Transformers 文档

CTRL

Hugging Face's logo
加入 Hugging Face 社区

并获得增强文档体验

开始使用

CTRL

Models Spaces

概述

CTRL 模型由 Nitish Shirish Keskar、Bryan McCann、Lav R. Varshney、Caiming Xiong 和 Richard Socher 在 CTRL:一种用于可控生成的条件 Transformer 语言模型 中提出。它是一种因果(单向)Transformer,使用语言建模在包含约 140 GB 文本数据的超大型语料库上进行预训练,其中第一个标记保留为控制代码(例如链接、书籍、维基百科等)。

以下是该论文的摘要

大规模语言模型展现出很有希望的文本生成能力,但用户无法轻松控制生成文本的特定方面。我们发布了 CTRL,一个包含 16.3 亿个参数的条件 Transformer 语言模型,经过训练可以根据控制代码来控制风格、内容和特定于任务的行为。控制代码源自与原始文本自然共现的结构,在保留无监督学习的优势的同时,提供了对文本生成的更明确控制。这些代码还允许 CTRL 预测在给定序列的情况下,训练数据的哪些部分最有可能出现。这提供了一种通过基于模型的来源归因来分析大量数据的潜在方法。

此模型由 keskarnitishr 贡献。原始代码可以在 此处 找到。

使用技巧

  • CTRL 利用控制代码来生成文本:它要求生成文本以某些单词、句子或链接开头,以生成连贯的文本。有关更多信息,请参阅 原始实现
  • CTRL 是一个具有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
  • CTRL 使用因果语言建模 (CLM) 目标进行训练,因此能够强大地预测序列中的下一个标记。利用此功能,CTRL 可以生成语法连贯的文本,如 run_generation.py 示例脚本中所示。
  • PyTorch 模型可以将 past_key_values 作为输入,这是先前计算的键/值注意力对。TensorFlow 模型接受 past 作为输入。使用 past_key_values 值可以防止模型在文本生成上下文中重新计算预先计算的值。有关此参数用法的更多信息,请参见 forward 方法。

资源

CTRLConfig

transformers.CTRLConfig

< >

( vocab_size = 246534 n_positions = 256 n_embd = 1280 dff = 8192 n_layer = 48 n_head = 16 resid_pdrop = 0.1 embd_pdrop = 0.1 layer_norm_epsilon = 1e-06 initializer_range = 0.02 use_cache = True **kwargs )

参数

  • vocab_size (int, 可选, 默认为 246534) — CTRL 模型的词汇表大小。定义了在调用 CTRLModelTFCTRLModel 时传递的 inputs_ids 可以表示的不同标记的数量。
  • n_positions (int, 可选, 默认为 256) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • n_embd (int, 可选, 默认为 1280) — 嵌入和隐藏状态的维度。
  • dff (int, 可选, 默认为 8192) — 前馈网络 (FFN) 内部维度的维度。
  • n_layer (int, 可选, 默认为 48) — Transformer 编码器中隐藏层的数量。
  • n_head (int, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。
  • resid_pdrop (float, 可选, 默认为 0.1) — 嵌入、编码器和池化器中所有全连接层的 dropout 概率。
  • embd_pdrop (int, 可选, 默认为 0.1) — 嵌入的 dropout 比例。
  • layer_norm_epsilon (float, 可选, 默认为 1e-06) — 层归一化层中使用的 epsilon 值
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。

这是用于存储 CTRLModelTFCTRLModel 配置的配置类。它用于根据指定的参数实例化 CTRL 模型,定义模型架构。使用默认值实例化配置将产生与 SalesForce 的 Salesforce/ctrl 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例

>>> from transformers import CTRLConfig, CTRLModel

>>> # Initializing a CTRL configuration
>>> configuration = CTRLConfig()

>>> # Initializing a model (with random weights) from the configuration
>>> model = CTRLModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

CTRLTokenizer

transformers.CTRLTokenizer

< >

( vocab_file merges_file unk_token = '<unk>' **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • merges_file (str) — 合并文件的路径。
  • unk_token (str, 可选, 默认为 "<unk>") — 未知标记。词汇表中不存在的标记无法转换为 ID,并设置为使用此标记代替。

构建一个 CTRL 分词器。基于字节对编码。

此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

save_vocabulary

< >

( save_directory: str filename_prefix: Optional = None )

Pytorch
隐藏 Pytorch 内容

CTRLModel

transformers.CTRLModel

< >

( config )

参数

  • config (CTRLConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

基本的 CTRL 模型 transformer,输出原始隐藏状态,没有任何特定的头部。

此模型继承自 PreTrainedModel。请查看超类的文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入的大小、修剪头部等)。

此模型也是一个 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与一般用法和行为相关的所有内容。

forward

< >

( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 如果 past_key_valuesNone,则 input_ids_length = sequence_length,否则 past_key_values[0].shape[-2] (输入过去键值状态的 sequence_length)。词汇表中输入序列标记的索引。

    如果使用 past_key_values,则只应将尚未计算过去的输入 ID 作为 input_ids 传递。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 ID?

