Transformers 文档
ALBERT
并获得增强的文档体验
开始使用
ALBERT
概述
ALBERT 模型由 Zhenzhong Lan、Mingda Chen、Sebastian Goodman、Kevin Gimpel、Piyush Sharma 和 Radu Soricut 在 ALBERT: A Lite BERT for Self-supervised Learning of Language Representations 中提出。 它提出了两种参数缩减技术,以降低内存消耗并提高 BERT 的训练速度。
- 将嵌入矩阵拆分为两个较小的矩阵。
- 使用在组之间拆分的重复层。
论文摘要如下:
预训练自然语言表示时,增加模型大小通常会提高下游任务的性能。 然而,由于 GPU/TPU 内存限制、更长的训练时间和意外的模型退化,在某些时候进一步增加模型变得更加困难。 为了解决这些问题,我们提出了两种参数缩减技术,以降低内存消耗并提高 BERT 的训练速度。 综合实证证据表明,与原始 BERT 相比,我们提出的方法可以更好地扩展模型。 我们还使用了一种自监督损失,该损失侧重于建模句子间的连贯性,并表明它始终有助于具有多句输入的下游任务。 因此,我们最好的模型在 GLUE、RACE 和 SQuAD 基准测试中建立了新的最先进的结果,同时参数数量少于 BERT-large。
此模型由 lysandre 贡献。此模型的 jax 版本由 kamalkraj 贡献。原始代码可以在这里找到。
使用技巧
- ALBERT 是一个带有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
- ALBERT 使用重复层,这导致内存占用较小,但是计算成本仍然类似于具有相同隐藏层数的类 BERT 架构,因为它必须迭代相同数量的(重复)层。
- 嵌入大小 E 与隐藏大小 H 不同,这是合理的,因为嵌入是上下文无关的(一个嵌入向量代表一个 token),而隐藏状态是上下文相关的(一个隐藏状态代表一个 token 序列),因此 H >> E 更符合逻辑。此外,嵌入矩阵很大,因为它的大小为 V x E(V 是词汇表大小)。如果 E < H,则参数较少。
- 层被分成共享参数的组(以节省内存)。下一个句子预测被句子排序预测取代:在输入中,我们有两个句子 A 和 B(它们是连续的),我们或者输入 A 后面跟着 B,或者输入 B 后面跟着 A。模型必须预测它们是否被交换过。
使用缩放点积注意力 (SDPA)
PyTorch 包含一个原生缩放点积注意力 (SDPA) 运算符,作为 torch.nn.functional
的一部分。此函数包含多个实现,可以根据输入和正在使用的硬件应用。有关更多信息,请参阅官方文档或 GPU 推理页面。
当实现可用时,torch>=2.1.1
默认使用 SDPA,但您也可以在 from_pretrained()
中设置 attn_implementation="sdpa"
以显式请求使用 SDPA。
from transformers import AlbertModel
model = AlbertModel.from_pretrained("albert/albert-base-v1", torch_dtype=torch.float16, attn_implementation="sdpa")
...
为了获得最佳加速,我们建议以半精度加载模型(例如 torch.float16
或 torch.bfloat16
)。
在本地基准测试(GeForce RTX 2060-8GB,PyTorch 2.3.1,操作系统 Ubuntu 20.04)中使用 float16
,我们在训练和推理期间看到了以下加速。
训练 100 次迭代
batch_size | seq_len | 每次批处理的时间(eager - s) | 每次批处理的时间(sdpa - s) | 加速 (%) | Eager 峰值内存 (MB) | sdpa 峰值内存 (MB) | 内存节省 (%) |
---|---|---|---|---|---|---|---|
2 | 256 | 0.028 | 0.024 | 14.388 | 358.411 | 321.088 | 11.624 |
2 | 512 | 0.049 | 0.041 | 17.681 | 753.458 | 602.660 | 25.022 |
4 | 256 | 0.044 | 0.039 | 12.246 | 679.534 | 602.660 | 12.756 |
4 | 512 | 0.090 | 0.076 | 18.472 | 1434.820 | 1134.140 | 26.512 |
8 | 256 | 0.081 | 0.072 | 12.664 | 1283.825 | 1134.140 | 13.198 |
8 | 512 | 0.170 | 0.143 | 18.957 | 2820.398 | 2219.695 | 27.062 |
推理 50 个批次
batch_size | seq_len | 每个 token 的延迟 eager (ms) | 每个 token 的延迟 SDPA (ms) | 加速 (%) | 内存 eager (MB) | 内存 BT (MB) | 内存节省 (%) |
---|---|---|---|---|---|---|---|
4 | 128 | 0.083 | 0.071 | 16.967 | 48.319 | 48.45 | -0.268 |
4 | 256 | 0.148 | 0.127 | 16.37 | 63.4 | 63.922 | -0.817 |
4 | 512 | 0.31 | 0.247 | 25.473 | 110.092 | 94.343 | 16.693 |
8 | 128 | 0.137 | 0.124 | 11.102 | 63.4 | 63.66 | -0.409 |
8 | 256 | 0.271 | 0.231 | 17.271 | 91.202 | 92.246 | -1.132 |
8 | 512 | 0.602 | 0.48 | 25.47 | 186.159 | 152.564 | 22.021 |
16 | 128 | 0.252 | 0.224 | 12.506 | 91.202 | 91.722 | -0.567 |
16 | 256 | 0.526 | 0.448 | 17.604 | 148.378 | 150.467 | -1.388 |
16 | 512 | 1.203 | 0.96 | 25.365 | 338.293 | 271.102 | 24.784 |
此模型由 lysandre 贡献。此模型的 jax 版本由 kamalkraj 贡献。原始代码可以在这里找到。
资源
以下部分提供的资源包括一系列官方 Hugging Face 和社区(标有 🌎)资源,以帮助您开始使用 ALBERT。如果您有兴趣提交资源以包含在此处,请随时打开 Pull Request,我们将对其进行审核!该资源最好展示一些新的东西,而不是重复现有的资源。
查看文本分类任务指南,了解如何使用该模型。
- 此示例脚本支持 FlaxAlbertForTokenClassification。
- Token 分类章节,来自 🤗 Hugging Face 课程。
- 查看Token 分类任务指南,了解如何使用该模型。
- 此示例脚本和notebook 支持 AlbertForMaskedLM。
- 此示例脚本和notebook 支持 TFAlbertForMaskedLM。
- 此示例脚本和notebook 支持 FlaxAlbertForMaskedLM。
- 掩码语言建模章节,来自 🤗 Hugging Face 课程。
- 查看掩码语言建模任务指南,了解如何使用该模型。
- 此示例脚本和notebook 支持 AlbertForQuestionAnswering。
- 此示例脚本和notebook 支持 TFAlbertForQuestionAnswering。
- 此示例脚本支持 FlaxAlbertForQuestionAnswering。
- 问题解答章节,来自 🤗 Hugging Face 课程。
- 查看问题解答任务指南,了解如何使用该模型。
多项选择
查看多项选择任务指南,了解如何使用该模型。
AlbertConfig
class transformers.AlbertConfig
< source >( vocab_size = 30000 embedding_size = 128 hidden_size = 4096 num_hidden_layers = 12 num_hidden_groups = 1 num_attention_heads = 64 intermediate_size = 16384 inner_group_num = 1 hidden_act = 'gelu_new' hidden_dropout_prob = 0 attention_probs_dropout_prob = 0 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 classifier_dropout_prob = 0.1 position_embedding_type = 'absolute' pad_token_id = 0 bos_token_id = 2 eos_token_id = 3 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 30000) — ALBERT 模型的词汇表大小。定义了在调用 AlbertModel 或 TFAlbertModel 时,可以通过inputs_ids
传递的不同 token 的数量。 - embedding_size (
int
, 可选, 默认为 128) — 词汇表嵌入的维度。 - hidden_size (
int
, 可选, 默认为 4096) — 编码器层和池化器层的维度。 - num_hidden_layers (
int
, 可选, 默认为 12) — Transformer 编码器中隐藏层的数量。 - num_hidden_groups (
int
, 可选, 默认为 1) — 隐藏层的组数,同一组中的参数是共享的。 - num_attention_heads (
int
, 可选, 默认为 64) — Transformer 编码器中每个注意力层的注意力头数。 - intermediate_size (
int
, 可选, 默认为 16384) — Transformer 编码器中“中间”(通常称为前馈)层的维度。 - inner_group_num (
int
, 可选, 默认为 1) — 注意力和 ffn 的内部重复次数。 - hidden_act (
str
或Callable
, 可选, 默认为"gelu_new"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, 可选, 默认为 0) — 嵌入、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, 可选, 默认为 0) — 注意力概率的 dropout 比率。 - max_position_embeddings (
int
, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值(例如,512 或 1024 或 2048)。 - type_vocab_size (
int
, 可选, 默认为 2) — 在调用 AlbertModel 或 TFAlbertModel 时,可以通过token_type_ids
传递的词汇表大小。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。 - classifier_dropout_prob (
float
, 可选, 默认为 0.1) — 附加分类器的 dropout 比率。 - position_embedding_type (
str
, optional, defaults to"absolute"
) — 位置嵌入的类型。 从"absolute"
,"relative_key"
,"relative_key_query"
中选择一个。 对于位置嵌入,使用"absolute"
。 有关"relative_key"
的更多信息,请参考 Self-Attention with Relative Position Representations (Shaw et al.)。 有关"relative_key_query"
的更多信息,请参考 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的 方法 4。 - pad_token_id (
int
, optional, defaults to 0) — Padding token id. Padding 标记 id。 - bos_token_id (
int
, optional, defaults to 2) — Beginning of stream token id. 流的起始标记 id。 - eos_token_id (
int
, optional, defaults to 3) — End of stream token id. 流的结束标记 id。
这是用于存储 AlbertModel 或 TFAlbertModel 配置的配置类。 它用于根据指定的参数实例化 ALBERT 模型,定义模型架构。 使用默认值实例化配置将产生与 ALBERT albert/albert-xxlarge-v2 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 中的文档。
示例
>>> from transformers import AlbertConfig, AlbertModel
>>> # Initializing an ALBERT-xxlarge style configuration
>>> albert_xxlarge_configuration = AlbertConfig()
>>> # Initializing an ALBERT-base style configuration
>>> albert_base_configuration = AlbertConfig(
... hidden_size=768,
... num_attention_heads=12,
... intermediate_size=3072,
... )
>>> # Initializing a model (with random weights) from the ALBERT-base style configuration
>>> model = AlbertModel(albert_xxlarge_configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
AlbertTokenizer
class transformers.AlbertTokenizer
< source >( vocab_file do_lower_case = True remove_space = True keep_accents = False bos_token = '[CLS]' eos_token = '[SEP]' unk_token = '<unk>' sep_token = '[SEP]' pad_token = '<pad>' cls_token = '[CLS]' mask_token = '[MASK]' sp_model_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None **kwargs )
参数
- vocab_file (
str
) — SentencePiece 文件 (通常具有 .spm 扩展名),其中包含实例化 tokenizer 所需的词汇表。 - do_lower_case (
bool
, optional, defaults toTrue
) — Whether or not to lowercase the input when tokenizing. 是否在分词时将输入转换为小写。 - remove_space (
bool
, optional, defaults toTrue
) — Whether or not to strip the text when tokenizing (removing excess spaces before and after the string). 是否在分词时去除文本 (删除字符串前后多余的空格)。 - keep_accents (
bool
, optional, defaults toFalse
) — Whether or not to keep accents when tokenizing. 是否在分词时保留重音符号。 - bos_token (
str
, optional, defaults to"[CLS]"
) — 在预训练期间使用的序列起始标记。 可以用作序列分类器标记。当使用特殊标记构建序列时,这不是用于序列开头的标记。 使用的标记是
cls_token
。 - eos_token (
str
, optional, defaults to"[SEP]"
) — 序列的结束标记。当使用特殊标记构建序列时,这不是用于序列结尾的标记。 使用的标记是
sep_token
。 - unk_token (
str
, optional, defaults to"<unk>"
) — 未知标记。 词汇表中不存在的标记无法转换为 ID,而是设置为此标记。 - sep_token (
str
, optional, defaults to"[SEP]"
) — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列,或者用于问答的文本和问题。 它也用作使用特殊标记构建的序列的最后一个标记。 - pad_token (
str
, optional, defaults to"<pad>"
) — 用于 padding 的标记,例如在批量处理不同长度的序列时。 - cls_token (
str
, optional, defaults to"[CLS]"
) — 分类器标记,用于进行序列分类(对整个序列而不是每个标记进行分类)。 当使用特殊标记构建时,它是序列的第一个标记。 - mask_token (
str
, optional, defaults to"[MASK]"
) — 用于掩码值的标记。 这是在使用掩码语言建模训练此模型时使用的标记。 这是模型将尝试预测的标记。 - sp_model_kwargs (
dict
, optional) — 将传递给SentencePieceProcessor.__init__()
方法。 SentencePiece 的 Python 包装器 可用于设置以下内容:-
enable_sampling
:启用子词正则化。 -
nbest_size
:用于 unigram 的采样参数。 对 BPE-Dropout 无效。nbest_size = {0,1}
:不执行采样。nbest_size > 1
:从 nbest_size 结果中采样。nbest_size < 0
:假设 nbest_size 是无限的,并使用前向滤波和后向采样算法从所有假设(格)中采样。
-
alpha
:用于 unigram 采样的平滑参数,以及 BPE-dropout 的合并操作的 dropout 概率。
-
- sp_model (
SentencePieceProcessor
) — 用于每次转换(字符串、标记和 ID)的 SentencePiece 处理器。
构建 ALBERT tokenizer。 基于 SentencePiece。
此 tokenizer 继承自 PreTrainedTokenizer,其中包含大多数主要方法。 用户应参考此超类以获取有关这些方法的更多信息。
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
通过连接并添加特殊标记,从序列或序列对构建模型输入,用于序列分类任务。 ALBERT 序列具有以下格式
- 单个序列:
[CLS] X [SEP]
- 序列对:
[CLS] A [SEP] B [SEP]
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → List[int]
从没有添加特殊 token 的 token 列表中检索序列 ID。当使用 tokenizer 的 prepare_for_model
方法添加特殊 token 时,会调用此方法。
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
从传递的两个序列创建掩码,用于序列对分类任务。ALBERT
如果 token_ids_1
为 None
,则此方法仅返回掩码的第一部分 (0s)。
AlbertTokenizerFast
class transformers.AlbertTokenizerFast
< source >( vocab_file = None tokenizer_file = None do_lower_case = True remove_space = True keep_accents = False bos_token = '[CLS]' eos_token = '[SEP]' unk_token = '<unk>' sep_token = '[SEP]' pad_token = '<pad>' cls_token = '[CLS]' mask_token = '[MASK]' **kwargs )
参数
- vocab_file (
str
) — SentencePiece 文件(通常带有 .spm 扩展名),其中包含实例化 tokenizer 所需的词汇表。 - do_lower_case (
bool
, optional, defaults toTrue
) — 是否在 tokenizing 时将输入转换为小写。默认为True
。 - remove_space (
bool
, optional, defaults toTrue
) — 是否在 tokenizing 时去除文本 (删除字符串前后多余的空格)。默认为True
。 - keep_accents (
bool
, optional, defaults toFalse
) — 是否在 tokenizing 时保留重音符号。默认为False
。 - bos_token (
str
, optional, defaults to"[CLS]"
) — 在预训练期间使用的序列开始 token。可以用作序列分类器 token。当使用特殊 token 构建序列时,这不是用于序列开始的 token。使用的 token 是
cls_token
。 - eos_token (
str
, optional, defaults to"[SEP]"
) — 序列结束 token。 .. note:: 当使用特殊 token 构建序列时,这不是用于序列结束的 token。使用的 token 是sep_token
。 - unk_token (
str
, optional, defaults to"<unk>"
) — 未知 token。词汇表中不存在的 token 无法转换为 ID,并将设置为此 token。 - sep_token (
str
, optional, defaults to"[SEP]"
) — 分隔符 token,用于从多个序列构建序列时使用,例如用于序列分类的两个序列,或用于问答的文本和问题。它也用作使用特殊 token 构建的序列的最后一个 token。 - pad_token (
str
, optional, defaults to"<pad>"
) — 用于填充的 token,例如在批量处理不同长度的序列时。 - cls_token (
str
, optional, defaults to"[CLS]"
) — 分类器 token,用于进行序列分类(对整个序列而不是每个 token 进行分类)。当使用特殊 token 构建时,它是序列的第一个 token。 - mask_token (
str
, optional, defaults to"[MASK]"
) — 用于遮蔽值的 token。这是在使用掩码语言建模训练此模型时使用的 token。这是模型将尝试预测的 token。
构建一个 “fast” ALBERT tokenizer(由 HuggingFace 的 tokenizers 库支持)。基于 Unigram。此 tokenizer 继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
参数
- token_ids_0 (
List[int]
) — 将在其中添加特殊 token 的 ID 列表 - token_ids_1 (
List[int]
, optional) — 用于序列对的可选的第二个 ID 列表。
返回
List[int]
带有适当特殊 token 的 输入 ID 列表。
通过连接并添加特殊标记,从序列或序列对构建模型输入,用于序列分类任务。 ALBERT 序列具有以下格式
- 单个序列:
[CLS] X [SEP]
- 序列对:
[CLS] A [SEP] B [SEP]
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
从传递的两个序列创建掩码,用于序列对分类任务。ALBERT
如果 token_ids_1 为 None,则仅返回掩码的第一部分 (0s)。
Albert 特定输出
class transformers.models.albert.modeling_albert.AlbertForPreTrainingOutput
< source >( loss: typing.Optional[torch.FloatTensor] = None prediction_logits: FloatTensor = None sop_logits: FloatTensor = None hidden_states: typing.Optional[typing.Tuple[torch.FloatTensor]] = None attentions: typing.Optional[typing.Tuple[torch.FloatTensor]] = None )
参数
- loss (可选,当提供
labels
时返回, 形状为(1,)
的torch.FloatTensor
) — 总损失,为掩码语言建模损失和下一句预测(分类)损失之和。 - prediction_logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头的预测得分(SoftMax 之前的每个词汇标记的得分)。 - sop_logits (形状为
(batch_size, 2)
的torch.FloatTensor
) — 下一句预测(分类)头的预测得分(SoftMax 之前 True/False 延续的得分)。 - hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(每个嵌入输出 + 每层输出各一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的隐藏状态,加上初始嵌入输出。
- attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
AlbertForPreTraining 的输出类型。
class transformers.models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput
< source >( loss: tf.Tensor = None prediction_logits: tf.Tensor = None sop_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )
参数
- prediction_logits (形状为
(batch_size, sequence_length, config.vocab_size)
的tf.Tensor
) — 语言建模头的预测得分(SoftMax 之前的每个词汇标记的得分)。 - sop_logits (形状为
(batch_size, 2)
的tf.Tensor
) — 下一句预测(分类)头的预测得分(SoftMax 之前 True/False 延续的得分)。 - hidden_states (
tuple(tf.Tensor)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —tf.Tensor
的元组(每个嵌入输出 + 每层输出各一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出端的隐藏状态,加上初始嵌入输出。
- attentions (
tuple(tf.Tensor)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForPreTraining 的输出类型。
AlbertModel
class transformers.AlbertModel
< source >( config: AlbertConfig add_pooling_layer: bool = True )
参数
- config (AlbertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
裸 ALBERT 模型 Transformer,输出原始隐藏状态,顶部没有任何特定的 head。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 输入序列标记在词汇表中的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.FloatTensor
, 可选) — 掩码,用于避免在 padding 标记索引上执行注意力机制。 掩码值在[0, 1]
中选择:- 1 表示标记未被掩盖,
- 0 表示标记已被掩盖。
- token_type_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 分段标记索引,用于指示输入的第一个和第二个部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (形状为
(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
, 可选) — 掩码,用于使自注意力模块的选定 head 失效。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 已被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_outputs.BaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPooling 或一个 torch.FloatTensor
元组 (如果传递 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的输出处的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
,形状为(batch_size, hidden_size)
) — 序列的第一个标记(分类标记)的最后一层隐藏状态,在通过用于辅助预训练任务的层进行进一步处理之后。例如,对于 BERT 系列模型,这将返回通过线性层和 tanh 激活函数处理后的分类标记。线性层权重通过预训练期间的下一句预测(分类)目标进行训练。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出一个,+ 每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
AlbertModel 前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, AlbertModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = AlbertModel.from_pretrained("albert/albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
AlbertForPreTraining
class transformers.AlbertForPreTraining
< source >( config: AlbertConfig )
参数
- config (AlbertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
Albert 模型,顶部有两个头,就像在预训练期间所做的那样:一个 masked language modeling
头和一个 sentence order prediction (classification)
头。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None sentence_order_label: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.albert.modeling_albert.AlbertForPreTrainingOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,以避免对填充标记索引执行注意力机制。在[0, 1]
中选择的掩码值:- 1 代表未被掩码的标记,
- 0 代表被掩码的标记。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 分段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头无效的掩码。在[0, 1]
中选择的掩码值:- 1 表示头未被掩码,
- 0 表示头被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的标记计算。 - sentence_order_label (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算下一序列预测(分类)损失的标签。输入应为序列对(参见input_ids
文档字符串)。索引应在[0, 1]
中。0
表示原始顺序(序列 A,然后是序列 B),1
表示切换顺序(序列 B,然后是序列 A)。
返回
transformers.models.albert.modeling_albert.AlbertForPreTrainingOutput 或 tuple(torch.FloatTensor)
一个 transformers.models.albert.modeling_albert.AlbertForPreTrainingOutput 或一个 torch.FloatTensor
元组 (如果传递 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
loss (可选,当提供
labels
时返回,torch.FloatTensor
,形状为(1,)
) — 总损失,作为掩码语言建模损失和下一序列预测(分类)损失的总和。 -
prediction_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇表标记的分数)。 -
sop_logits (
torch.FloatTensor
,形状为(batch_size, 2)
) — 下一序列预测(分类)头的预测分数(SoftMax 之前 True/False 延续的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(嵌入输出一个 + 每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
AlbertForPreTraining 前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, AlbertForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = AlbertForPreTraining.from_pretrained("albert/albert-base-v2")
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)
>>> # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_logits = outputs.prediction_logits
>>> sop_logits = outputs.sop_logits
AlbertForMaskedLM
class transformers.AlbertForMaskedLM
< source >( config )
参数
- config (AlbertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有 language modeling
头的 Albert 模型。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — Segment token 索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使 self-attention 模块的选定 head 无效的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。索引应为[-100, 0, ..., config.vocab_size]
(参见input_ids
文档字符串)。索引设置为-100
的 tokens 将被忽略(掩盖),损失仅针对标签在[0, ..., config.vocab_size]
中的 tokens 计算。
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.MaskedLMOutput 或 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含取决于配置 (AlbertConfig) 和输入的各种元素。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 掩码语言建模 (MLM) 损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出一个,+ 每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
AlbertForMaskedLM forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> import torch
>>> from transformers import AutoTokenizer, AlbertForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = AlbertForMaskedLM.from_pretrained("albert/albert-base-v2")
>>> # add mask_token
>>> inputs = tokenizer("The capital of [MASK] is Paris.", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'france'
AlbertForSequenceClassification
class transformers.AlbertForSequenceClassification
< source >( config: AlbertConfig )
参数
- config (AlbertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有序列分类/回归头的 Albert 模型 Transformer(池化输出顶部的线性层),例如用于 GLUE 任务。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — Segment token 索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使 self-attention 模块的选定 head 无效的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。详见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。详见返回张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是普通的元组。 - labels (形状为
(batch_size,)
的torch.LongTensor
, optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方误差损失),如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
A transformers.modeling_outputs.SequenceClassifierOutput 或 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
loss (形状为
(1,)
的torch.FloatTensor
, optional, 当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (形状为
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分类(或回归,如果 config.num_labels==1)分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出一个,+ 每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
AlbertForSequenceClassification
的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, AlbertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("textattack/albert-base-v2-imdb")
>>> model = AlbertForSequenceClassification.from_pretrained("textattack/albert-base-v2-imdb")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_1'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = AlbertForSequenceClassification.from_pretrained("textattack/albert-base-v2-imdb", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.12
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, AlbertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("textattack/albert-base-v2-imdb")
>>> model = AlbertForSequenceClassification.from_pretrained("textattack/albert-base-v2-imdb", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = AlbertForSequenceClassification.from_pretrained(
... "textattack/albert-base-v2-imdb", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
AlbertForMultipleChoice
class transformers.AlbertForMultipleChoice
< source >( config: AlbertConfig )
参数
- config (AlbertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。请查看 from_pretrained() 方法以加载模型权重。
Albert 模型,顶部带有用于多项选择分类的头部(池化输出顶部的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, num_choices, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (形状为
(batch_size, num_choices, sequence_length)
的torch.FloatTensor
, optional) — 掩码,用于避免在 padding 标记索引上执行注意力。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- token_type_ids (形状为
(batch_size, num_choices, sequence_length)
的torch.LongTensor
, optional) — 分段标记索引,用于指示输入的第一个和第二个部分。索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (形状为
(batch_size, num_choices, sequence_length)
的torch.LongTensor
, optional) — 每个输入序列标记在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (形状为
(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
, optional) — 掩码,用于使自注意力模块的选定头无效。掩码值在[0, 1]
中选择:- 1 表示头未被掩码,
- 0 表示头被掩码。
- inputs_embeds (形状为
(batch_size, num_choices, sequence_length, hidden_size)
的torch.FloatTensor
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。详见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。详见返回张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是普通的元组。 - labels (形状为
(batch_size,)
的torch.LongTensor
, optional) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
中,其中 num_choices 是输入张量的第二个维度的大小。(参见上面的 input_ids)
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
A transformers.modeling_outputs.MultipleChoiceModelOutput 或 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
loss (形状为 (1,) 的
torch.FloatTensor
, optional, 当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, num_choices)
的torch.FloatTensor
) — num_choices 是输入张量的第二个维度。(参见上面的 input_ids)。分类分数(SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出一个,+ 每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
AlbertForMultipleChoice
的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, AlbertForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = AlbertForMultipleChoice.from_pretrained("albert/albert-base-v2")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
AlbertForTokenClassification
class transformers.AlbertForTokenClassification
< source >( config: AlbertConfig )
参数
- config (AlbertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。请查看 from_pretrained() 方法以加载模型权重。
Albert 模型,顶部带有用于标记分类的头部(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.FloatTensor
, optional) — 掩码,用于避免在 padding 标记索引上执行注意力。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于指示输入的第一部分和第二部分的分段 token 索引。 索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 位置嵌入中每个输入序列 token 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于 nullify 自注意力模块的选定 head 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩蔽,
- 0 表示 head 被掩蔽。
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算 token 分类损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
loss (
torch.FloatTensor
of shape(1,)
, optional, 当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.num_labels)
) — 分类分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出一个,+ 每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
AlbertForTokenClassification 前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, AlbertForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = AlbertForTokenClassification.from_pretrained("albert/albert-base-v2")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
AlbertForQuestionAnswering
class transformers.AlbertForQuestionAnswering
< source >( config: AlbertConfig )
参数
- config (AlbertConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法来加载模型权重。
带有跨度分类头的 Albert 模型,用于抽取式问答任务,如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 掩码,以避免对 padding token 索引执行注意力机制。 掩码值在[0, 1]
中选择:- 1 代表 token 未被掩蔽,
- 0 代表 token 被掩蔽。
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于指示输入的第一部分和第二部分的分段 token 索引。 索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 位置嵌入中每个输入序列 token 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于 nullify 自注意力模块的选定 head 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩蔽,
- 0 表示 head 被掩蔽。
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是普通元组。 - start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算 token 分类损失的标记跨度起始位置(索引)的标签。 位置被限制在序列的长度 (sequence_length
) 内。 序列之外的位置不计入损失计算。 - end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算 token 分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列的长度 (sequence_length
) 内。 序列之外的位置不计入损失计算。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
loss (
torch.FloatTensor
of shape(1,)
, optional, 当提供labels
时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 跨度起始分数(在 SoftMax 之前)。 -
end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 跨度结束分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出一个,+ 每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
AlbertForQuestionAnswering 前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, AlbertForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("twmkn9/albert-base-v2-squad2")
>>> model = AlbertForQuestionAnswering.from_pretrained("twmkn9/albert-base-v2-squad2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
'a nice puppet'
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([12])
>>> target_end_index = torch.tensor([13])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
7.36
TFAlbertModel
class transformers.TFAlbertModel
< source >( config: AlbertConfig *inputs **kwargs )
参数
- config (AlbertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
不带任何特定头部输出原始隐藏状态的裸 Albert 模型 Transformer。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 keras.Model 子类。像使用常规 TF 2.0 Keras 模型一样使用它,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种格式作为输入
- 将所有输入作为关键字参数(如 PyTorch 模型),或者
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,对于您来说,事情应该“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,以避免在填充标记索引上执行 attention。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- token_type_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 段落标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码,用于使自注意力模块的选定头部无效。掩码值在[0, 1]
中选择:- 1 表示头部未被掩码,
- 0 表示头部被掩码。
- inputs_embeds (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。 - training (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(某些模块(如 dropout 模块)在训练和评估之间具有不同的行为)。
返回
transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或一个 tf.Tensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
last_hidden_state (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出端的隐藏状态序列。 -
pooler_output (
tf.Tensor
,形状为(batch_size, hidden_size)
) — 序列的第一个标记(分类标记)的最后一层隐藏状态,通过线性层和 Tanh 激活函数进一步处理。线性层权重从预训练期间的下一句预测(分类)目标中训练而来。此输出通常不是输入语义内容的良好摘要,通常最好对整个输入序列的隐藏状态序列进行平均或池化。
-
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(嵌入输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertModel 前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFAlbertModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = TFAlbertModel.from_pretrained("albert/albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFAlbertForPreTraining
class transformers.TFAlbertForPreTraining
< source >( config: AlbertConfig *inputs **kwargs )
参数
- config (AlbertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有两个头部用于预训练的 Albert 模型:一个 masked language modeling
头部和一个 sentence order prediction
(句子顺序预测)(分类)头部。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 keras.Model 子类。像使用常规 TF 2.0 Keras 模型一样使用它,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种格式作为输入
- 将所有输入作为关键字参数(如 PyTorch 模型),或者
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,对于您来说,事情应该“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None sentence_order_label: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,用于避免对填充令牌索引执行注意力机制。掩码值在[0, 1]
中选择:- 1 表示未被掩码的令牌,
- 0 表示已被掩码的令牌。
- token_type_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 分段令牌索引,用于指示输入的第一个和第二个部分。索引在[0, 1]
中选择:- 0 对应于 *句子 A* 令牌,
- 1 对应于 *句子 B* 令牌。
- position_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码,用于使自注意力模块的选定头无效。掩码值在[0, 1]
中选择:- 1 表示头未被掩码,
- 0 表示头已被掩码。
- inputs_embeds (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。 - training (
bool
,可选,默认为False
) — 是否在训练模式下使用模型(某些模块(如 dropout 模块)在训练和评估之间具有不同的行为)。
返回
transformers.models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput 或 tuple(tf.Tensor)
transformers.models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput 或 tf.Tensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
prediction_logits (
tf.Tensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇表令牌的分数)。 -
sop_logits (
tf.Tensor
,形状为(batch_size, 2)
) — 下一句预测(分类)头的预测分数(SoftMax 之前 True/False 延续的分数)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(嵌入输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForPreTraining 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFAlbertForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = TFAlbertForPreTraining.from_pretrained("albert/albert-base-v2")
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :]
>>> # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_logits = outputs.prediction_logits
>>> sop_logits = outputs.sop_logits
TFAlbertForMaskedLM
class transformers.TFAlbertForMaskedLM
< source >( config: AlbertConfig *inputs **kwargs )
参数
- config (AlbertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有 language modeling
头的 Albert 模型。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 keras.Model 子类。像使用常规 TF 2.0 Keras 模型一样使用它,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种格式作为输入
- 将所有输入作为关键字参数(如 PyTorch 模型),或者
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,对于您来说,事情应该“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFMaskedLMOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列令牌的索引。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,用于避免对填充令牌索引执行注意力机制。掩码值在[0, 1]
中选择:- 1 表示未被掩码的令牌,
- 0 表示已被掩码的令牌。
- token_type_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 分段令牌索引,用于指示输入的第一个和第二个部分。索引在[0, 1]
中选择:- 0 对应于 *句子 A* 令牌,
- 1 对应于 *句子 B* 令牌。
- position_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码,用于使自注意力模块的选定头无效。掩码值在[0, 1]
中选择:- 1 表示头未被掩码,
- 0 表示头已被掩码。
- inputs_embeds (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。 - training (
bool
, optional, 默认为False
) — 是否在训练模式下使用模型(例如 dropout 模块等在训练和评估模式下的行为有所不同)。 - labels (
tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算遮蔽语言模型损失的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内 (参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(遮蔽),损失仅针对标签在[0, ..., config.vocab_size]
范围内的标记计算。
返回
transformers.modeling_tf_outputs.TFMaskedLMOutput 或 tuple(tf.Tensor)
返回 transformers.modeling_tf_outputs.TFMaskedLMOutput 或 tf.Tensor
的元组(如果传递了 return_dict=False
或者当 config.return_dict=False
时),其中包含取决于配置 (AlbertConfig) 和输入的各种元素。
-
loss (
tf.Tensor
,形状为(n,)
,可选,当提供labels
时返回,其中 n 是非遮蔽标签的数量) — 遮蔽语言模型 (MLM) 损失。 -
logits (
tf.Tensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言模型头的预测得分(SoftMax 之前的每个词汇表标记的得分)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(嵌入输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForMaskedLM 的 forward 方法重写了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFAlbertForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = TFAlbertForMaskedLM.from_pretrained("albert/albert-base-v2")
>>> # add mask_token
>>> inputs = tokenizer(f"The capital of [MASK] is Paris.", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where(inputs.input_ids == tokenizer.mask_token_id)[0][1]
>>> predicted_token_id = tf.math.argmax(logits[0, mask_token_index], axis=-1)
>>> tokenizer.decode(predicted_token_id)
'france'
TFAlbertForSequenceClassification
class transformers.TFAlbertForSequenceClassification
< 源代码 >( config: AlbertConfig *inputs **kwargs )
参数
- config (AlbertConfig) — 模型的配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有序列分类/回归头的 Albert 模型 Transformer(池化输出顶部的线性层),例如用于 GLUE 任务。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 keras.Model 子类。像使用常规 TF 2.0 Keras 模型一样使用它,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种格式作为输入
- 将所有输入作为关键字参数(如 PyTorch 模型),或者
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,对于您来说,事情应该“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< 源代码 >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding 标记索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被掩蔽,
- 0 表示标记已被掩蔽。
- token_type_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- position_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于 nullify 自注意力模块的选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩蔽,
- 0 表示 head 已被掩蔽。
- inputs_embeds (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的attentions
。此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。 - training (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(例如 dropout 模块等在训练和评估模式下的行为有所不同)。 - labels (
tf.Tensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方误差损失),如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
返回 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tf.Tensor
的元组(如果传递了 return_dict=False
或者当 config.return_dict=False
时),其中包含取决于配置 (AlbertConfig) 和输入的各种元素。
-
loss (
tf.Tensor
,形状为(batch_size, )
,可选,当提供labels
时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。 -
logits (
tf.Tensor
,形状为(batch_size, config.num_labels)
) — 分类得分(如果 config.num_labels==1,则为回归得分)(SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(嵌入输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForSequenceClassification 的 forward 方法重写了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFAlbertForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("vumichien/albert-base-v2-imdb")
>>> model = TFAlbertForSequenceClassification.from_pretrained("vumichien/albert-base-v2-imdb")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'LABEL_1'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFAlbertForSequenceClassification.from_pretrained("vumichien/albert-base-v2-imdb", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(float(loss), 2)
0.12
TFAlbertForMultipleChoice
class transformers.TFAlbertForMultipleChoice
< 源代码 >( config: AlbertConfig *inputs **kwargs )
参数
- config (AlbertConfig) — 模型的配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
Albert 模型,顶部带有用于多项选择分类的头部(池化输出顶部的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 keras.Model 子类。像使用常规 TF 2.0 Keras 模型一样使用它,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种格式作为输入
- 将所有输入作为关键字参数(如 PyTorch 模型),或者
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,对于您来说,事情应该“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< 源代码 >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
或tf.Tensor
,形状为(batch_size, num_choices, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被 Mask,
- 0 表示 tokens 被 Mask。
- token_type_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, num_choices, sequence_length)
, 可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, num_choices, sequence_length)
, 可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于 nullify self-attention 模块中选定 heads 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 head 未被 Mask,
- 0 表示 head 被 Mask。
- inputs_embeds (
tf.Tensor
,形状为(batch_size, num_choices, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回的 tensors 下的attentions
。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的 tensors 下的hidden_states
。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是 plain tuple。 此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。 - training (
bool
, 可选, 默认为False
) — 是否在 training 模式下使用模型(某些模块(如 dropout 模块)在 training 和 evaluation 之间具有不同的行为)。 - labels (
tf.Tensor
,形状为(batch_size,)
, 可选) — 用于计算多项选择分类损失的标签。 索引应为[0, ..., num_choices]
,其中num_choices
是输入 tensors 的第二个维度的大小。 (请参阅上面的input_ids
)
返回
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tf.Tensor
的 tuple (如果传递了 return_dict=False
或当 config.return_dict=False
时),包括各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
loss (
tf.Tensor
,形状为 (batch_size, ), 可选, 当提供labels
时返回) — 分类损失。 -
logits (
tf.Tensor
,形状为(batch_size, num_choices)
) — num_choices 是输入 tensors 的第二个维度。(请参阅上面的 input_ids)。分类分数(SoftMax 之前)。
-
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(嵌入输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForMultipleChoice forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFAlbertForMultipleChoice
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = TFAlbertForMultipleChoice.from_pretrained("albert/albert-base-v2")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits
TFAlbertForTokenClassification
class transformers.TFAlbertForTokenClassification
< source >( config: AlbertConfig *inputs **kwargs )
参数
- config (AlbertConfig) — 具有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
Albert 模型,顶部带有用于标记分类的头部(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 keras.Model 子类。像使用常规 TF 2.0 Keras 模型一样使用它,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种格式作为输入
- 将所有输入作为关键字参数(如 PyTorch 模型),或者
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,对于您来说,事情应该“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被 Mask,
- 0 表示 tokens 被 Mask。
- token_type_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于 nullify self-attention 模块中选定 heads 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 head 未被 Mask,
- 0 表示 head 被 Mask。
- inputs_embeds (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回的 tensors 下的attentions
。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的 tensors 下的hidden_states
。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯粹的元组。此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。 - training (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(某些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。 - labels (
tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 用于计算 token 分类损失的标签。索引应在[0, ..., config.num_labels - 1]
中。
返回
transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个 tf.Tensor
元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
loss (
tf.Tensor
,形状为(n,)
, 可选,当提供labels
时返回) — 分类损失。 -
logits (
tf.Tensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(嵌入输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForTokenClassification 前向传播方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFAlbertForTokenClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = TFAlbertForTokenClassification.from_pretrained("albert/albert-base-v2")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )
>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
TFAlbertForQuestionAnswering
class transformers.TFAlbertForQuestionAnswering
< source >( config: AlbertConfig *inputs **kwargs )
参数
- config (AlbertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有跨度分类头的 Albert 模型,用于抽取式问答任务,如 SQuAD(在 hidden-states 输出之上添加一个线性层,以计算 span start logits
和 span end logits
)。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 keras.Model 子类。像使用常规 TF 2.0 Keras 模型一样使用它,并参阅 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种格式作为输入
- 将所有输入作为关键字参数(如 PyTorch 模型),或者
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,对于您来说,事情应该“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
) — 输入序列词汇表中 token 的索引。可以使用 AutoTokenizer 获取索引。 请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode() 了解详细信息。
- attention_mask (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 掩码,用于避免在 padding token 索引上执行 attention。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
- token_type_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 段 token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列 token 在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于 nullify self-attention 模块的选定 head 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- inputs_embeds (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的attentions
。 此参数只能在 eager 模式下使用,在 graph 模式下,将改为使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden state。 有关更多详细信息,请参见返回张量下的hidden_states
。 此参数只能在 eager 模式下使用,在 graph 模式下,将改为使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯粹的元组。此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。 - training (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(某些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。 - start_positions (
tf.Tensor
,形状为(batch_size,)
, 可选) — 用于计算 token 分类损失的标记跨度起点的标签(索引)。 位置被限制为序列的长度 (sequence_length
)。 序列之外的位置不计入损失计算。 - end_positions (
tf.Tensor
,形状为(batch_size,)
, 可选) — 用于计算 token 分类损失的标记跨度终点的标签(索引)。 位置被限制为序列的长度 (sequence_length
)。 序列之外的位置不计入损失计算。
返回
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个 tf.Tensor
元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
loss (
tf.Tensor
,形状为(batch_size, )
, 可选, 当提供start_positions
和end_positions
时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵之和。 -
start_logits (
tf.Tensor
,形状为(batch_size, sequence_length)
) — 跨度起始得分(在 SoftMax 之前)。 -
end_logits (
tf.Tensor
,形状为(batch_size, sequence_length)
) — 跨度结束得分(在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(嵌入输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForQuestionAnswering 前向传播方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFAlbertForQuestionAnswering
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("vumichien/albert-base-v2-squad2")
>>> model = TFAlbertForQuestionAnswering.from_pretrained("vumichien/albert-base-v2-squad2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
'a nice puppet'
FlaxAlbertModel
class transformers.FlaxAlbertModel
< source >( config: AlbertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (AlbertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
不带任何特定头部输出原始隐藏状态的裸 Albert 模型 Transformer。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,以了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
, 形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
, 形状为(batch_size, sequence_length)
, 可选) — 掩码,用于避免在 padding token 索引上执行注意力机制。 Mask 值在[0, 1]
中选择:- 1 代表 未被掩盖 的 tokens,
- 0 代表 被掩盖 的 tokens。
- token_type_ids (
numpy.ndarray
, 形状为(batch_size, sequence_length)
, 可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
numpy.ndarray
, 形状为(batch_size, sequence_length)
, 可选) — 每个输入序列 token 在位置嵌入中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通的元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
last_hidden_state (
jnp.ndarray
, 形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的输出处的隐藏状态序列。 -
pooler_output (
jnp.ndarray
, 形状为(batch_size, hidden_size)
) — 序列的第一个 token (分类 token) 的最后一层隐藏状态,通过线性层和 Tanh 激活函数进一步处理。线性层权重从预训练期间的下一句预测(分类)目标进行训练。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxAlbertModel
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = FlaxAlbertModel.from_pretrained("albert/albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxAlbertForPreTraining
class transformers.FlaxAlbertForPreTraining
< source >( config: AlbertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (AlbertConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
Albert 模型,顶部有两个头,就像在预训练期间所做的那样:一个 masked language modeling
头和一个 sentence order prediction (classification)
头。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,以了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.albert.modeling_flax_albert.FlaxAlbertForPreTrainingOutput
或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
, 形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
, 形状为(batch_size, sequence_length)
, 可选) — 掩码,用于避免在 padding token 索引上执行注意力机制。 Mask 值在[0, 1]
中选择:- 1 代表 未被掩盖 的 tokens,
- 0 代表 被掩盖 的 tokens。
- token_type_ids (
numpy.ndarray
, 形状为(batch_size, sequence_length)
, 可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
numpy.ndarray
, 形状为(batch_size, sequence_length)
, 可选) — 每个输入序列 token 在位置嵌入中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通的元组。
返回
transformers.models.albert.modeling_flax_albert.FlaxAlbertForPreTrainingOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.albert.modeling_flax_albert.FlaxAlbertForPreTrainingOutput
或一个 torch.FloatTensor
元组 (如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
prediction_logits (
jnp.ndarray
, 形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测得分(SoftMax 之前的每个词汇表 token 的得分)。 -
sop_logits (
jnp.ndarray
, 形状为(batch_size, 2)
) — 下一句预测(分类)头的预测得分(SoftMax 之前的 True/False 延续的得分)。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxAlbertForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = FlaxAlbertForPreTraining.from_pretrained("albert/albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.sop_logits
FlaxAlbertForMaskedLM
class transformers.FlaxAlbertForMaskedLM
< source >( config: AlbertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (AlbertConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
带有 language modeling
头的 Albert 模型。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,以了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 掩码,用于避免在 padding token 索引上执行注意力机制。 掩码值在[0, 1]
中选择:1
表示 未被掩码 的 tokens,0
表示 已被掩码 的 tokens。
- token_type_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:0
对应于 句子 A token,1
对应于 句子 B token。
- position_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 位置嵌入中每个输入序列 token 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通的元组。
返回
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 语言建模头的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxAlbertForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2", revision="refs/pr/11")
>>> model = FlaxAlbertForMaskedLM.from_pretrained("albert/albert-base-v2", revision="refs/pr/11")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxAlbertForSequenceClassification
class transformers.FlaxAlbertForSequenceClassification
< source >( config: AlbertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (AlbertConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,则所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不会影响模型参数的 dtype。
带有序列分类/回归头的 Albert 模型 Transformer(池化输出顶部的线性层),例如用于 GLUE 任务。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,以了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 掩码,用于避免在 padding token 索引上执行注意力机制。 掩码值在[0, 1]
中选择:1
表示 未被掩码 的 tokens,0
表示 已被掩码 的 tokens。
- token_type_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:0
对应于 句子 A token,1
对应于 句子 B token。
- position_ids (形状为
(batch_size, sequence_length)
的numpy.ndarray
, 可选) — 位置嵌入中每个输入序列 token 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通的元组。
返回
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
logits (形状为
(batch_size, config.num_labels)
的jnp.ndarray
) — 分类(如果 config.num_labels==1 则为回归)分数(SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxAlbertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = FlaxAlbertForSequenceClassification.from_pretrained("albert/albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxAlbertForMultipleChoice
class transformers.FlaxAlbertForMultipleChoice
< source >( config: AlbertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (AlbertConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,则所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不会影响模型参数的 dtype。
Albert 模型,顶部带有用于多项选择分类的头部(池化输出顶部的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,以了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 未被 Mask 的 tokens,
- 0 表示 被 Mask 的 tokens。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
, 可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
, 可选) — 位置 embeddings 中每个输入序列 tokens 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
logits (
jnp.ndarray
,形状为(batch_size, num_choices)
) — num_choices 是输入 tensors 的第二个维度。 (参见上面的 input_ids )。分类分数(SoftMax 之前)。
-
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxAlbertForMultipleChoice
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = FlaxAlbertForMultipleChoice.from_pretrained("albert/albert-base-v2")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})
>>> logits = outputs.logits
FlaxAlbertForTokenClassification
class transformers.FlaxAlbertForTokenClassification
< source >( config: AlbertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (AlbertConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
,jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPUs 上) 之一。这可以用于在 GPU 或 TPUs 上启用混合精度训练或半精度推理。 如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
Albert 模型,顶部带有用于标记分类的头部(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,以了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 未被 Mask 的 tokens,
- 0 表示 被 Mask 的 tokens。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
, 可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 位置 embeddings 中每个输入序列 tokens 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
logits (
jnp.ndarray
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(在 SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxAlbertForTokenClassification
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = FlaxAlbertForTokenClassification.from_pretrained("albert/albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxAlbertForQuestionAnswering
class transformers.FlaxAlbertForQuestionAnswering
< source >( config: AlbertConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (AlbertConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPUs 上)之一。这可以用于在 GPU 或 TPUs 上启用混合精度训练或半精度推理。 如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
带有跨度分类头的 Albert 模型,用于抽取式问答任务,如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 子类。 将其用作常规 Flax linen Module,并参阅 Flax 文档,以了解与常规用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详情。
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 用于避免在 padding token 索引上执行 attention 的掩码。在[0, 1]
中选择的掩码值:- 1 代表 未被掩码 的 tokens,
- 0 代表 被掩码 的 tokens。
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token 索引,用于指示输入的第一部分和第二部分。在[0, 1]
中选择索引:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 位置嵌入中每个输入序列 tokens 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个 torch.FloatTensor
元组 (如果在传递 return_dict=False
时或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (AlbertConfig) 和输入。
-
start_logits (
jnp.ndarray
of shape(batch_size, sequence_length)
) — Span-start 分数(在 SoftMax 之前)。 -
end_logits (
jnp.ndarray
of shape(batch_size, sequence_length)
) — Span-end 分数(在 SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(每个嵌入输出 + 每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传递的配方需要在该函数内定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxAlbertForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = FlaxAlbertForQuestionAnswering.from_pretrained("albert/albert-base-v2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits