Transformers 文档

MegatronBERT

Hugging Face's logo
加入 Hugging Face 社区

并获取增强的文档体验

开始使用

MegatronBERT

PyTorch

概述

MegatronBERT 模型由 Mohammad Shoeybi、Mostofa Patwary、Raul Puri、Patrick LeGresley、Jared Casper 和 Bryan Catanzaro 在 Megatron-LM: 使用模型并行性训练数十亿参数语言模型 中提出。

该论文的摘要如下:

最近在语言建模方面的工作表明,训练大型 Transformer 模型可以提升自然语言处理应用领域的最新水平。然而,由于内存限制,非常大的模型可能很难训练。在这项工作中,我们介绍了我们训练超大型 Transformer 模型的技术,并实施了一种简单高效的层内模型并行方法,该方法能够训练具有数十亿参数的 Transformer 模型。我们的方法不需要新的编译器或库更改,与流水线模型并行性正交且互补,并且可以通过在原生 PyTorch 中插入少量通信操作来完全实现。我们通过使用 512 个 GPU 收敛高达 83 亿参数的基于 Transformer 的模型来说明这种方法。当与可持续 39 TeraFLOPs 的强大单 GPU 基线(占峰值 FLOPs 的 30%)相比时,我们在整个应用程序中维持了 15.1 PetaFLOPs,扩展效率为 76%。为了证明大型语言模型可以进一步提升最新水平 (SOTA),我们训练了一个类似于 GPT-2 的 83 亿参数 Transformer 语言模型和一个类似于 BERT 的 39 亿参数模型。我们表明,在类 BERT 模型中,仔细注意层归一化的位置对于在模型尺寸增长时实现性能提升至关重要。使用 GPT-2 模型,我们在 WikiText103 数据集上取得了 SOTA 结果(困惑度为 10.8,而 SOTA 困惑度为 15.8),在 LAMBADA 数据集上取得了 SOTA 准确率(66.5%,而 SOTA 准确率为 63.2%)。我们的 BERT 模型在 RACE 数据集上取得了 SOTA 结果(准确率为 90.9%,而 SOTA 准确率为 89.4%)。

此模型由 jdemouth 贡献。原始代码可以在这里找到。该存储库包含 Megatron 语言模型的多 GPU 和多节点实现。特别是,它包含使用“张量并行”和“流水线并行”技术的混合模型并行方法。

使用技巧

我们提供了预训练的 BERT-345M 检查点,用于评估或微调下游任务。

要访问这些检查点,首先注册并设置 NVIDIA GPU Cloud (NGC) 注册表 CLI。有关下载模型的更多文档,请参见 NGC 文档

或者,您可以直接使用以下链接下载检查点:

BERT-345M-uncased

wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip
-O megatron_bert_345m_v0_1_uncased.zip

BERT-345M-cased

wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O
megatron_bert_345m_v0_1_cased.zip

从 NVIDIA GPU Cloud (NGC) 获取检查点后,您必须将它们转换为 Hugging Face Transformers 和我们 BERT 代码端口可以轻松加载的格式。

以下命令允许您进行转换。我们假设文件夹 models/megatron_bert 包含 megatron_bert_345m_v0_1_{cased, uncased}.zip,并且命令从该文件夹内部运行

python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_uncased.zip
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_cased.zip

资源

MegatronBertConfig

class transformers.MegatronBertConfig

< >

( vocab_size = 29056 hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 intermediate_size = 4096 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' use_cache = True **kwargs )

参数

  • vocab_size (int, 可选, 默认为 29056) — MEGATRON_BERT 模型的词汇表大小。定义了在调用 MegatronBertModel 时传递的 inputs_ids 可以表示的不同 token 的数量。
  • hidden_size (int, 可选, 默认为 1024) — 编码器层和池化器层的维度。
  • num_hidden_layers (int, 可选, 默认为 24) — Transformer 编码器中的隐藏层数。
  • num_attention_heads (int, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。
  • intermediate_size (int, 可选, 默认为 4096) — Transformer 编码器中“中间”层(通常称为前馈层)的维度。
  • hidden_act (strCallable, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持 "gelu""relu""silu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。
  • max_position_embeddings (int, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 2) — 调用 MegatronBertModel 时传递的 token_type_ids 的词汇表大小。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。
  • position_embedding_type (str, 可选, 默认为 "absolute") — 位置嵌入类型。选择 "absolute""relative_key""relative_key_query" 之一。对于位置嵌入,请使用 "absolute"。有关 "relative_key" 的更多信息,请参阅 Self-Attention with Relative Position Representations (Shaw et al.)。有关 "relative_key_query" 的更多信息,请参阅 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的方法 4
  • is_decoder (bool, 可选, 默认为 False) — 模型是否用作解码器。如果为 False,则模型用作编码器。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在 config.is_decoder=True 时相关。

