Transformers 文档
柿子
并获取增强的文档体验
开始使用
Persimmon
概述
Persimmon 模型由 ADEPT 创建,并由 Erich Elsen、Augustus Odena、Maxwell Nye、Sağnak Taşırlar、Tri Dao、Curtis Hawthorne、Deepak Moparthi、Arushi Somani 编写。
作者介绍了 Persimmon-8B,这是一个基于经典 transformers 架构的解码器模型,具有查询和键归一化。Persimmon-8B 是一个完全许可的模型,约有 80 亿个参数,根据 Apache 许可证发布。Persimmon-8B 的一些关键属性是长上下文大小 (16K)、性能以及多模态扩展能力。
作者展示了他们评估模型的方法,重点是实际的文本生成,镜像用户与语言模型交互的方式。这项工作还包括一项比较分析,在各种评估任务中,将 Persimmon-8B 与其他突出的模型(MPT 7B Instruct 和 Llama 2 Base 7B 1-Shot)进行比较。结果表明,即使在有限的训练数据下,Persimmon-8B 也具有竞争力的性能。
在模型细节方面,本文概述了 Persimmon-8B 的架构和训练方法,深入分析了其设计选择、序列长度和数据集构成。作者展示了一个快速推理代码,该代码通过运算符融合和 CUDA 图利用,在保持代码连贯性的同时,性能优于传统的实现方式。他们表达了对社区将如何利用这项贡献来推动创新的期待,并暗示了作为正在进行的一系列开发的一部分,未来将有更多版本发布。
使用技巧
Persimmon
模型使用 bfloat16
训练,但原始推理使用 float16
。Hub 上上传的检查点使用 torch_dtype = 'float16'
,AutoModel
API 将使用它将检查点从 torch.float32
转换为 torch.float16
。
在线权重的 dtype
大多无关紧要,除非您在使用 model = AutoModelForCausalLM.from_pretrained("path", torch_dtype = "auto")
初始化模型时使用 torch_dtype="auto"
。原因是模型将首先被下载(使用在线检查点的 dtype
),然后它将被转换为 torch
的默认 dtype
(变为 torch.float32
)。用户应指定他们想要的 torch_dtype
,如果他们不指定,则默认为 torch.float32
。
不建议在 float16
中微调模型,已知会产生 nan
,因此应在 bfloat16
中微调模型。
提示
- 要转换模型,您需要使用
git clone https://github.com/persimmon-ai-labs/adept-inference
克隆原始存储库,然后获取检查点
git clone https://github.com/persimmon-ai-labs/adept-inference
wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_base_model_release.tar
tar -xvf 8b_base_model_release.tar
python src/transformers/models/persimmon/convert_persimmon_weights_to_hf.py --input_dir /path/to/downloaded/persimmon/weights/ --output_dir /output/path \
--pt_model_path /path/to/8b_chat_model_release/iter_0001251/mp_rank_00/model_optim_rng.pt
--ada_lib_path /path/to/adept-inference
对于聊天模型
wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_chat_model_release.tar tar -xvf 8b_base_model_release.tar
此后,可以通过以下方式加载模型
from transformers import PersimmonForCausalLM, PersimmonTokenizer
model = PersimmonForCausalLM.from_pretrained("/output/path")
tokenizer = PersimmonTokenizer.from_pretrained("/output/path")
Perismmon 使用基于
sentencepiece
的分词器,以及Unigram
模型。它支持字节回退,这仅在快速分词器的tokenizers==0.14.0
中可用。使用LlamaTokenizer
是因为它是一个围绕 sentencepiece 的标准包装器。chat
模板将在后续 PR 中使用模板函数进行更新!作者建议对聊天模式使用以下提示格式:
f"human: {prompt}\n\nadept:"
PersimmonConfig
class transformers.PersimmonConfig
< source >( vocab_size = 262144 hidden_size = 4096 intermediate_size = 16384 num_hidden_layers = 36 num_attention_heads = 64 hidden_act = 'relu2' max_position_embeddings = 16384 initializer_range = 0.02 layer_norm_eps = 1e-05 use_cache = True tie_word_embeddings = False rope_theta = 25000.0 rope_scaling = None qk_layernorm = True hidden_dropout = 0.0 attention_dropout = 0.0 partial_rotary_factor = 0.5 pad_token_id = None bos_token_id = 1 eos_token_id = 2 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 262144) — Persimmon 模型的词汇表大小。定义了在调用 PersimmonModel 时传递的inputs_ids
可以表示的不同 token 的数量。 - hidden_size (
int
, 可选, 默认为 4096) — 隐藏层表示的维度。 - intermediate_size (
int
, 可选, 默认为 16384) — MLP 表示的维度。 - num_hidden_layers (
int
, 可选, 默认为 36) — Transformer 编码器中隐藏层的数量。 - num_attention_heads (
int
, 可选, 默认为 64) — Transformer 编码器中每个注意力层的注意力头数。 - hidden_act (
str
或function
, 可选, 默认为"relu2"
) — 解码器中的非线性激活函数(函数或字符串)。 - max_position_embeddings (
int
, 可选, 默认为 16384) — 此模型可能使用的最大序列长度。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, 可选, 默认为 1e-5) — rms 归一化层使用的 epsilon 值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - tie_word_embeddings(
bool
, 可选, 默认为False
) — 是否绑定权重 embedding。 - rope_theta (
float
, 可选, 默认为 25000.0) — RoPE embedding 的基周期。 - rope_scaling (
Dict
, 可选) — 包含 RoPE embedding 的缩放配置的字典。注意:如果您应用新的 rope 类型,并期望模型在更长的max_position_embeddings
上工作,我们建议您相应地更新此值。预期内容:rope_type
(str
): 要使用的 RoPE 的子变体。可以是 [‘default’, ‘linear’, ‘dynamic’, ‘yarn’, ‘longrope’, ‘llama3’] 之一,其中 ‘default’ 是原始 RoPE 实现。factor
(float
, 可选): 用于除 ‘default’ 之外的所有 rope 类型。应用于 RoPE embedding 的缩放因子。在大多数缩放类型中,因子 x 将使模型能够处理长度为 x * 原始最大预训练长度的序列。original_max_position_embeddings
(int
, 可选): 与 ‘dynamic’, ‘longrope’ 和 ‘llama3’ 一起使用。预训练期间使用的原始最大位置 embedding。attention_factor
(float
, 可选): 与 ‘yarn’ 和 ‘longrope’ 一起使用。应用于注意力计算的缩放因子。如果未指定,则默认为实现建议的值,使用factor
字段推断建议值。beta_fast
(float
, 可选): 仅与 ‘yarn’ 一起使用。用于设置线性 ramp 函数中外推(仅限)边界的参数。如果未指定,则默认为 32。beta_slow
(float
, 可选): 仅与 ‘yarn’ 一起使用。用于设置线性 ramp 函数中内插(仅限)边界的参数。如果未指定,则默认为 1。short_factor
(List[float]
, 可选): 仅与 ‘longrope’ 一起使用。应用于短上下文(<original_max_position_embeddings
)的缩放因子。必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 相同。long_factor
(List[float]
, 可选): 仅与 ‘longrope’ 一起使用。应用于长上下文(<original_max_position_embeddings
)的缩放因子。必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 相同。low_freq_factor
(float
, 可选): 仅与 ‘llama3’ 一起使用。应用于 RoPE 低频分量的缩放因子。high_freq_factor
(float
, 可选): 仅与 ‘llama3’ 一起使用。应用于 RoPE 高频分量的缩放因子。 - qk_layernorm (
bool
, 可选, 默认为True
) — 是否在投影隐藏状态后对 Queries 和 Keys 进行归一化。 - hidden_dropout (
float
, 可选, 默认为 0.0) — 将 MLP 应用于隐藏状态后的 dropout 比率。 - attention_dropout (
float
, 可选, 默认为 0.0) — 计算注意力分数后的 dropout 比率。 - partial_rotary_factor (
float
, 可选, 默认为 0.5) — 将进行旋转 embedding 的 query 和 key 的百分比。 - 示例 —
这是用于存储 PersimmonModel 配置的配置类。它用于根据指定的参数实例化 Persimmon 模型,定义模型架构。使用默认值实例化配置将产生与 adept/persimmon-8b-base 相似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
PersimmonModel
class transformers.PersimmonModel
< 源代码 >( config: PersimmonConfig )
参数
- config (PersimmonConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
- config — PersimmonConfig
裸 Persimmon 模型,输出原始隐藏状态,顶部没有任何特定的头部。此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档,了解与常规用法和行为相关的所有事项。
Transformer 解码器,由 config.num_hidden_layers 层组成。每一层都是一个 PersimmonDecoderLayer
forward
< 源代码 >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。如果您提供填充,默认情况下将忽略填充。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,用于避免在填充标记索引上执行注意力机制。掩码值在[0, 1]
中选择:- 1 表示标记未被掩盖,
- 0 表示标记被掩盖。
索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后一个decoder_input_ids
(请参阅past_key_values
)。如果您想更改填充行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示头部未被掩盖,
- 0 表示头部被掩盖。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在前一解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的输入 ID),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列标记在序列中的位置。与position_ids
相反,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整序列长度。
PersimmonModel 的 forward 方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
PersimmonForCausalLM
forward
< 源代码 >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs ) → transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在 padding token 索引上执行 attention 的掩码。 Mask 值在[0, 1]
中选择:- 1 表示 token 未被掩码,
- 0 表示 token 被掩码。
索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后的decoder_input_ids
(参见past_key_values
)。如果要更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示 head 未被掩码,
- 0 表示 head 被掩码。
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
ortuple(tuple(torch.FloatTensor))
, optional) — 预先计算的隐藏状态(self-attention 块和 cross-attention 块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组都有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其过去的键值状态提供给此模型的),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, optional) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — 描述输入序列 tokens 在序列中位置的索引。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算 masked language modeling 损失的标签。 索引应为[0, ..., config.vocab_size]
或 -100 (请参阅input_ids
文档字符串)。 索引设置为-100
的 tokens 将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的 tokens 计算。 - logits_to_keep (
int
ortorch.Tensor
, optional) — 如果为int
,则计算最后logits_to_keep
个 tokens 的 logits。 如果为0
,则计算所有input_ids
的 logits(特殊情况)。 生成只需要最后一个 token logits,并且仅针对该 token 计算它们可以节省内存,这对于长序列或大词汇量来说变得非常重要。 如果为torch.Tensor
,则必须是与序列长度维度中要保留的索引相对应的 1D 张量。 这在使用打包张量格式(批次和序列长度的单维度)时很有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.CausalLMOutputWithPast 或 torch.FloatTensor
的元组 (如果传递 return_dict=False
或当 config.return_dict=False
时) ,包含各种元素,具体取决于配置 (PersimmonConfig) 和输入。
-
loss (
torch.FloatTensor
of shape(1,)
, optional, 当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组都有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。包含预先计算的隐藏状态(self-attention 块中的键和值),可以用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型具有嵌入层,则为嵌入的输出,+ 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attention 权重,用于计算 self-attention head 中的加权平均值。
PersimmonForCausalLM forward 方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, PersimmonForCausalLM
>>> model = PersimmonForCausalLM.from_pretrained("adept/persimmon-8b-base")
>>> tokenizer = AutoTokenizer.from_pretrained("adept/persimmon-8b-base")
>>> prompt = "human: Hey, what should I eat for dinner?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'human: Hey, what should I eat for dinner?\n\ncat: 🐱\n\nhuman: 😐\n\n'
PersimmonForSequenceClassification
class transformers.PersimmonForSequenceClassification
< source >( config )
带有序列分类 head (线性层) 的 Persimmon transformer。
PersimmonForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型 (例如 GPT-2) 一样。
由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。 如果在配置中定义了 pad_token_id
,它会在每行中找到最后一个不是 padding token 的 token。 如果未定义 pad_token_id
,它只会获取批次中每行的最后一个值。 由于当传递 inputs_embeds
而不是 input_ids
时,它无法猜测 padding tokens,因此它会执行相同的操作 (获取批次中每行的最后一个值)。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为所有模型实现的通用方法 (例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 token 未被掩盖,
- 0 表示 token 被掩盖。
索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
如果使用
past_key_values
,则可以选择仅输入最后的decoder_input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 token 的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其 past key value 状态提供给此模型的输入),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列 token 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方损失)。 如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
PersimmonForSequenceClassification
forward 方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
PersimmonForTokenClassification
class transformers.PersimmonForTokenClassification
< source >( config )
参数
- config (PersimmonConfig) — 模型配置类,其中包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,而只会加载配置。 查看 from_pretrained() 方法以加载模型权重。
Persimmon 模型 Transformer,顶部带有一个 token 分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为所有模型实现的通用方法 (例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。 默认情况下,如果您提供 padding,则会忽略 padding。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 token 未被掩盖,
- 0 表示 token 被掩盖。
索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
如果使用
past_key_values
,则可以选择仅输入最后的decoder_input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 token 的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其 past key value 状态提供给此模型的输入),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 详见返回张量下的attentions
部分以了解更多详情。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 详见返回张量下的hidden_states
部分以了解更多详情。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
, 可选) — 索引,描述输入序列 token 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存,并推断完整的序列长度。 - labels (
torch.LongTensor
,形状为(batch_size,)
, 可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方误差损失);如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (PersimmonConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
, 可选, 当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型具有嵌入层,则为嵌入的输出,+ 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attention 权重,用于计算 self-attention head 中的加权平均值。
PersimmonForTokenClassification
的前向传播方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, PersimmonForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("adept/persimmon-8b-base")
>>> model = PersimmonForTokenClassification.from_pretrained("adept/persimmon-8b-base")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss