Transformers 文档

GPT-NeoX-Japanese

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

GPT-NeoX-Japanese

PyTorch FlashAttention

概述

我们介绍了 GPT-NeoX-Japanese,这是一个基于 https://github.com/EleutherAI/gpt-neox 训练的日语自回归语言模型。日语是一种独特的语言,词汇量大,并且结合了平假名、片假名和汉字书写系统。为了应对日语独特的结构,我们使用了一个特殊的子词分词器。我们非常感谢 tanreinama 开源了这个非常有帮助的分词器。根据谷歌关于 PaLM 的研究建议,我们移除了 Transformer 块中的偏置参数,从而实现了更好的模型性能。详情请参阅这篇文章

该模型的开发由来自 ABEJA, Inc.Shinya OtaniTakayoshi MakabeAnuj AroraKyo Hattori 领导。有关此模型构建活动的更多信息,请参阅这里(日语)

使用示例

generate() 方法可用于使用 GPT NeoX Japanese 模型生成文本。

>>> from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseTokenizer

>>> model = GPTNeoXJapaneseForCausalLM.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> tokenizer = GPTNeoXJapaneseTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")

>>> prompt = "人とAIが協調するためには、"

>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids

>>> gen_tokens = model.generate(
...     input_ids,
...     do_sample=True,
...     temperature=0.9,
...     max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)[0]

>>> print(gen_text)
人とAIが協調するためには、AIと人が共存し、AIを正しく理解する必要があります。

资源

GPTNeoXJapaneseConfig

class transformers.GPTNeoXJapaneseConfig

< >

( vocab_size = 32000 hidden_size = 2560 num_hidden_layers = 32 num_attention_heads = 32 intermediate_multiple_size = 4 hidden_act = 'gelu' rotary_pct = 1.0 rotary_emb_base = 10000 max_position_embeddings = 2048 initializer_range = 0.02 layer_norm_eps = 1e-05 use_cache = True bos_token_id = 31996 eos_token_id = 31999 rope_scaling = None attention_dropout = 0.1 hidden_dropout = 0.0 **kwargs )

参数

  • vocab_size (int, optional, 默认为 32000) — GPTNeoXJapanese 模型的词汇表大小。定义了在调用 GPTNeoXJapanese 时传入的 inputs_ids 可以表示的不同词元的数量。
  • hidden_size (int, optional, 默认为 2560) — 编码器层和池化层的维度。
  • num_hidden_layers (int, optional, 默认为 32) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, optional, 默认为 32) — Transformer 编码器中每个注意力层的注意力头数量。
  • intermediate_multiple_size (int, optional, 默认为 4) — Transformer 编码器中“中间”层的维度通过 hidden_size * intermediate_multiple_size 计算。
  • hidden_act (str or function, optional, 默认为 "gelu") — 编码器和池化层中的非线性激活函数(函数或字符串)。
  • rotary_pct (float, optional, 默认为 1.00) — 分配给旋转嵌入的隐藏维度百分比。
  • rotary_emb_base (int, optional, 默认为 10000) — 计算旋转嵌入频率的基数。
  • max_position_embeddings (int, optional, 默认为 2048) — 此模型可能使用的最大序列长度。
  • initializer_range (float, optional, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, optional, 默认为 1e-5) — 层归一化层使用的 epsilon 值。
  • use_cache (bool, optional, 默认为 True) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。仅在 config.is_decoder=True 时相关。
  • rope_scaling (Dict, optional) — 包含 RoPE 嵌入缩放配置的字典。注意:如果你应用了新的 rope 类型,并期望模型在更长的 max_position_embeddings 上工作,我们建议你相应地更新此值。预期内容:rope_type (str):要使用的 RoPE 子变体。可以是 [‘default’, ‘linear’, ‘dynamic’, ‘yarn’, ‘longrope’, ‘llama3’] 之一,其中 ‘default’ 是原始 RoPE 实现。factor (float, optional):与除 ‘default’ 之外的所有 rope 类型一起使用。应用于 RoPE 嵌入的缩放因子。在大多数缩放类型中,factor 为 x 将使模型能够处理长度为 x * 原始最大预训练长度的序列。original_max_position_embeddings (int, optional):与 ‘dynamic’、‘longrope’ 和 ‘llama3’ 一起使用。预训练期间使用的原始最大位置嵌入。attention_factor (float, optional):与 ‘yarn’ 和 ‘longrope’ 一起使用。应用于注意力计算的缩放因子。如果未指定,则默认为实现推荐的值,使用 factor 字段推断建议值。beta_fast (float, optional):仅与 ‘yarn’ 一起使用。用于设置线性斜坡函数中外插(仅)边界的参数。如果未指定,则默认为 32。beta_slow (float, optional):仅与 ‘yarn’ 一起使用。用于设置线性斜坡函数中内插(仅)边界的参数。如果未指定,则默认为 1。short_factor (list[float], optional):仅与 ‘longrope’ 一起使用。应用于短上下文(< original_max_position_embeddings)的缩放因子。必须是与隐藏大小除以注意力头数再除以 2 长度相同的数字列表。long_factor (list[float], optional):仅与 ‘longrope’ 一起使用。应用于长上下文(< original_max_position_embeddings)的缩放因子。必须是与隐藏大小除以注意力头数再除以 2 长度相同的数字列表。low_freq_factor (float, optional):仅与 ‘llama3’ 一起使用。应用于 RoPE 低频分量的缩放因子。high_freq_factor (float, optional):仅与 ‘llama3’ 一起使用。应用于 RoPE 高频分量的缩放因子。
  • attention_dropout (float, optional, 默认为 0.1) — 注意力的 dropout 比率。
  • hidden_dropout (float, optional, 默认为 0.0) — 隐藏层的 dropout 比率。
  • 示例

这是用于存储 GPTNeoXModelJapanese 配置的配置类。它用于根据指定的参数实例化一个 GPTNeoX 模型,定义模型架构。使用默认值实例化配置将产生与 GPTNeoXJapanese abeja/gpt-neox-japanese-2.7b 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。默认配置设置为 2.7B 模型。

>>> from transformers import GPTNeoXJapaneseConfig, GPTNeoXJapaneseModel

>>> # Initializing a GPTNeoXJapanese gpt-neox-japanese-2.7b style configuration
>>> configuration = GPTNeoXJapaneseConfig()

>>> # Initializing a model (with random weights) from the gpt-neox-japanese-2.7b style configuration
>>> model = GPTNeoXJapaneseModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

GPTNeoXJapaneseTokenizer

class transformers.GPTNeoXJapaneseTokenizer

< >

( vocab_file emoji_file unk_token = '<|endoftext|>' pad_token = '<|endoftext|>' bos_token = '<|startoftext|>' eos_token = '<|endoftext|>' do_clean_text = False **kwargs )

参数

  • vocab_file (str) — 包含词汇表的文件。
  • emoji_file (str) — 包含表情符号的文件。
  • unk_token (str, optional, 默认为 "<|endoftext|>") — 未知词元。不在词汇表中的词元无法转换为 ID,将被设置为此词元。
  • pad_token (str, 可选, 默认为 "<|endoftext|>") — 用于填充的词元。
  • bos_token (str, 可选, 默认为 "<|startoftext|>") — 序列开始词元。
  • eos_token (str, 可选, 默认为 "<|endoftext|>") — 序列结束词元。
  • do_clean_text (bool, 可选, 默认为 False) — 是否为URL、EMAIL、TEL、日语日期和日语价格清理文本。

此分词器继承自 PreTrainedTokenizer,并基于此仓库(https://github.com/tanreinama/Japanese-BPEEncoder_V2)中使用的日语专用子词编码。有关详细信息,请查看该仓库。日语的词汇量相对较大,且词与词之间没有分隔。此外,该语言是平假名、片假名和汉字的组合,并且经常使用诸如“1”和“①”之类的变体。为了应对这些情况,此分词器具有以下特点:

  • 逐子词分割,介于字节串和形态分析之间。
  • 为每个汉字、平假名和片假名字符创建BPE,并且不存在跨越字符类型的BPE,例如汉字+平假名或平假名+片假名。
  • 不需要 <unk> 的全字节编码。
  • 独立于UTF代码,如2字节和3字节字符。
  • 将异形字转换为相同的 token_id。
  • Emoji和表情符号被分组为12种特殊标签。

示例

>>> from transformers import GPTNeoXJapaneseTokenizer

>>> tokenizer = GPTNeoXJapaneseTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> # You can confirm both 慶応 and 慶應 are encoded to 17749
>>> tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"]
[30014, 26883, 26638, 27228, 25, 26650, 31732, 31679, 27809, 26638, 17749, 31592, 17749, 31593, 321, 1281]

>>> # Both 慶応 and 慶應 are decoded to 慶応
>>> tokenizer.decode(tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"])
'吾輩は猫である🐯。実は慶応(慶応)大学出身'

convert_tokens_to_string

< >

( tokens )

将标记序列(字符串)转换为单个字符串。

GPTNeoXJapaneseModel

class transformers.GPTNeoXJapaneseModel

< >

( config )

参数

  • config (GPTNeoXJapaneseModel) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。

原始的 Gpt Neox Japanese 模型,输出原始隐藏状态,顶部没有任何特定的头。

该模型继承自 PreTrainedModel。查阅超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, tuple[tuple[torch.FloatTensor]], NoneType] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。

    索引可以使用 AutoTokenizer 获得。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length), 可选) — 用于避免对填充词元索引执行注意力机制的掩码。掩码值选自 [0, 1]

    • 1 表示词元未被屏蔽
    • 0 表示词元被屏蔽

    什么是注意力掩码?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列词元的位置索引。选值范围为 [0, config.n_positions - 1]

    什么是位置ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值选自 [0, 1]

    • 1 表示头未被屏蔽
    • 0 表示头被屏蔽
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可以选择直接传递嵌入表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这会很有用。
  • past_key_values (Union[~cache_utils.Cache, tuple[tuple[torch.FloatTensor]], NoneType]) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常包括在解码的先前阶段,当 use_cache=Trueconfig.use_cache=True 时由模型返回的 past_key_values

    允许两种格式:

    • 一个 Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量。这也称为旧版缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传入 past_key_values,将返回旧版缓存格式。

    如果使用 past_key_values,用户可以选择只输入最后一个 input_ids(那些没有为其提供过去键值状态的 input_ids),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length), 可选) — 描述输入序列词元在序列中位置的索引。与 position_ids 相反,此张量不受填充影响。它用于在正确的位置更新缓存并推断完整的序列长度。

返回

transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPast 或一个 `torch.FloatTensor` 元组(如果传递了 `return_dict=False` 或 `config.return_dict=False`),根据配置(GPTNeoXJapaneseConfig)和输入,包含各种元素。

  • last_hidden_state (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (Cache, 可选, 在传递 `use_cache=True` 或 `config.use_cache=True` 时返回) — 这是一个 Cache 实例。更多详情,请参阅我们的 kv 缓存指南

    包含预先计算的隐藏状态(自注意力块中的键和值,如果 `config.is_encoder_decoder=True`,则还包括交叉注意力块中的键和值),可用于(请参阅 `past_key_values` 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 在传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — 形状为 `(batch_size, sequence_length, hidden_size)` 的 `torch.FloatTensor` 元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出)。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 在传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — 形状为 `(batch_size, num_heads, sequence_length, sequence_length)` 的 `torch.FloatTensor` 元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

GPTNeoXJapaneseModel 的 forward 方法会覆盖 __call__ 特殊方法。

尽管前向传播的配方需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, GPTNeoXJapaneseModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> model = GPTNeoXJapaneseModel.from_pretrained("abeja/gpt-neox-japanese-2.7b")

>>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

GPTNeoXJapaneseForCausalLM

class transformers.GPTNeoXJapaneseForCausalLM

< >

( config )

参数

  • config (GPTNeoXJapaneseForCausalLM) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。

GPTNeoXJapanese 模型,其顶部带有一个 `语言建模` 头,用于分类器模型的微调。

该模型继承自 PreTrainedModel。查阅超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, tuple[tuple[torch.FloatTensor]], NoneType] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **kwargs ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。

    索引可以使用 AutoTokenizer 获得。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length), 可选) — 用于避免对填充词元索引执行注意力机制的掩码。掩码值选自 [0, 1]

    • 1 表示词元未被屏蔽
    • 0 表示词元被屏蔽

    什么是注意力掩码?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列词元的位置索引。选值范围为 [0, config.n_positions - 1]

    什么是位置ID?

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可以选择直接传递嵌入表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这会很有用。
  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值选自 [0, 1]

    • 1 表示头未被屏蔽
    • 0 表示头被屏蔽
  • past_key_values (Union[~cache_utils.Cache, tuple[tuple[torch.FloatTensor]], NoneType]) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常包括在解码的先前阶段,当 use_cache=Trueconfig.use_cache=True 时由模型返回的 past_key_values

    允许两种格式:

    • 一个 Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量。这也称为旧版缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传入 past_key_values,将返回旧版缓存格式。

    如果使用 past_key_values,用户可以选择只输入最后一个 input_ids(那些没有为其提供过去键值状态的 input_ids),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • labels (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 用于计算从左到右语言建模损失(下一个词预测)的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(参见 input_ids 文档字符串)。索引设置为 -100 的词元将被忽略(屏蔽),损失仅对标签在 [0, ..., config.vocab_size] 范围内的词元进行计算。
  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length), 可选) — 描述输入序列词元在序列中位置的索引。与 position_ids 相反,此张量不受填充影响。它用于在正确的位置更新缓存并推断完整的序列长度。

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个 `torch.FloatTensor` 元组(如果传递了 `return_dict=False` 或 `config.return_dict=False`),根据配置(GPTNeoXJapaneseConfig)和输入,包含各种元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个 token 预测)。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • past_key_values (Cache, 可选, 在传递 `use_cache=True` 或 `config.use_cache=True` 时返回) — 这是一个 Cache 实例。更多详情,请参阅我们的 kv 缓存指南

    包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 在传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — 形状为 `(batch_size, sequence_length, hidden_size)` 的 `torch.FloatTensor` 元组(一个用于嵌入层的输出(如果模型有嵌入层),再加上每个层的输出)。

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 在传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — 形状为 `(batch_size, num_heads, sequence_length, sequence_length)` 的 `torch.FloatTensor` 元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

GPTNeoXJapaneseForCausalLM 的 forward 方法会覆盖 __call__ 特殊方法。

尽管前向传播的配方需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseConfig
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> config = GPTNeoXJapaneseConfig.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> config.is_decoder = True
>>> model = GPTNeoXJapaneseForCausalLM.from_pretrained("abeja/gpt-neox-japanese-2.7b", config=config)

>>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits
< > 在 GitHub 上更新