)。
- 静态(正弦曲线)位置嵌入 (
用于批量转换模型的代码可以在
convert_marian_to_pytorch.py
中找到。
命名
- 所有模型名称都使用以下格式:
Helsinki-NLP/opus-mt-{src}-{tgt}
- 用于命名模型的语言代码不一致。两位数代码通常可以在这里找到,三位数代码需要谷歌搜索“language code {code}”。
- 格式如
es_AR
的代码通常是code_{region}
。这个是阿根廷西班牙语。 - 模型分两个阶段转换。前 1000 个模型使用 ISO-639-2 代码来识别语言,第二组使用 ISO-639-5 代码和 ISO-639-2 代码的组合。
示例
- 由于 Marian 模型比库中提供的许多其他翻译模型更小,因此它们对于微调实验和集成测试非常有用。
- 在 GPU 上微调
多语言模型
- 所有模型名称都使用以下格式:
Helsinki-NLP/opus-mt-{src}-{tgt}
- 如果一个模型可以输出多种语言,你应该通过在
src_text
前面加上所需的输出语言代码来指定语言。 - 你可以在模型的模型卡的目标成分下查看其支持的语言代码,例如在 opus-mt-en-roa 中。
- 请注意,如果一个模型仅在源语言端是多语言的,例如
Helsinki-NLP/opus-mt-roa-en
,则不需要语言代码。
来自 Tatoeba-Challenge repo 的新多语言模型需要 3 个字符的语言代码
>>> from transformers import MarianMTModel, MarianTokenizer
>>> src_text = [
... ">>fra<< this is a sentence in english that we want to translate to french",
... ">>por<< This should go to portuguese",
... ">>esp<< And this to Spanish",
... ]
>>> model_name = "Helsinki-NLP/opus-mt-en-roa"
>>> tokenizer = MarianTokenizer.from_pretrained(model_name)
>>> print(tokenizer.supported_language_codes)
['>>zlm_Latn<<', '>>mfe<<', '>>hat<<', '>>pap<<', '>>ast<<', '>>cat<<', '>>ind<<', '>>glg<<', '>>wln<<', '>>spa<<', '>>fra<<', '>>ron<<', '>>por<<', '>>ita<<', '>>oci<<', '>>arg<<', '>>min<<']
>>> model = MarianMTModel.from_pretrained(model_name)
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
>>> [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
["c'est une phrase en anglais que nous voulons traduire en français",
'Isto deve ir para o português.',
'Y esto al español']
这是查看 hub 上所有可用预训练模型的代码
from huggingface_hub import list_models
model_list = list_models()
org = "Helsinki-NLP"
model_ids = [x.id for x in model_list if x.id.startswith(org)]
suffix = [x.split("/")[1] for x in model_ids]
old_style_multi_models = [f"{org}/{s}" for s in suffix if s != s.lower()]
旧式多语言模型
这些是从 OPUS-MT-Train repo 移植的旧式多语言模型:以及每个语言组的成员
['Helsinki-NLP/opus-mt-NORTH_EU-NORTH_EU',
'Helsinki-NLP/opus-mt-ROMANCE-en',
'Helsinki-NLP/opus-mt-SCANDINAVIA-SCANDINAVIA',
'Helsinki-NLP/opus-mt-de-ZH',
'Helsinki-NLP/opus-mt-en-CELTIC',
'Helsinki-NLP/opus-mt-en-ROMANCE',
'Helsinki-NLP/opus-mt-es-NORWAY',
'Helsinki-NLP/opus-mt-fi-NORWAY',
'Helsinki-NLP/opus-mt-fi-ZH',
'Helsinki-NLP/opus-mt-fi_nb_no_nn_ru_sv_en-SAMI',
'Helsinki-NLP/opus-mt-sv-NORWAY',
'Helsinki-NLP/opus-mt-sv-ZH']
GROUP_MEMBERS = {
'ZH': ['cmn', 'cn', 'yue', 'ze_zh', 'zh_cn', 'zh_CN', 'zh_HK', 'zh_tw', 'zh_TW', 'zh_yue', 'zhs', 'zht', 'zh'],
'ROMANCE': ['fr', 'fr_BE', 'fr_CA', 'fr_FR', 'wa', 'frp', 'oc', 'ca', 'rm', 'lld', 'fur', 'lij', 'lmo', 'es', 'es_AR', 'es_CL', 'es_CO', 'es_CR', 'es_DO', 'es_EC', 'es_ES', 'es_GT', 'es_HN', 'es_MX', 'es_NI', 'es_PA', 'es_PE', 'es_PR', 'es_SV', 'es_UY', 'es_VE', 'pt', 'pt_br', 'pt_BR', 'pt_PT', 'gl', 'lad', 'an', 'mwl', 'it', 'it_IT', 'co', 'nap', 'scn', 'vec', 'sc', 'ro', 'la'],
'NORTH_EU': ['de', 'nl', 'fy', 'af', 'da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
'SCANDINAVIA': ['da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
'SAMI': ['se', 'sma', 'smj', 'smn', 'sms'],
'NORWAY': ['nb_NO', 'nb', 'nn_NO', 'nn', 'nog', 'no_nb', 'no'],
'CELTIC': ['ga', 'cy', 'br', 'gd', 'kw', 'gv']
}
使用旧式 2 字符语言代码将英语翻译成多种罗曼语的示例
>>> from transformers import MarianMTModel, MarianTokenizer
>>> src_text = [
... ">>fr<< this is a sentence in english that we want to translate to french",
... ">>pt<< This should go to portuguese",
... ">>es<< And this to Spanish",
... ]
>>> model_name = "Helsinki-NLP/opus-mt-en-ROMANCE"
>>> tokenizer = MarianTokenizer.from_pretrained(model_name)
>>> model = MarianMTModel.from_pretrained(model_name)
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
>>> tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
["c'est une phrase en anglais que nous voulons traduire en français",
'Isto deve ir para o português.',
'Y esto al español']
资源
MarianConfig
class transformers.MarianConfig
< 源代码 >( vocab_size = 58101 decoder_vocab_size = None max_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 use_cache = True is_encoder_decoder = True activation_function = 'gelu' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 decoder_start_token_id = 58100 scale_embedding = False pad_token_id = 58100 eos_token_id = 0 forced_eos_token_id = 0 share_encoder_decoder_embeddings = True **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 58101) — Marian 模型的词汇表大小。定义了在调用 MarianModel 或 TFMarianModel 时传递的inputs_ids
可以表示的不同 token 的数量。 - d_model (
int
, 可选, 默认为 1024) — 层和池化器层的维度。 - encoder_layers (
int
, 可选, 默认为 12) — 编码器层数。 - decoder_layers (
int
, 可选, 默认为 12) — 解码器层数。 - encoder_attention_heads (
int
, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。 - decoder_attention_heads (
int
, 可选, 默认为 16) — Transformer 解码器中每个注意力层的注意力头数。 - decoder_ffn_dim (
int
, 可选, 默认为 4096) — 解码器中 “中间” (通常称为 feed-forward)层的维度。 - encoder_ffn_dim (
int
, 可选, 默认为 4096) — 编码器中 “中间” (通常称为 feed-forward)层的维度。 - activation_function (
str
或function
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持"gelu"
,"relu"
,"silu"
和"gelu_new"
。 - dropout (
float
, 可选, 默认为 0.1) — embeddings、编码器和池化器中所有全连接层的 dropout 概率。 - attention_dropout (
float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。 - activation_dropout (
float
, 可选, 默认为 0.0) — 全连接层内部激活的 dropout 比率。 - max_position_embeddings (
int
, 可选, 默认为 1024) — 此模型可能使用的最大序列长度。通常设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - init_std (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - encoder_layerdrop (
float
, 可选, 默认为 0.0) — 编码器的 LayerDrop 概率。有关更多详细信息,请参阅 [LayerDrop 论文](see https://arxiv.org/abs/1909.11556)。 - decoder_layerdrop (
float
, 可选, 默认为 0.0) — 解码器的 LayerDrop 概率。有关更多详细信息,请参阅 [LayerDrop 论文](see https://arxiv.org/abs/1909.11556)。 - scale_embedding (
bool
, 可选, 默认为False
) — 通过除以 sqrt(d_model) 来缩放 embeddings。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后的 key/values attentions(并非所有模型都使用)。 - forced_eos_token_id (
int
, 可选, 默认为 0) — 当达到max_length
时,强制作为最后一个生成的 token 的 token id。通常设置为eos_token_id
。
这是用于存储 MarianModel 配置的配置类。它用于根据指定的参数实例化 Marian 模型,定义模型架构。使用默认值实例化配置将产生与 Marian Helsinki-NLP/opus-mt-en-de 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import MarianModel, MarianConfig
>>> # Initializing a Marian Helsinki-NLP/opus-mt-en-de style configuration
>>> configuration = MarianConfig()
>>> # Initializing a model from the Helsinki-NLP/opus-mt-en-de style configuration
>>> model = MarianModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
MarianTokenizer
class transformers.MarianTokenizer
< source >( source_spm target_spm vocab target_vocab_file = None source_lang = None target_lang = None unk_token = '<unk>' eos_token = '</s>' pad_token = '<pad>' model_max_length = 512 sp_model_kwargs: Optional = None separate_vocabs = False **kwargs )
参数
- source_spm (
str
) — SentencePiece 文件(通常具有 .spm 扩展名),其中包含源语言的词汇表。 - target_spm (
str
) — SentencePiece 文件(通常具有 .spm 扩展名),其中包含目标语言的词汇表。 - source_lang (
str
, 可选) — 表示源语言的字符串。 - target_lang (
str
, 可选) — 表示目标语言的字符串。 - unk_token (
str
, 可选, 默认为"<unk>"
) — 未知 token。词汇表中没有的 token 无法转换为 ID,而是设置为此 token。 - eos_token (
str
, 可选, 默认为"</s>"
) — 序列结束 token。 - pad_token (
str
, 可选, 默认为"<pad>"
) — 用于填充的 token,例如在批处理不同长度的序列时。 - model_max_length (
int
, 可选, 默认为 512) — 模型接受的最大句子长度。 - additional_special_tokens (
List[str]
, 可选, 默认为["<eop>", "<eod>"]
) — tokenizer 使用的其他特殊 token。 - sp_model_kwargs (
dict
, 可选) — 将传递给SentencePieceProcessor.__init__()
方法。 SentencePiece 的 Python 封装器 可用于设置以下内容:-
enable_sampling
:启用子词正则化。 -
nbest_size
:unigram 的采样参数。对 BPE-Dropout 无效。nbest_size = {0,1}
:不执行采样。nbest_size > 1
:从 nbest_size 结果中采样。nbest_size < 0
:假设 nbest_size 是无限的,并使用前向滤波和后向采样算法从所有假设(lattice)中采样。
-
alpha
:用于 unigram 采样的平滑参数,以及 BPE-dropout 的合并操作的 dropout 概率。
-
构建 Marian tokenizer。基于 SentencePiece。
此 tokenizer 继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。
示例
>>> from transformers import MarianForCausalLM, MarianTokenizer
>>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> src_texts = ["I am a small frog.", "Tom asked his teacher for advice."]
>>> tgt_texts = ["Ich bin ein kleiner Frosch.", "Tom bat seinen Lehrer um Rat."] # optional
>>> inputs = tokenizer(src_texts, text_target=tgt_texts, return_tensors="pt", padding=True)
>>> outputs = model(**inputs) # should work
通过附加 eos_token_id 从序列构建模型输入。
MarianModel
class transformers.MarianModel
< source >( config: MarianConfig )
参数
- config (MarianConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
裸 Marian 模型输出原始隐藏状态,顶部没有任何特定的 head。此模型继承自 PreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch Module,并参考 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Union = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。如果您提供填充,默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 避免在 padding token 索引上执行 attention 的 Mask。在[0, 1]
中选择的 Mask 值:- 1 表示 token 未被 Mask,
- 0 表示 token 已被 Mask。
- decoder_input_ids (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 词汇表中 decoder 输入序列 token 的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
Marian 使用
pad_token_id
作为decoder_input_ids
生成的起始 token。如果使用past_key_values
,则可以选择仅输入最后的decoder_input_ids
(请参见past_key_values
)。 - decoder_attention_mask (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个忽略decoder_input_ids
中的 padding token 的 tensor。默认情况下,也将使用因果 Mask。 - head_mask (
torch.Tensor
,形状为(encoder_layers, encoder_attention_heads)
,可选) — 用于 nullify encoder 中 attention 模块的选定 head 的 Mask。在[0, 1]
中选择的 Mask 值:- 1 表示 head 未被 Mask,
- 0 表示 head 已被 Mask。
- decoder_head_mask (
torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 用于置空解码器中注意力模块的选定 head 的掩码。掩码值选自[0, 1]
:- 1 表示 head 不被掩蔽,
- 0 表示 head 被掩蔽。
- cross_attn_head_mask (
torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 用于置空解码器中交叉注意力模块的选定 head 的掩码。掩码值选自[0, 1]
:- 1 表示 head 不被掩蔽,
- 0 表示 head 被掩蔽。
- encoder_outputs (
tuple(tuple(torch.FloatTensor)
,可选) — 由 (last_hidden_state
,可选:hidden_states
,可选:attentions
) 组成的元组。last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选) 是编码器最后一层的输出隐藏状态序列。在解码器的交叉注意力中使用。 - past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外张量。包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),这些状态可用于加速顺序解码(参见
past_key_values
输入)。如果使用
past_key_values
,则用户可以选择仅输入最后一次的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - decoder_inputs_embeds (
torch.FloatTensor
,形状为(batch_size, target_sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递decoder_input_ids
。如果使用past_key_values
,则可以选择仅输入最后一次的decoder_inputs_embeds
(参见past_key_values
)。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将decoder_input_ids
索引转换为关联的向量,这将非常有用。如果
decoder_input_ids
和decoder_inputs_embeds
均未设置,则decoder_inputs_embeds
取inputs_embeds
的值。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(参见past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是纯元组。
返回:
transformers.modeling_outputs.Seq2SeqModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (MarianConfig) 和输入。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层的输出隐藏状态序列。如果使用
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外张量。包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),这些状态可用于加速顺序解码(参见
past_key_values
输入)。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出提供一个张量,+ 每层输出提供一个张量),形状为(batch_size, sequence_length, hidden_size)
。解码器在每一层输出的隐藏状态,加上可选的初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个张量),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力 head 中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个张量),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力 head 中的加权平均值。
-
encoder_last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的输出隐藏状态序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出提供一个张量,+ 每层输出提供一个张量),形状为(batch_size, sequence_length, hidden_size)
。编码器在每一层输出的隐藏状态,加上可选的初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个张量),形状为(batch_size, num_heads, sequence_length, sequence_length)
。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力 head 中的加权平均值。
MarianModel 前向传播方法,覆盖了 __call__
特殊方法。
虽然前向传播的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MarianModel
>>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> model = MarianModel.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
>>> decoder_inputs = tokenizer(
... "<pad> Studien haben gezeigt dass es hilfreich ist einen Hund zu besitzen",
... return_tensors="pt",
... add_special_tokens=False,
... )
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 26, 512]
MarianMTModel
class transformers.MarianMTModel
< source >( config: MarianConfig )
参数
- config (MarianConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有语言建模头的 Marian 模型。可用于摘要。此模型继承自 PreTrainedModel。查看超类文档,以获取库为其所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch Module,并参考 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Union = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下,如果您提供填充,则会忽略填充。索引可以使用 AutoTokenizer 获取。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示标记不被掩蔽,