这是用于存储 MegatronBertModel 配置的配置类。它用于根据指定的参数实例化 MEGATRON_BERT 模型,从而定义模型架构。使用默认值实例化配置将产生与 MEGATRON_BERT nvidia/megatron-bert-uncased-345m 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import MegatronBertConfig, MegatronBertModel

>>> # Initializing a MEGATRON_BERT google-bert/bert-base-uncased style configuration
>>> configuration = MegatronBertConfig()

>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
>>> model = MegatronBertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

MegatronBertModel

class transformers.MegatronBertModel

< >

( config add_pooling_layer = True )

参数

  • config (MegatronBertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

裸 MegatronBert 模型 Transformer 输出原始隐藏状态,顶部没有任何特定的 head。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

该模型可以充当编码器(仅具有自注意力),也可以充当解码器,在后一种情况下,在自注意力层之间添加了一个交叉注意力层,遵循 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin 在 Attention is all you need 中描述的架构。

要充当解码器,模型需要在配置的 is_decoder 参数设置为 True 的情况下进行初始化。要在 Seq2Seq 模型中使用,模型需要使用 is_decoder 参数和 add_cross_attention 都设置为 True 进行初始化;然后期望将 encoder_hidden_states 作为前向传递的输入。

前向

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 详见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 IDs?

  • attention_mask (形状为 (batch_size, sequence_length)torch.FloatTensor, 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 token 未被掩盖
    • 0 表示 token 被掩盖

    什么是 attention 掩码?

  • token_type_ids (形状为 (batch_size, sequence_length)torch.LongTensor, 可选) — Segment token 索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 IDs?

  • position_ids (形状为 (batch_size, sequence_length)torch.LongTensor, 可选) — 位置嵌入中每个输入序列 tokens 的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (形状为 (num_heads,)(num_layers, num_heads)torch.FloatTensor, 可选) — 用于 nullify self-attention 模块中选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩盖
    • 0 表示 head 被掩盖
  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您想要比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回的 tensors 下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的 tensors 下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通 tuple。
  • encoder_hidden_states (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — 编码器最后一层输出的 hidden-states 序列。 如果模型配置为 decoder,则在 cross-attention 中使用。
  • encoder_attention_mask (形状为 (batch_size, sequence_length)torch.FloatTensor, 可选) — 用于避免对编码器输入的 padding token 索引执行 attention 的掩码。 如果模型配置为 decoder,则此掩码在 cross-attention 中使用。 掩码值在 [0, 1] 中选择:

    • 1 表示 token 未被掩盖
    • 0 表示 token 被掩盖
  • past_key_values (长度为 config.n_layerstuple(tuple(torch.FloatTensor)),其中每个 tuple 具有 4 个形状为 (batch_size, num_heads, sequence_length - 1, embed_size_per_head) 的 tensors) — 包含 attention 模块的预计算 key 和 value hidden states。 可用于加速解码。

    如果使用 past_key_values,则用户可以选择仅输入最后 decoder_input_ids (那些没有将其 past key value states 提供给此模型的) 的形状 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids

  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values key value states,并且可以用于加速解码 (参见 past_key_values)。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstorch.FloatTensor 的 tuple (如果传递了 return_dict=False 或当 config.return_dict=False 时) ,包括取决于配置 (MegatronBertConfig) 和输入的各种元素。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor) — 模型最后一层输出的 hidden-states 序列。

  • pooler_output (形状为 (batch_size, hidden_size)torch.FloatTensor) — 序列的第一个 token (分类 token) 的最后一层 hidden-state,在通过用于辅助预训练任务的层进一步处理之后。 例如,对于 BERT 系列模型,这将返回通过线性层和 tanh 激活函数处理后的分类 token。 线性层权重通过预训练期间的下一句预测 (分类) 目标进行训练。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 tuple (对于嵌入的输出,如果模型具有嵌入层,则为一个,+ 对于每一层的输出,则为一个) 的形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 tuple (每层一个) 的形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 tuple (每层一个) 的形状为 (batch_size, num_heads, sequence_length, sequence_length)

    decoder 的 cross-attention 层的 Attention 权重,在 attention softmax 之后,用于计算 cross-attention heads 中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) 的 tuple,其中每个 tuple 具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的 tensors,并且如果 config.is_encoder_decoder=True,则可选地具有 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加 tensors。

