Transformers 文档
因果语言建模
并获得增强的文档体验
开始使用
因果语言建模
语言建模有两种类型:因果的和 Masked 的。本指南阐述了因果语言建模。因果语言模型常用于文本生成。您可以将这些模型用于创造性应用,例如选择您自己的文本冒险或像 Copilot 或 CodeParrot 这样的智能编码助手。
因果语言建模预测 token 序列中的下一个 token,并且模型只能关注左侧的 token。这意味着模型看不到未来的 token。GPT-2 是因果语言模型的一个示例。
本指南将向您展示如何
- 在 r/askscience 子集上微调 DistilGPT2,该子集来自 ELI5 数据集。
- 使用您微调的模型进行推理。
要查看与此任务兼容的所有架构和检查点,我们建议查看任务页面
在您开始之前,请确保您已安装所有必要的库
pip install transformers datasets evaluate
我们鼓励您登录您的 Hugging Face 帐户,以便您可以上传并与社区分享您的模型。当提示时,输入您的 token 以登录
>>> from huggingface_hub import notebook_login
>>> notebook_login()
加载 ELI5 数据集
首先,使用 🤗 Datasets 库从 ELI5-Category 数据集中加载前 5000 个示例。这将让您有机会进行实验并确保一切正常,然后再花费更多时间在完整数据集上进行训练。
>>> from datasets import load_dataset
>>> eli5 = load_dataset("eli5_category", split="train[:5000]")
使用 train_test_split 方法将数据集的 train
拆分拆分为训练集和测试集
>>> eli5 = eli5.train_test_split(test_size=0.2)
然后查看一个示例
>>> eli5["train"][0]
{'q_id': '7h191n',
'title': 'What does the tax bill that was passed today mean? How will it affect Americans in each tax bracket?',
'selftext': '',
'category': 'Economics',
'subreddit': 'explainlikeimfive',
'answers': {'a_id': ['dqnds8l', 'dqnd1jl', 'dqng3i1', 'dqnku5x'],
'text': ["The tax bill is 500 pages long and there were a lot of changes still going on right to the end. It's not just an adjustment to the income tax brackets, it's a whole bunch of changes. As such there is no good answer to your question. The big take aways are: - Big reduction in corporate income tax rate will make large companies very happy. - Pass through rate change will make certain styles of business (law firms, hedge funds) extremely happy - Income tax changes are moderate, and are set to expire (though it's the kind of thing that might just always get re-applied without being made permanent) - People in high tax states (California, New York) lose out, and many of them will end up with their taxes raised.",
'None yet. It has to be reconciled with a vastly different house bill and then passed again.',
'Also: does this apply to 2017 taxes? Or does it start with 2018 taxes?',
'This article explains both the House and senate bills, including the proposed changes to your income taxes based on your income level. URL_0'],
'score': [21, 19, 5, 3],
'text_urls': [[],
[],
[],
['https://www.investopedia.com/news/trumps-tax-reform-what-can-be-done/']]},
'title_urls': ['url'],
'selftext_urls': ['url']}
虽然这看起来很多,但您真正感兴趣的只是 text
字段。语言建模任务的酷之处在于您不需要标签(也称为无监督任务),因为下一个词就是标签。
预处理
下一步是加载 DistilGPT2 分词器来处理 text
子字段
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
您会从上面的示例中注意到,text
字段实际上嵌套在 answers
内部。这意味着您需要使用 flatten
方法从其嵌套结构中提取 text
子字段
>>> eli5 = eli5.flatten()
>>> eli5["train"][0]
{'q_id': '7h191n',
'title': 'What does the tax bill that was passed today mean? How will it affect Americans in each tax bracket?',
'selftext': '',
'category': 'Economics',
'subreddit': 'explainlikeimfive',
'answers.a_id': ['dqnds8l', 'dqnd1jl', 'dqng3i1', 'dqnku5x'],
'answers.text': ["The tax bill is 500 pages long and there were a lot of changes still going on right to the end. It's not just an adjustment to the income tax brackets, it's a whole bunch of changes. As such there is no good answer to your question. The big take aways are: - Big reduction in corporate income tax rate will make large companies very happy. - Pass through rate change will make certain styles of business (law firms, hedge funds) extremely happy - Income tax changes are moderate, and are set to expire (though it's the kind of thing that might just always get re-applied without being made permanent) - People in high tax states (California, New York) lose out, and many of them will end up with their taxes raised.",
'None yet. It has to be reconciled with a vastly different house bill and then passed again.',
'Also: does this apply to 2017 taxes? Or does it start with 2018 taxes?',
'This article explains both the House and senate bills, including the proposed changes to your income taxes based on your income level. URL_0'],
'answers.score': [21, 19, 5, 3],
'answers.text_urls': [[],
[],
[],
['https://www.investopedia.com/news/trumps-tax-reform-what-can-be-done/']],
'title_urls': ['url'],
'selftext_urls': ['url']}
每个子字段现在都是一个单独的列,如 answers
前缀所示,并且 text
字段现在是一个列表。与其单独对每个句子进行分词,不如将列表转换为字符串,以便您可以联合对它们进行分词。
这是一个初步的预处理函数,用于连接每个示例的字符串列表并对结果进行分词
>>> def preprocess_function(examples):
... return tokenizer([" ".join(x) for x in examples["answers.text"]])
要将此预处理函数应用于整个数据集,请使用 🤗 Datasets map 方法。您可以通过设置 batched=True
一次处理数据集的多个元素,并使用 num_proc
增加进程数量来加速 map
函数。删除您不需要的任何列
>>> tokenized_eli5 = eli5.map(
... preprocess_function,
... batched=True,
... num_proc=4,
... remove_columns=eli5["train"].column_names,
... )
此数据集包含 token 序列,但其中一些序列的长度超过了模型的最大输入长度。
您现在可以使用第二个预处理函数来
- 连接所有序列
- 将连接的序列拆分为由
block_size
定义的较短的块,block_size
应该既短于最大输入长度,又足够短以适应您的 GPU RAM。
>>> block_size = 128
>>> def group_texts(examples):
... # Concatenate all texts.
... concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
... total_length = len(concatenated_examples[list(examples.keys())[0]])
... # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
... # customize this part to your needs.
... if total_length >= block_size:
... total_length = (total_length // block_size) * block_size
... # Split by chunks of block_size.
... result = {
... k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
... for k, t in concatenated_examples.items()
... }
... result["labels"] = result["input_ids"].copy()
... return result
将 group_texts
函数应用于整个数据集
>>> lm_dataset = tokenized_eli5.map(group_texts, batched=True, num_proc=4)
现在使用 DataCollatorForLanguageModeling 创建一批示例。在整理期间动态填充句子到批次中最长长度,而不是将整个数据集填充到最大长度,效率更高。
使用序列结束 token 作为填充 token 并设置 mlm=False
。这将使用输入作为标签,并向右移动一个元素
>>> from transformers import DataCollatorForLanguageModeling
>>> tokenizer.pad_token = tokenizer.eos_token
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
使用序列结束 token 作为填充 token 并设置 mlm=False
。这将使用输入作为标签,并向右移动一个元素
>>> from transformers import DataCollatorForLanguageModeling
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False, return_tensors="tf")
训练
您现在可以开始训练您的模型了!使用 AutoModelForCausalLM 加载 DistilGPT2
>>> from transformers import AutoModelForCausalLM, TrainingArguments, Trainer
>>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
此时,只剩下三个步骤
- 在 TrainingArguments 中定义您的训练超参数。唯一必需的参数是
output_dir
,它指定保存模型的位置。您将通过设置push_to_hub=True
将此模型推送到 Hub(您需要登录 Hugging Face 才能上传您的模型)。 - 将训练参数传递给 Trainer 以及模型、数据集和数据整理器。
- 调用 train() 以微调您的模型。
>>> training_args = TrainingArguments(
... output_dir="my_awesome_eli5_clm-model",
... eval_strategy="epoch",
... learning_rate=2e-5,
... weight_decay=0.01,
... push_to_hub=True,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=lm_dataset["train"],
... eval_dataset=lm_dataset["test"],
... data_collator=data_collator,
... tokenizer=tokenizer,
... )
>>> trainer.train()
训练完成后,使用 evaluate() 方法评估您的模型并获取其困惑度
>>> import math
>>> eval_results = trainer.evaluate()
>>> print(f"Perplexity: {math.exp(eval_results['eval_loss']):.2f}")
Perplexity: 49.61
然后使用 push_to_hub() 方法将您的模型分享到 Hub,以便每个人都可以使用您的模型
>>> trainer.push_to_hub()
如果您不熟悉使用 Keras 微调模型,请查看基本教程!
>>> from transformers import create_optimizer, AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
然后您可以使用 TFAutoModelForCausalLM 加载 DistilGPT2
>>> from transformers import TFAutoModelForCausalLM
>>> model = TFAutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
使用 prepare_tf_dataset() 将您的数据集转换为 tf.data.Dataset
格式
>>> tf_train_set = model.prepare_tf_dataset(
... lm_dataset["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
... lm_dataset["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
使用 compile
配置模型以进行训练。请注意,Transformers 模型都具有默认的与任务相关的损失函数,因此您无需指定损失函数,除非您想要指定
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer) # No loss argument!
这可以通过在 PushToHubCallback 中指定推送模型和分词器的位置来完成
>>> from transformers.keras_callbacks import PushToHubCallback
>>> callback = PushToHubCallback(
... output_dir="my_awesome_eli5_clm-model",
... tokenizer=tokenizer,
... )
最后,您已准备好开始训练您的模型!使用您的训练和验证数据集、epoch 数量和回调调用 fit
以微调模型
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=[callback])
训练完成后,您的模型会自动上传到 Hub,以便每个人都可以使用它!
有关如何为因果语言建模微调模型的更深入示例,请查看相应的 PyTorch notebook 或 TensorFlow notebook。
推理
太棒了,现在您已经微调了一个模型,您可以使用它进行推理了!
想出一个您想要从中生成文本的提示
>>> prompt = "Somatic hypermutation allows the immune system to"
尝试您的微调模型进行推理的最简单方法是在 pipeline() 中使用它。实例化一个用于文本生成的 pipeline
,其中包含您的模型,并将您的文本传递给它
>>> from transformers import pipeline
>>> generator = pipeline("text-generation", model="username/my_awesome_eli5_clm-model")
>>> generator(prompt)
[{'generated_text': "Somatic hypermutation allows the immune system to be able to effectively reverse the damage caused by an infection.\n\n\nThe damage caused by an infection is caused by the immune system's ability to perform its own self-correcting tasks."}]
对文本进行分词并将 input_ids
作为 PyTorch 张量返回
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_eli5_clm-model")
>>> inputs = tokenizer(prompt, return_tensors="pt").input_ids
使用 generate() 方法生成文本。有关控制生成的不同文本生成策略和参数的更多详细信息,请查看文本生成策略页面。
>>> from transformers import AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("username/my_awesome_eli5_clm-model")
>>> outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
将生成的 token id 解码回文本
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
["Somatic hypermutation allows the immune system to react to drugs with the ability to adapt to a different environmental situation. In other words, a system of 'hypermutation' can help the immune system to adapt to a different environmental situation or in some cases even a single life. In contrast, researchers at the University of Massachusetts-Boston have found that 'hypermutation' is much stronger in mice than in humans but can be found in humans, and that it's not completely unknown to the immune system. A study on how the immune system"]
对文本进行分词并将 input_ids
作为 TensorFlow 张量返回
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_eli5_clm-model")
>>> inputs = tokenizer(prompt, return_tensors="tf").input_ids
使用 ~transformers.generation_tf_utils.TFGenerationMixin.generate
方法创建摘要。有关控制生成的不同文本生成策略和参数的更多详细信息,请查看文本生成策略页面。
>>> from transformers import TFAutoModelForCausalLM
>>> model = TFAutoModelForCausalLM.from_pretrained("username/my_awesome_eli5_clm-model")
>>> outputs = model.generate(input_ids=inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
将生成的 token id 解码回文本
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Somatic hypermutation allows the immune system to detect the presence of other viruses as they become more prevalent. Therefore, researchers have identified a high proportion of human viruses. The proportion of virus-associated viruses in our study increases with age. Therefore, we propose a simple algorithm to detect the presence of these new viruses in our samples as a sign of improved immunity. A first study based on this algorithm, which will be published in Science on Friday, aims to show that this finding could translate into the development of a better vaccine that is more effective for']