- 0 表示标记被掩蔽。
- decoder_input_ids (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 词汇表中解码器输入序列标记的索引。索引可以使用 AutoTokenizer 获取。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
Marian 使用
pad_token_id
作为decoder_input_ids
生成的起始标记。如果使用past_key_values
,则可以选择仅输入最后一次的decoder_input_ids
(参见past_key_values
)。 - decoder_attention_mask (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个张量,该张量忽略decoder_input_ids
中的 padding token。默认情况下也会使用因果掩码。 - head_mask (
torch.Tensor
,形状为(encoder_layers, encoder_attention_heads)
,可选) — 用于 nullify encoder 中 attention 模块的选定 head 的掩码。掩码值选自[0, 1]
:- 1 表示 head 不被掩蔽,
- 0 表示 head 被掩蔽。
- decoder_head_mask (
torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 用于 nullify decoder 中 attention 模块的选定 head 的掩码。掩码值选自[0, 1]
:- 1 表示 head 不被掩蔽,
- 0 表示 head 被掩蔽。
- cross_attn_head_mask (
torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 用于 nullify decoder 中 cross-attention 模块的选定 head 的掩码。掩码值选自[0, 1]
:- 1 表示 head 不被掩蔽,
- 0 表示 head 被掩蔽。
- encoder_outputs (
tuple(tuple(torch.FloatTensor)
,可选) — 元组由 (last_hidden_state
,可选:hidden_states
,可选:attentions
) 组成。last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选) 是 encoder 最后一层的输出处的 hidden-states 序列。在 decoder 的 cross-attention 中使用。 - past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加张量。包含预先计算的 hidden-states(自注意力模块和 cross-attention 模块中的 key 和 values),这些 hidden-states 可以用于加速顺序解码(参见
past_key_values
输入)。如果使用
past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将其 past key value states 传递给此模型的),其形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)除了传递input_ids
之外,您可以选择直接传递嵌入表示。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - decoder_inputs_embeds (
torch.FloatTensor
,形状为(batch_size, target_sequence_length, hidden_size)
,可选) — (可选)除了传递decoder_input_ids
之外,您可以选择直接传递嵌入表示。 如果使用past_key_values
,则可以选择仅输入最后的decoder_inputs_embeds
(参见past_key_values
)。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将decoder_input_ids
索引转换为关联的向量,这将非常有用。如果
decoder_input_ids
和decoder_inputs_embeds
均未设置,则decoder_inputs_embeds
取inputs_embeds
的值。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(参见past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算 masked language modeling loss 的标签。索引应为[0, ..., config.vocab_size]
或 -100(参见input_ids
文档字符串)。索引设置为-100
的 token 将被忽略(掩蔽),loss 仅针对标签在[0, ..., config.vocab_size]
中的 token 计算。
返回:
transformers.modeling_outputs.Seq2SeqLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (MarianConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模 loss。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测分数(SoftMax 之前的每个词汇 token 的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外张量。包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),这些状态可用于加速顺序解码(参见
past_key_values
输入)。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出提供一个张量,+ 每层输出提供一个张量),形状为(batch_size, sequence_length, hidden_size)
。decoder 在每一层输出处的 Hidden-states 加上初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个张量),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力 head 中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个张量),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力 head 中的加权平均值。
-
encoder_last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的输出隐藏状态序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出提供一个张量,+ 每层输出提供一个张量),形状为(batch_size, sequence_length, hidden_size)
。encoder 在每一层输出处的 Hidden-states 加上初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个张量),形状为(batch_size, num_heads, sequence_length, sequence_length)
。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力 head 中的加权平均值。
MarianMTModel
forward 方法,覆盖了 __call__
特殊方法。
虽然前向传播的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
marian-nmt 的 transformer.h (c++) 的 Pytorch 版本。专为 OPUS-NMT 翻译 checkpoint 设计。可用模型在此处列出:here。
示例
>>> from transformers import AutoTokenizer, MarianMTModel
>>> src = "fr" # source language
>>> trg = "en" # target language
>>> model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
>>> model = MarianMTModel.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> sample_text = "où est l'arrêt de bus ?"
>>> batch = tokenizer([sample_text], return_tensors="pt")
>>> generated_ids = model.generate(**batch)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
"Where's the bus stop?"
MarianForCausalLM
forward
< source >( input_ids: LongTensor = None attention_mask: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None head_mask: Optional = None cross_attn_head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。默认情况下,如果您提供 padding,则 padding 将被忽略。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值选自[0, 1]
:- 1 表示 token 不被掩蔽,
- 0 表示 token 被掩蔽。
- encoder_hidden_states (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — encoder 最后一层的输出处的 hidden-states 序列。如果在模型配置为 decoder 的情况下,则在 cross-attention 中使用。 - encoder_attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 encoder 输入的 padding token 索引上执行 attention 的掩码。如果模型配置为 decoder,则此掩码在 cross-attention 中使用。掩码值选自[0, 1]
: - head_mask (
torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 用于 nullify attention 模块的选定 head 的掩码。掩码值选自[0, 1]
:- 1 表示 head 不被掩蔽,
- 0 表示 head 被掩蔽。
- cross_attn_head_mask (
torch.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 用于 nullify cross-attention 模块的选定 head 的掩码。掩码值选自[0, 1]
:- 1 表示 head 不被掩蔽,
- 0 表示 head 被掩蔽。
- past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加张量。 仅当模型在序列到序列模型中用作解码器时,才需要这两个附加张量。包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可以用于(参见
past_key_values
输入)加速顺序解码。如果使用
past_key_values
,则用户可以选择仅输入最后一次的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。索引应在[0, ..., config.vocab_size]
或 -100 中(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的标记计算。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
- output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。
返回:
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 torch.FloatTensor
元组(如果传递 return_dict=False
或 config.return_dict=False
),包含各种元素,具体取决于配置 (MarianConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于预测下一个标记)。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测分数(SoftMax 之前的每个词汇 token 的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出,每个层的输出也各有一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个张量),形状为(batch_size, num_heads, sequence_length, sequence_length)
。交叉注意力 softmax 之后的注意力权重,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的torch.FloatTensor
元组的元组,如果模型在编码器-解码器设置中使用,则每个元组包含自注意力和交叉注意力层的缓存键、值状态。 仅当config.is_decoder = True
时相关。包含预先计算的隐藏状态(注意力模块中的键和值),可以用于(参见
past_key_values
输入)加速顺序解码。
示例
>>> from transformers import AutoTokenizer, MarianForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-fr-en")
>>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-fr-en", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
TFMarianModel
class transformers.TFMarianModel
< source >( config: MarianConfig *inputs **kwargs )
参数
- config (MarianConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
裸 MARIAN 模型,输出原始隐藏状态,顶部没有任何特定的 head。 此模型继承自 TFPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 keras.Model 子类。 将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 所有输入都作为关键字参数(如 PyTorch 模型),或
- 所有输入都作为第一个位置参数中的列表、元组或字典。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。 由于这种支持,当使用 model.fit()
等方法时,应该“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
的单个张量,不包含其他任何内容:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 字典,其中包含一个或多个输入张量,与文档字符串中给出的输入名称相关联:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: tf.Tensor | None = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: tf.Tensor | None = None past_key_values: Tuple[Tuple[tf.Tensor]] | None = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: bool | None = None output_attentions: bool | None = None output_hidden_states: bool | None = None return_dict: bool | None = None training: bool = False **kwargs ) → transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或 tuple(tf.Tensor)
参数
- input_ids (
tf.Tensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,以避免对填充标记索引执行注意力机制。 掩码值在[0, 1]
中选择:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
- decoder_input_ids (
tf.Tensor
,形状为(batch_size, target_sequence_length)
,可选) — 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
Marian 使用
pad_token_id
作为decoder_input_ids
生成的起始标记。 如果使用past_key_values
,则可以选择仅输入最后一次的decoder_input_ids
(请参见past_key_values
)。 - decoder_attention_mask (
tf.Tensor
,形状为(batch_size, target_sequence_length)
,可选) — 将默认创建并忽略 pad 标记。 不建议在大多数用例中设置此项。 - decoder_position_ids (
tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个解码器输入序列标记在位置嵌入中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
tf.Tensor
,形状为(encoder_layers, encoder_attention_heads)
,可选) — 掩码,用于使编码器中注意力模块的选定 head 失效。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩码,
- 0 表示 head 被掩码。
- decoder_head_mask (
tf.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 掩码,用于使解码器中注意力模块的选定 head 失效。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩码,
- 0 表示 head 被掩码。
- cross_attn_head_mask (
tf.Tensor
,形状为(decoder_layers, decoder_attention_heads)
,可选) — 掩码,用于使交叉注意力模块的选定 head 失效。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩码,
- 0 表示 head 被掩码。
- encoder_outputs (
tf.FloatTensor
, 可选) — 编码器最后一层输出端的隐藏状态。 在解码器的交叉注意力中使用。 形状为(batch_size, sequence_length, hidden_size)
是一个序列 - past_key_values (长度为
config.n_layers
的Tuple[Tuple[tf.Tensor]]
) — 包含注意力模块的预计算的键和值隐藏状态。 可用于加速解码。 如果使用past_key_values
,则用户可以选择仅输入最后一次的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选, 默认为True
) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成期间设置为True
- output_attentions (
bool
, 可选) — 是否返回所有注意力层的 attention tensors。有关更多详细信息,请参阅返回 tensors 下的attentions
。此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。有关更多详细信息,请参阅返回 tensors 下的hidden_states
。此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。 - training (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(某些模块如 dropout 模块在训练和评估之间具有不同的行为)。
返回:
transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或一个 tf.Tensor
元组 (如果传递 return_dict=False
或当 config.return_dict=False
时) ,包含各种元素,具体取决于配置 (MarianConfig) 和输入。
-
last_hidden_state (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层的输出端的 hidden-states 序列。如果使用
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
List[tf.Tensor]
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) —tf.Tensor
列表,长度为config.n_layers
,每个 tensor 的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含解码器的预计算 hidden-states(注意力块中的键和值),可以用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于 embeddings 的输出 + 每个层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。decoder 在每一层输出处的 Hidden-states 加上初始嵌入输出。
-
decoder_attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力 head 中的加权平均值。
-
cross_attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力 head 中的加权平均值。
-
encoder_last_hidden_state (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 模型编码器最后一层的输出端的 hidden-states 序列。 -
encoder_hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于 embeddings 的输出 + 每个层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。encoder 在每一层输出处的 Hidden-states 加上初始嵌入输出。
-
encoder_attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力 head 中的加权平均值。
TFMarianModel 前向方法,覆盖了 __call__
特殊方法。
虽然前向传播的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFMarianModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> model = TFMarianModel.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFMarianMTModel
class transformers.TFMarianMTModel
< source >( config *inputs **kwargs )
参数
- config (MarianConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有语言建模头的 MARIAN 模型。可用于摘要。此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 heads 等)。
此模型也是 keras.Model 子类。 将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 所有输入都作为关键字参数(如 PyTorch 模型),或
- 所有输入都作为第一个位置参数中的列表、元组或字典。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。 由于这种支持,当使用 model.fit()
等方法时,应该“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
的单个张量,不包含其他任何内容:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 字典,其中包含一个或多个输入张量,与文档字符串中给出的输入名称相关联:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: tf.Tensor | None = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: TFBaseModelOutput | None = None past_key_values: Tuple[Tuple[tf.Tensor]] | None = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: bool | None = None output_attentions: bool | None = None output_hidden_states: bool | None = None return_dict: bool | None = None labels: tf.Tensor | None = None training: bool = False ) → transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或 tuple(tf.Tensor)
参数
- input_ids (
tf.Tensor
,形状为({0})
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 。
- attention_mask (
tf.Tensor
,形状为({0})
, 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被屏蔽,
- 0 表示 tokens 被屏蔽。
- decoder_input_ids (
tf.Tensor
,形状为(batch_size, target_sequence_length)
, 可选) — 词汇表中解码器输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 。
Marian 使用
pad_token_id
作为decoder_input_ids
生成的起始 token。 如果使用past_key_values
,则可以选择仅输入最后一个decoder_input_ids
(参见past_key_values
)。 - decoder_attention_mask (
tf.Tensor
,形状为(batch_size, target_sequence_length)
, 可选) — 默认情况下将创建,并忽略 pad tokens。不建议在大多数用例中设置此项。 - decoder_position_ids (
tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 每个解码器输入序列 tokens 在位置 embeddings 中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
tf.Tensor
,形状为(encoder_layers, encoder_attention_heads)
, 可选) — 用于 nullify 编码器中 attention 模块的选定 heads 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 head 未被屏蔽,
- 0 表示 head 被屏蔽。
- decoder_head_mask (
tf.Tensor
,形状为(decoder_layers, decoder_attention_heads)
, 可选) — 用于 nullify 解码器中 attention 模块的选定 heads 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 head 未被屏蔽,
- 0 表示 head 被屏蔽。
- cross_attn_head_mask (
tf.Tensor
,形状为(decoder_layers, decoder_attention_heads)
, 可选) — 用于 nullify 交叉注意力模块的选定 heads 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 head 未被屏蔽,
- 0 表示 head 被屏蔽。
- encoder_outputs (
tf.FloatTensor
, 可选) — 编码器最后一层输出端的 hidden states。用于解码器的交叉注意力。形状为(batch_size, sequence_length, hidden_size)
的序列是 - past_key_values (
Tuple[Tuple[tf.Tensor]]
,长度为config.n_layers
) — 包含注意力块的预计算键和值 hidden states。可用于加速解码。如果使用past_key_values
,用户可以选择仅输入最后一个decoder_input_ids
(那些没有将其 past key value states 提供给此模型的),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部 embedding 查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, optional, defaults toTrue
) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成期间设置为True
- output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是普通的元组。 此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。 - training (
bool
, optional, defaults toFalse
) — 是否在训练模式下使用模型(某些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。 - labels (形状为
(batch_size, sequence_length)
的tf.tensor
, optional) — 用于计算掩码语言建模损失的标签。索引应为[0, ..., config.vocab_size]
或 -100(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的标记计算。
返回:
transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或一个 tf.Tensor
元组 (如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (MarianConfig) 和输入。
-
loss (形状为
(n,)
的tf.Tensor
, optional, 当提供labels
时返回) — 语言建模损失。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的tf.Tensor
) — 语言建模头的预测分数(SoftMax 之前每个词汇表标记的分数)。 -
past_key_values (
List[tf.Tensor]
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) —tf.Tensor
列表,长度为config.n_layers
,每个 tensor 的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含解码器的预计算 hidden-states(注意力块中的键和值),可以用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于 embeddings 的输出 + 每个层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。decoder 在每一层输出处的 Hidden-states 加上初始嵌入输出。
-
decoder_attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力 head 中的加权平均值。
-
cross_attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力 head 中的加权平均值。
-
encoder_last_hidden_state (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 模型编码器最后一层的输出端的 hidden-states 序列。 -
encoder_hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于 embeddings 的输出 + 每个层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。encoder 在每一层输出处的 Hidden-states 加上初始嵌入输出。
-
encoder_attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力 head 中的加权平均值。
TFMarianMTModel 前向方法,覆盖了 __call__
特殊方法。
虽然前向传播的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
marian-nmt 的 transformer.h (c++) 的 TF 版本。 专为 OPUS-NMT 翻译检查点设计。 可用模型在此处列出 here。
示例
>>> from transformers import AutoTokenizer, TFMarianMTModel
>>> from typing import List
>>> src = "fr" # source language
>>> trg = "en" # target language
>>> sample_text = "où est l'arrêt de bus ?"
>>> model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
>>> model = TFMarianMTModel.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> batch = tokenizer([sample_text], return_tensors="tf")
>>> gen = model.generate(**batch)
>>> tokenizer.batch_decode(gen, skip_special_tokens=True)
"Where is the bus stop ?"
FlaxMarianModel
class transformers.FlaxMarianModel
< source >( config: MarianConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (MarianConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,则所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
裸 Marian 模型转换器输出原始隐藏状态,顶部没有任何特定的头。 此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头等)。
此模型也是 Flax Linen flax.nn.Module 子类。 将其用作常规 Flax 模块,并参考 Flax 文档以了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的jnp.ndarray
) — 词汇表中输入序列标记的索引。 如果您提供填充,默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的jnp.ndarray
, optional) — 掩码,以避免对填充标记索引执行注意力机制。 在[0, 1]
中选择的掩码值:- 1 表示未掩码的标记,
- 0 表示已掩码的标记。
- decoder_input_ids (形状为
(batch_size, target_sequence_length)
的jnp.ndarray
, optional) — 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
对于翻译和摘要训练,应提供
decoder_input_ids
。 如果未提供decoder_input_ids
,则模型将通过将input_ids
向右移动来创建此张量,以进行去噪预训练,遵循论文中的方法。 - decoder_attention_mask (形状为
(batch_size, target_sequence_length)
的jnp.ndarray
, optional) — 默认行为:生成一个张量,该张量忽略decoder_input_ids
中的 pad 标记。 默认情况下,也将使用因果掩码。如果您想更改填充行为,则应根据您的需要进行修改。 有关默认策略的更多信息,请参见 the paper 中的图 1。
- position_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, optional) — 位置嵌入中每个输入序列标记的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - decoder_position_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, optional) — 位置嵌入中每个解码器输入序列标记的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是普通的元组。
返回:
transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或一个 torch.FloatTensor
元组 (如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (MarianConfig) 和输入。
-
last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型解码器最后一层输出处的隐藏状态序列。如果使用
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加张量。包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),这些状态可用于加速顺序解码(参见
past_key_values
输入)。 -
decoder_hidden_states (
tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
元组(嵌入输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。decoder 在每一层输出处的 Hidden-states 加上初始嵌入输出。
-
decoder_attentions (
tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力 head 中的加权平均值。
-
cross_attentions (
tuple(jnp.ndarray)
, 可选,当传入output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力 head 中的加权平均值。
-
encoder_last_hidden_state (
jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 模型编码器最后一层的输出端的隐藏状态序列。 -
encoder_hidden_states (
tuple(jnp.ndarray)
, 可选,当传入output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组 (一个用于嵌入层的输出 + 每个层的输出各一个),形状为(batch_size, sequence_length, hidden_size)
。encoder 在每一层输出处的 Hidden-states 加上初始嵌入输出。
-
encoder_attentions (
tuple(jnp.ndarray)
, 可选,当传入output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力 head 中的加权平均值。
FlaxMarianPreTrainedModel
的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传播的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxMarianModel
>>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> model = FlaxMarianModel.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxMarianMTModel
class transformers.FlaxMarianMTModel
< source >( config: MarianConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (MarianConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
,jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
带有语言建模头的 MARIAN 模型。可用于翻译。此模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 Flax Linen flax.nn.Module 子类。 将其用作常规 Flax 模块,并参考 Flax 文档以了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
jnp.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。如果您提供填充,默认情况下将忽略填充。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
jnp.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 用于避免在 padding 标记索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
- decoder_input_ids (
jnp.ndarray
,形状为(batch_size, target_sequence_length)
, 可选) — 词汇表中解码器输入序列标记的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
对于翻译和摘要训练,应提供
decoder_input_ids
。 如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以进行遵循论文的去噪预训练。 - decoder_attention_mask (
jnp.ndarray
,形状为(batch_size, target_sequence_length)
, 可选) — 默认行为:生成一个张量,该张量忽略decoder_input_ids
中的 pad 标记。默认情况下,也会使用因果掩码。如果您想更改 padding 行为,则应根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个输入序列标记的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - decoder_position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个解码器输入序列标记的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。
返回:
transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或一个 torch.FloatTensor
元组 (如果传入 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (MarianConfig) 和输入。
-
logits (
jnp.ndarray
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测得分 (SoftMax 之前每个词汇表标记的得分)。 -
past_key_values (
tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加张量。包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),这些状态可用于加速顺序解码(参见
past_key_values
输入)。 -
decoder_hidden_states (
tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
元组(嵌入输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。decoder 在每一层输出处的 Hidden-states 加上初始嵌入输出。
-
decoder_attentions (
tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力 head 中的加权平均值。
-
cross_attentions (
tuple(jnp.ndarray)
, 可选,当传入output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力 head 中的加权平均值。
-
encoder_last_hidden_state (
jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 模型编码器最后一层的输出端的隐藏状态序列。 -
encoder_hidden_states (
tuple(jnp.ndarray)
, 可选,当传入output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组 (一个用于嵌入层的输出 + 每个层的输出各一个),形状为(batch_size, sequence_length, hidden_size)
。encoder 在每一层输出处的 Hidden-states 加上初始嵌入输出。
-
encoder_attentions (
tuple(jnp.ndarray)
, 可选,当传入output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组 (每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力 head 中的加权平均值。
FlaxMarianPreTrainedModel
的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传播的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxMarianMTModel
>>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> text = "My friends are cool but they eat too many carbs."
>>> input_ids = tokenizer(text, max_length=64, return_tensors="jax").input_ids
>>> sequences = model.generate(input_ids, max_length=64, num_beams=2).sequences
>>> outputs = tokenizer.batch_decode(sequences, skip_special_tokens=True)
>>> # should give *Meine Freunde sind cool, aber sie essen zu viele Kohlenhydrate.*