    包含可用于加速顺序解码的预计算 hidden-states (self-attention 模块中的 key 和 values,以及可选地,如果 config.is_encoder_decoder=True,则在 cross-attention 模块中) (参见 past_key_values 输入)。

MegatronBertModel forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MegatronBertModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertModel.from_pretrained("nvidia/megatron-bert-cased-345m")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

MegatronBertForMaskedLM

class transformers.MegatronBertForMaskedLM

< >

( config )

参数

  • config (MegatronBertConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

带有 language modeling head 的 MegatronBert 模型。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

前向

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 详见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 IDs?

  • attention_mask (形状为 (batch_size, sequence_length)torch.FloatTensor, 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 token 未被掩盖
    • 0 表示 token 被掩盖

    什么是 attention 掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 sentence A 标记,
    • 1 对应于 sentence B 标记。

    什么是 token type IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置空自注意力模块中选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩盖
    • 0 表示 head 被掩盖
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(请参阅 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的标记计算。

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MegatronBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 掩码语言建模 (MLM) 损失。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表标记的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 tuple (对于嵌入的输出,如果模型具有嵌入层,则为一个,+ 对于每一层的输出,则为一个) 的形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 tuple (每层一个) 的形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

MegatronBertForMaskedLM forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MegatronBertForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForMaskedLM.from_pretrained("nvidia/megatron-bert-cased-345m")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

MegatronBertForCausalLM

class transformers.MegatronBertForCausalLM

< >

( config )

参数

  • config (MegatronBertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

带有 language modeling head 的 MegatronBert 模型,用于 CLM 微调。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

前向

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是 input IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,以避免对填充标记索引执行注意力机制。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩盖
    • 0 表示标记被掩盖

    什么是 attention masks?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 sentence A 标记,
    • 1 对应于 sentence B 标记。

    什么是 token type IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置空自注意力模块中选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩盖
    • 0 表示 head 被掩盖
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • encoder_hidden_states (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,以避免对编码器输入的填充标记索引执行注意力机制。如果模型配置为解码器,则此掩码在交叉注意力中使用。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩盖
    • 0 表示标记被掩盖
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算从左到右语言建模损失(预测下一个词)的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(请参阅 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的标记计算。
  • past_key_values (tuple(tuple(torch.FloatTensor)), 长度为 config.n_layers,每个元组包含 4 个形状为 (batch_size, num_heads, sequence_length - 1, embed_size_per_head) 的张量) — 包含注意力模块的预计算的键和值隐藏状态。可用于加速解码。

    如果使用了 past_key_values,用户可以选择仅输入最后一次的 decoder_input_ids (那些没有将其过去的键值状态提供给此模型的),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids

  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 的元组 (如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MegatronBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个词元预测)。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表标记的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 tuple (对于嵌入的输出,如果模型具有嵌入层,则为一个,+ 对于每一层的输出,则为一个) 的形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 tuple (每层一个) 的形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — torch.FloatTensor 元组的元组,长度为 config.n_layers,每个元组包含自注意力层和交叉注意力层的缓存键、值状态(如果模型在编码器-解码器设置中使用)。仅当 config.is_decoder = True 时相关。

    包含预先计算的隐藏状态(注意力模块中的键和值),可以用于(参见 past_key_values 输入)加速顺序解码。

MegatronBertForCausalLM 前向传播方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MegatronBertForCausalLM, MegatronBertConfig
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForCausalLM.from_pretrained("nvidia/megatron-bert-cased-345m", is_decoder=True)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits

MegatronBertForNextSentencePrediction

class transformers.MegatronBertForNextSentencePrediction

< >

( config )

参数

  • config (MegatronBertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

MegatronBert 模型,顶部带有一个 next sentence prediction (classification) 头。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

前向

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 输入序列词元在词汇表中的索引。

    可以使用 AutoTokenizer 获得索引。 有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,以避免在填充词元索引上执行注意力机制。 掩码值在 [0, 1] 中选择:

    • 1 表示词元未被掩码
    • 0 表示词元已被掩码

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 分段词元索引,用于指示输入的第一个和第二个部分。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 词元,
    • 1 对应于 句子 B 词元。

    什么是词元类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列词元在位置嵌入中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 掩码,用于 nullify 自注意力模块的选定头。 掩码值在 [0, 1] 中选择:

    • 1 表示头未被掩码
    • 0 表示头已被掩码
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算下一个序列预测(分类)损失的标签。 输入应为序列对(请参见 input_ids 文档字符串)。 索引应在 [0, 1] 中:

    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是随机序列。

返回

transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个 torch.FloatTensor 的元组 (如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MegatronBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 next_sentence_label 时返回) — 下一个序列预测(分类)损失。

  • logits (torch.FloatTensor,形状为 (batch_size, 2)) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 延续的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 tuple (对于嵌入的输出,如果模型具有嵌入层,则为一个,+ 对于每一层的输出,则为一个) 的形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 tuple (每层一个) 的形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

MegatronBertForNextSentencePrediction 前向传播方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MegatronBertForNextSentencePrediction
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForNextSentencePrediction.from_pretrained("nvidia/megatron-bert-cased-345m")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")

>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1]  # next sentence was random

MegatronBertForPreTraining

class transformers.MegatronBertForPreTraining

< >

( config add_binary_head = True )

参数

  • config (MegatronBertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

MegatronBert 模型,顶部带有两个头,如预训练期间所做的那样:一个 masked language modeling 头和一个 next sentence prediction (classification) 头。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

前向

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None next_sentence_label: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTrainingOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 输入序列词元在词汇表中的索引。

    可以使用 AutoTokenizer 获得索引。 有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,以避免在填充词元索引上执行注意力机制。 掩码值在 [0, 1] 中选择:

    • 1 表示词元未被掩码
    • 0 表示词元已被掩码

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 分段词元索引,用于指示输入的第一个和第二个部分。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 词元,
    • 1 对应于 句子 B 词元。

    什么是词元类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置空自注意力模块中选定头的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头是未被掩码的,
    • 0 表示头是被掩码的。
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的标记计算。
  • next_sentence_label (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算下一个序列预测(分类)损失的标签。输入应为序列对(参见 input_ids 文档字符串)。索引应在 [0, 1] 中:

    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是随机序列。
  • kwargs (Dict[str, any]可选,默认为 {}) — 用于隐藏已弃用的旧版参数。

返回

transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTrainingOutputtuple(torch.FloatTensor)

一个 transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTrainingOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包括各种元素,具体取决于配置 (MegatronBertConfig) 和输入。

  • loss (可选,当提供 labels 时返回,torch.FloatTensor,形状为 (1,)) — 总损失,为掩码语言建模损失和下一个序列预测(分类)损失之和。

  • prediction_logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇表标记的分数)。

  • seq_relationship_logits (torch.FloatTensor,形状为 (batch_size, 2)) — 下一个序列预测(分类)头的预测分数(SoftMax 之前 True/False 延续的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(embeddings 的输出一个,每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出以及初始嵌入输出处的隐藏状态。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 tuple (每层一个) 的形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

MegatronBertForPreTraining 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MegatronBertForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForPreTraining.from_pretrained("nvidia/megatron-bert-cased-345m")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

MegatronBertForSequenceClassification

class transformers.MegatronBertForSequenceClassification

< >

( config )

参数

  • config (MegatronBertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

MegatronBert 模型转换器,顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

前向

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 分段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A 标记,
    • 1 对应于句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置空自注意力模块中选定头的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头是未被掩码的,
    • 0 表示头是被掩码的。
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方误差损失);如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包括各种元素,具体取决于配置 (MegatronBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。

  • logits (torch.FloatTensor,形状为 (batch_size, config.num_labels)) — 分类分数(如果 config.num_labels==1,则为回归分数)(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 tuple (对于嵌入的输出,如果模型具有嵌入层,则为一个,+ 对于每一层的输出,则为一个) 的形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 tuple (每层一个) 的形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

MegatronBertForSequenceClassification 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, MegatronBertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForSequenceClassification.from_pretrained("nvidia/megatron-bert-cased-345m")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MegatronBertForSequenceClassification.from_pretrained("nvidia/megatron-bert-cased-345m", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, MegatronBertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForSequenceClassification.from_pretrained("nvidia/megatron-bert-cased-345m", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MegatronBertForSequenceClassification.from_pretrained(
...     "nvidia/megatron-bert-cased-345m", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

MegatronBertForMultipleChoice

class transformers.MegatronBertForMultipleChoice

< >

( config )

参数

  • config (MegatronBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

MegatronBert 模型,顶部带有一个多项选择分类头(池化输出顶部的线性层和一个softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

前向

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 获取详细信息。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 未被 Mask
    • 0 表示 tokens 已被 Mask

    什么是 attention masks?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 sentence A token,
    • 1 对应于 sentence B token。

    什么是 token type IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify self-attention 模块的选定 head 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 未被 Mask
    • 0 表示 head 已被 Mask
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, num_choices, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通的 tuple。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算多项选择分类损失的标签。 索引应在 [0, ..., num_choices-1] 中,其中 num_choices 是输入 tensors 的第二个维度的大小。(参见上面的 input_ids

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor 的 tuple (如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MegatronBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor,形状为 (batch_size, num_choices)) — num_choices 是输入 tensors 的第二个维度。(参见上面的 input_ids)。

    分类得分(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 tuple (对于嵌入的输出,如果模型具有嵌入层,则为一个,+ 对于每一层的输出,则为一个) 的形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 tuple (每层一个) 的形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

MegatronBertForMultipleChoice forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MegatronBertForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForMultipleChoice.from_pretrained("nvidia/megatron-bert-cased-345m")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

MegatronBertForTokenClassification

class transformers.MegatronBertForTokenClassification

< >

( config )

参数

  • config (MegatronBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

MegatronBert 模型,顶部带有一个 token 分类头(hidden-states 输出顶部的线性层),例如用于命名实体识别 (NER) 任务。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

前向

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 获取详细信息。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 未被 Mask
    • 0 表示 tokens 已被 Mask

    什么是 attention masks?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 sentence A token,
    • 1 对应于 sentence B token。

    什么是 token type IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在位置嵌入中的位置索引。范围为 [0, config.max_position_embeddings - 1]

    什么是位置 IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置空自注意力模块中选定 head 的掩码。掩码值选自 [0, 1]

    • 1 表示 head 未被掩盖
    • 0 表示 head 被掩盖
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。详见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。详见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是纯元组。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算 token 分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutputtorch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MegatronBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.num_labels)) — 分类得分(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 tuple (对于嵌入的输出,如果模型具有嵌入层,则为一个,+ 对于每一层的输出,则为一个) 的形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 tuple (每层一个) 的形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

MegatronBertForTokenClassification 的前向传播方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MegatronBertForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForTokenClassification.from_pretrained("nvidia/megatron-bert-cased-345m")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

MegatronBertForQuestionAnswering

class transformers.MegatronBertForQuestionAnswering

< >

( config )

参数

  • config (MegatronBertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

MegatronBert 模型,顶部带有跨度分类头,用于抽取式问答任务,如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logitsspan end logits)。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

前向

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行注意力的掩码。掩码值选自 [0, 1]

    • 1 代表 token 未被掩盖
    • 0 代表 token 已被掩盖

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 片段 token 索引,用于指示输入的第一部分和第二部分。索引选自 [0, 1]

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在位置嵌入中的位置索引。范围为 [0, config.max_position_embeddings - 1]

    什么是位置 IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置空自注意力模块中选定 head 的掩码。掩码值选自 [0, 1]

    • 1 表示 head 未被掩盖
    • 0 表示 head 被掩盖
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。详见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。详见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是纯元组。
  • start_positions (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算 token 分类损失的标签跨度的起始位置(索引)的标签。位置被限制在序列的长度 (sequence_length) 内。序列之外的位置不计入损失计算。
  • end_positions (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算 token 分类损失的标签跨度的结束位置(索引)的标签。位置被限制在序列的长度 (sequence_length) 内。序列之外的位置不计入损失计算。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutputtorch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MegatronBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 总跨度抽取损失是起始位置和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 跨度起始得分(SoftMax 之前)。

  • end_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 跨度结束得分(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 tuple (对于嵌入的输出,如果模型具有嵌入层,则为一个,+ 对于每一层的输出,则为一个) 的形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 tuple (每层一个) 的形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算 self-attention heads 中的加权平均值。

MegatronBertForQuestionAnswering 的前向传播方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MegatronBertForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForQuestionAnswering.from_pretrained("nvidia/megatron-bert-cased-345m")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
< > 在 GitHub 上更新