  • past_key_values (长度为 config.n_layersTuple[Tuple[torch.FloatTensor]]) — 包含模型计算的预先计算的隐藏状态(注意力块中的键和值)(请参阅下面的 past_key_values 输出)。可用于加速顺序解码。已将过去传递给此模型的 input_ids 不应作为输入 ID 传递,因为它们已被计算。
  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length), 可选) — 掩码避免在填充标记索引上执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示未被掩码的标记,
    • 0 表示被掩码的标记.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 段标记索引,指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A 标记,
    • 1 对应于句子 B 标记.

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被掩码,
    • 0 表示头部被掩码.
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 True,则会返回 past_key_values 键值状态,并且可以用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

transformers.modeling_outputs.BaseModelOutputWithPasttorch.FloatTensor 的元组(如果传递 return_dict=False 或当 config.return_dict=False 时),根据配置 (CTRLConfig) 和输入包含各种元素。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor) — 模型最后一层输出的隐藏状态序列。

    如果使用 past_key_values,则仅输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,以及可选地,如果 config.is_encoder_decoder=True,则还有 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,以及可选地,如果 config.is_encoder_decoder=True,则还有交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型具有嵌入层,则一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

CTRLModel 前向方法,覆盖 __call__ 特殊方法。

虽然前向传递的配方需要在此函数中定义,但之后应调用 Module 实例而不是此实例,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, CTRLModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = CTRLModel.from_pretrained("Salesforce/ctrl")

>>> # CTRL was trained with control codes as the first token
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt")
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()

>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 5, 1280]

CTRLLMHeadModel

transformers.CTRLLMHeadModel

< >

( config )

参数

  • config (CTRLConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

顶部带有语言建模头(权重与输入嵌入绑定的线性层)的 CTRL 模型转换器。

此模型继承自 PreTrainedModel。请查看超类的文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入的大小、修剪头部等)。

此模型也是一个 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与一般用法和行为相关的所有内容。

forward

< >

( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 如果 past_key_valuesNone,则 input_ids_length = sequence_length,否则 past_key_values[0].shape[-2](输入过去键值状态的 sequence_length)。词汇表中输入序列标记的索引。

    如果使用 past_key_values,则只有尚未计算过去的输入 ID 应作为 input_ids 传递。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 ID?

  • past_key_values (长度为 config.n_layersTuple[Tuple[torch.FloatTensor]]) — 包含模型计算的预计算隐藏状态(注意力块中的键和值)(请参阅下面的 past_key_values 输出)。可用于加速顺序解码。过去已提供给此模型的 input_ids 不应作为输入 ID 传递,因为它们已被计算。
  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length), 可选) — 避免对填充标记索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 未掩码标记为 1,
    • 已掩码标记为 0。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 段落标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记.

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于将自注意力模块的选定头部置空的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被屏蔽,
    • 0 表示头部被屏蔽.
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想更好地控制如何将 input_ids 索引转换为关联向量,而不是模型的内部嵌入查找矩阵,则此方法很有用。
  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 用于语言建模的标签。请注意,标签在模型内部**已移位**,即您可以设置 labels = input_ids 索引在 [-100, 0, ..., config.vocab_size] 中选择 所有设置为 -100 的标签都将被忽略(屏蔽),损失仅针对 [0, ..., config.vocab_size] 中的标签计算

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置 (CTRLConfig) 和输入的不同元素。

  • loss (torch.FloatTensor 形状为 (1,), 可选,当提供 labels 时返回) — 语言建模损失(用于下一个标记预测)。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)

    包含预先计算的隐藏状态(自注意力块中的键和值),可以用来(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型具有嵌入层,则一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

CTRLLMHeadModel forward 方法,覆盖 __call__ 特殊方法。

虽然前向传递的配方需要在此函数中定义,但之后应调用 Module 实例而不是此实例,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例

>>> import torch
>>> from transformers import AutoTokenizer, CTRLLMHeadModel

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = CTRLLMHeadModel.from_pretrained("Salesforce/ctrl")

>>> # CTRL was trained with control codes as the first token
>>> inputs = tokenizer("Wikipedia The llama is", return_tensors="pt")
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()

>>> sequence_ids = model.generate(inputs["input_ids"])
>>> sequences = tokenizer.batch_decode(sequence_ids)
>>> sequences
['Wikipedia The llama is a member of the family Bovidae. It is native to the Andes of Peru,']

>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> round(outputs.loss.item(), 2)
9.21

>>> list(outputs.logits.shape)
[1, 5, 246534]

CTRLForSequenceClassification

transformers.CTRLForSequenceClassification

< >

( config )

参数

  • config (CTRLConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。

顶部带有序列分类头(线性层)的 CTRL 模型转换器。 CTRLForSequenceClassification 使用最后一个标记进行分类,就像其他因果模型(例如 GPT-2)一样。因为它对最后一个标记进行分类,所以它需要知道最后一个标记的位置。如果在配置中定义了 pad_token_id,它会在每一行中找到最后一个不是填充标记的标记。如果没有定义 pad_token_id,它只会取批次中每一行的最后一个值。由于当传递 inputs_embeds 而不是 input_ids 时,它无法猜测填充标记,因此它会执行相同的操作(取批次中每一行的最后一个值)。

此模型继承自 PreTrainedModel。请查看超类的文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入的大小、修剪头部等)。

此模型也是一个 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与一般用法和行为相关的所有内容。

forward

< >

( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 如果 past_key_valuesNone,则 input_ids_length = sequence_length,否则 past_key_values[0].shape[-2](输入过去键值状态的 sequence_length)。词汇表中输入序列标记的索引。

    如果使用 past_key_values,则只有尚未计算过去的输入 ID 才能作为 input_ids 传入。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 ID?

  • past_key_values (长度为 config.n_layersTuple[Tuple[torch.FloatTensor]]) — 包含模型计算的预先计算的隐藏状态(注意力块中的键和值)(请参阅下面的 past_key_values 输出)。可用于加速序列解码。过去已提供给此模型的 input_ids 不应作为输入 ID 传入,因为它们已被计算。
  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length)可选) — 掩码以避免对填充标记索引执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示未掩码的标记,
    • 0 表示已掩码的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A 标记,
    • 1 对应于句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被屏蔽
    • 0 表示头部被屏蔽
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 True,则会返回 past_key_values 键值状态,并且可以用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor 形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置 (CTRLConfig) 和输入的不同元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 分类(或如果 config.num_labels==1 则为回归)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, config.num_labels)) — 分类(或如果 config.num_labels==1 则为回归)分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型具有嵌入层,则一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

CTRLForSequenceClassification 前向方法,覆盖 __call__ 特殊方法。

虽然前向传递的配方需要在此函数中定义,但之后应调用 Module 实例而不是此实例,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, CTRLForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl")

>>> # CTRL was trained with control codes as the first token
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt")
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_0'
>>> import torch

>>> torch.manual_seed(42)
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels)

>>> labels = torch.tensor(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.93

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, CTRLForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = CTRLForSequenceClassification.from_pretrained(
...     "Salesforce/ctrl", problem_type="multi_label_classification"
... )

>>> # CTRL was trained with control codes as the first token
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt")
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_0'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels)

>>> num_labels = len(model.config.id2label)
>>> labels = torch.nn.functional.one_hot(torch.tensor([predicted_class_id]), num_classes=num_labels).to(
...     torch.float
... )
>>> loss = model(**inputs, labels=labels).loss
>>> loss.backward()
TensorFlow
隐藏 TensorFlow 内容

TFCTRLModel

class transformers.TFCTRLModel

< >

( config *inputs **kwargs )

参数

  • config (CTRLConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。

基本的 CTRL 模型 transformer,输出原始隐藏状态,没有任何特定的头部。

此模型继承自 TFPreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 keras.Model 的子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档以了解与一般使用和行为相关的所有内容。

transformers 中的 TensorFlow 模型和层接受两种格式作为输入

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit() 之类的方法时,一切应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用三种方法来收集第一个位置参数中的所有输入张量

  • 只有一个 input_ids 且没有其他内容的单个张量:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给出的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心任何这些问题,因为您可以像传递给任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFBaseModelOutputWithPasttuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, input_ids_length)) — 如果 pastNone,则 input_ids_length = sequence_length;否则 input_ids_length = past[0].shape[-2](输入过去的键值状态的 sequence_length)。

    词汇表中输入序列标记的索引。

    如果使用 past,则只有尚未计算过去的输入 ID 才能作为 input_ids 传递。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 ID?

  • past (长度为 config.n_layersList[tf.Tensor]) — 包含模型计算的预计算隐藏状态(注意力块中的键和值)(请参阅下面的 past 输出)。可用于加速顺序解码。已将过去提供给此模型的标记 ID 不应作为输入 ID 传递,因为它们已被计算。
  • attention_mask (tf.TensorNumpy array,形状为 (batch_size, sequence_length)可选) — 掩码以避免对填充标记索引执行注意力。在 [0, 1] 中选择的掩码值:

    • 1 表示未屏蔽的标记,
    • 0 表示已屏蔽的标记。

    什么是注意力掩码?

  • token_type_ids (tf.TensorNumpy array,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (tf.TensorNumpy array,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被屏蔽
    • 0 表示头部已被屏蔽
  • inputs_embeds (tf.TensorNumpy array,形状为 (batch_size, sequence_length, hidden_size)可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,则此选项非常有用。
  • use_cache (bool可选) — 如果设置为 True,则返回过去的键值状态,并且可以用来加速解码(请参阅 past)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions。此参数只能在 eager 模式下使用,在 graph 模式下,将使用配置中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states。此参数只能在 eager 模式下使用,在 graph 模式下,将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通的元组。此参数可以在eager模式下使用,在图模式下,该值将始终设置为True。
  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(某些模块,如dropout模块,在训练和评估之间有不同的行为)。

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPasttuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPast 或一个 tf.Tensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置 (CTRLConfig) 和输入的不同元素。

  • last_hidden_state (tf.Tensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

    如果使用 past_key_values,则仅输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (List[tf.Tensor], 可选, 当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个张量的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head))。

    包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(tf.Tensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — tf.Tensor 的元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — tf.Tensor 的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFCTRLModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在此函数中定义,但之后应调用 Module 实例而不是此实例,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFCTRLModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = TFCTRLModel.from_pretrained("Salesforce/ctrl")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFCTRLLMHeadModel

transformers.TFCTRLLMHeadModel

< >

( config *inputs **kwargs )

参数

  • config (CTRLConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。

顶部带有语言建模头(权重与输入嵌入绑定的线性层)的 CTRL 模型转换器。

此模型继承自 TFPreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 keras.Model 的子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档以了解与一般使用和行为相关的所有内容。

transformers 中的 TensorFlow 模型和层接受两种格式作为输入

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit() 之类的方法时,一切应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用三种方法来收集第一个位置参数中的所有输入张量

  • 只有一个 input_ids 且没有其他内容的单个张量:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给出的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心任何这些问题,因为您可以像传递给任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFCausalLMOutputWithPasttuple(tf.Tensor)

参数

  • input_ids (Numpy 数组tf.Tensor ,形状为 (batch_size, input_ids_length)) — 如果 pastNone ,则 input_ids_length = sequence_length ;否则 input_ids_length = past[0].shape[-2] (输入过去的键值状态的 sequence_length)。

    词汇表中输入序列标记的索引。

    如果使用 past ,则只应将尚未计算过去的输入 ID 作为 input_ids 传递。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 ID?

  • past (长度为 config.n_layersList[tf.Tensor]) — 包含模型计算的预先计算的隐藏状态(注意力块中的键和值)(请参阅下面的 past 输出)。可用于加速顺序解码。已将过去提供给此模型的标记 ID 不应作为输入 ID 传递,因为它们已经被计算过了。
  • attention_mask (tf.TensorNumpy 数组 ,形状为 (batch_size, sequence_length)可选) — 掩码以避免对填充标记索引执行注意力。在 [0, 1] 中选择的掩码值:

    • 未屏蔽标记为 1,
    • 屏蔽标记为 0。

    什么是注意力掩码?

  • token_type_ids (tf.TensorNumpy array,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (tf.TensorNumpy array,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被掩码
    • 0 表示头部已被掩码
  • inputs_embeds (tf.TensorNumpy array,形状为 (batch_size, sequence_length, hidden_size)可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • use_cache (bool可选) — 如果设置为 True,则返回 past 键值状态,并且可以用于加速解码(请参阅 past)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions。此参数只能在 eager 模式下使用,在图模式下,将使用配置中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states。此参数只能在 eager 模式下使用,在图模式下,将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通的元组。此参数可以在 eager 模式下使用,在图模式下,该值将始终设置为 True。
  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(某些模块如 dropout 模块在训练和评估之间具有不同的行为)。
  • labels (tf.Tensor 形状为 (batch_size, sequence_length), 可选) — 用于计算交叉熵分类损失的标签。索引应在 [0, ..., config.vocab_size - 1] 中。

返回

transformers.modeling_tf_outputs.TFCausalLMOutputWithPasttuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithPast 或一个 tf.Tensor 的元组(如果传递 return_dict=False 或当 config.return_dict=False 时),包含根据配置 (CTRLConfig) 和输入的不同元素。

  • loss (tf.Tensor 形状为 (n,), 可选, 其中 n 是非屏蔽标签的数量,当提供 labels 时返回) — 语言建模损失(用于下一个标记预测)。

  • logits (tf.Tensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • past_key_values (List[tf.Tensor], 可选, 当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个张量的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head))。

    包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(tf.Tensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — tf.Tensor 的元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — tf.Tensor 的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFCTRLLMHeadModel 的 forward 方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在此函数中定义,但之后应调用 Module 实例而不是此实例,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFCTRLLMHeadModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = TFCTRLLMHeadModel.from_pretrained("Salesforce/ctrl")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFCTRLForSequenceClassification

transformers.TFCTRLForSequenceClassification

< >

( config *inputs **kwargs )

参数

  • config (CTRLConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。

带有序列分类头(线性层)的 CTRL 模型转换器。

TFCTRLForSequenceClassification 使用最后一个标记进行分类,就像其他因果模型(例如 GPT-1、GPT-2)一样。

由于它在最后一个标记上进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了 pad_token_id,它会在每一行中找到最后一个不是填充标记的标记。如果没有定义 pad_token_id,它只是取批次中每一行的最后一个值。由于当传递 inputs_embeds 而不是 input_ids 时,它无法猜测填充标记,因此它会执行相同的操作(取批次中每一行的最后一个值)。

此模型继承自 TFPreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 keras.Model 的子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档以了解与一般使用和行为相关的所有内容。

transformers 中的 TensorFlow 模型和层接受两种格式作为输入

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit() 之类的方法时,一切应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用三种方法来收集第一个位置参数中的所有输入张量

  • 只有一个 input_ids 且没有其他内容的单个张量:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给出的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心任何这些问题,因为您可以像传递给任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFSequenceClassifierOutputtuple(tf.Tensor)

参数

  • input_ids (Numpy 数组 或形状为 (batch_size, input_ids_length)tf.Tensor) — 如果 pastNone,则 input_ids_length = sequence_length,否则为 past[0].shape[-2](输入过去键值状态的 sequence_length)。

    词汇表中输入序列标记的索引。

    如果使用 past,则只有那些尚未计算过去的输入 ID 才应作为 input_ids 传递。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 ID?

  • past (长度为 config.n_layersList[tf.Tensor]) — 包含模型计算的预先计算的隐藏状态(注意力块中的键和值)(请参见下面的 past 输出)。可用于加速序列解码。过去已传递给此模型的标记 ID 不应作为输入 ID 传递,因为它们已被计算。
  • attention_mask (形状为 (batch_size, sequence_length)tf.TensorNumpy 数组可选) — 掩码以避免对填充标记索引执行注意力。在 [0, 1] 中选择的掩码值:

    • 未屏蔽标记为 1,
    • 屏蔽标记为 0。

    什么是注意力掩码?

  • token_type_ids (tf.TensorNumpy array,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (tf.TensorNumpy array,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被屏蔽
    • 0 表示头部已被屏蔽
  • inputs_embeds (tf.TensorNumpy array,形状为 (batch_size, sequence_length, hidden_size)可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想更好地控制如何将 input_ids 索引转换为关联向量(而不是模型的内部嵌入查找矩阵),这将非常有用。
  • use_cache (bool可选) — 如果设置为 True,则返回过去的键值状态,可用于加速解码(请参阅 past)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions。此参数只能在 eager 模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。此参数只能在渴望模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在渴望模式下使用,在图模式下,该值将始终设置为 True。
  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(某些模块(如 dropout 模块)在训练和评估之间具有不同的行为)。
  • labels (tf.Tensor 形状为 (batch_size, sequence_length), 可选) — 用于计算交叉熵分类损失的标签。索引应在 [0, ..., config.vocab_size - 1] 中。

返回

transformers.modeling_tf_outputs.TFSequenceClassifierOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个 tf.Tensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置 (CTRLConfig) 和输入的不同元素。

  • loss (tf.Tensor 形状为 (batch_size, ), 可选, 当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (tf.Tensor 形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — tf.Tensor 的元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — tf.Tensor 的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFCTRLForSequenceClassification 前向方法,覆盖 __call__ 特殊方法。

虽然前向传递的配方需要在此函数中定义,但之后应调用 Module 实例而不是此实例,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFCTRLForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = TFCTRLForSequenceClassification.from_pretrained("Salesforce/ctrl")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFCTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
< > 在 GitHub 上更新