Transformers 文档
MegatronBERT
并获得增强的文档体验
开始使用
MegatronBERT
概述
MegatronBERT 模型由 Mohammad Shoeybi、Mostofa Patwary、Raul Puri、Patrick LeGresley、Jared Casper 和 Bryan Catanzaro 在论文 Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism 中提出。
论文摘要如下:
最近的语言建模工作表明,训练大型 Transformer 模型可以推动自然语言处理应用的技术发展。然而,由于内存限制,非常大的模型训练起来可能相当困难。在这项工作中,我们介绍了我们训练非常大的 Transformer 模型的技术,并实现了一种简单、高效的层内模型并行方法,使得训练数十亿参数的 Transformer 模型成为可能。我们的方法不需要新的编译器或库更改,它与流水线模型并行是正交和互补的,并且可以通过在原生 PyTorch 中插入少量通信操作来完全实现。我们通过使用 512 个 GPU 训练了高达 83 亿参数的 Transformer 模型来展示了这种方法。与一个强大的单 GPU 基线(维持 39 TFLOPs,即峰值 FLOPs 的 30%)相比,我们在整个应用程序中维持了 15.1 PetaFLOPs 的计算速度,达到了 76% 的扩展效率。为了证明大型语言模型可以进一步推动技术发展(SOTA),我们训练了一个类似于 GPT-2 的 83 亿参数的 Transformer 语言模型和一个类似于 BERT 的 39 亿参数模型。我们表明,随着模型规模的增长,仔细关注 BERT 类模型中层归一化的位置对于实现性能提升至关重要。使用 GPT-2 模型,我们在 WikiText103 数据集(困惑度为 10.8,而 SOTA 为 15.8)和 LAMBADA 数据集(准确率为 66.5%,而 SOTA 为 63.2%)上取得了 SOTA 结果。我们的 BERT 模型在 RACE 数据集(准确率为 90.9%,而 SOTA 为 89.4%)上取得了 SOTA 结果。
该模型由 jdemouth 贡献。原始代码可以在 这里 找到。该仓库包含了 Megatron 语言模型的多 GPU 和多节点实现。特别是,它包含了一种使用“张量并行”和“流水线并行”技术的混合模型并行方法。
使用技巧
我们提供了预训练的 BERT-345M 检查点,可用于评估或微调下游任务。
要访问这些检查点,首先请 注册 并设置 NVIDIA GPU Cloud (NGC) Registry CLI。有关下载模型的更多文档可以在 NGC 文档 中找到。
或者,你可以直接使用以下命令下载检查点:
BERT-345M-uncased
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip -O megatron_bert_345m_v0_1_uncased.zip
BERT-345M-cased
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O megatron_bert_345m_v0_1_cased.zip
从 NVIDIA GPU Cloud (NGC) 获取检查点后,您需要将它们转换为一种可以被 Hugging Face Transformers 和我们移植的 BERT 代码轻松加载的格式。
以下命令可以帮助你进行转换。我们假设 `models/megatron_bert` 文件夹包含 `megatron_bert_345m_v0_1_{cased, uncased}.zip`,并且这些命令是在该文件夹内运行的。
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_uncased.zip
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_cased.zip
资源
MegatronBertConfig
class transformers.MegatronBertConfig
< 源代码 >( vocab_size = 29056 hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 intermediate_size = 4096 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' use_cache = True **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 29056) — MEGATRON_BERT 模型的词汇表大小。定义了在调用 MegatronBertModel 时传递的 `inputs_ids` 可以表示的不同标记的数量。 - hidden_size (
int
, 可选, 默认为 1024) — 编码器层和池化层的维度。 - num_hidden_layers (
int
, 可选, 默认为 24) — Transformer 编码器中的隐藏层数量。 - num_attention_heads (
int
, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数量。 - intermediate_size (
int
, 可选, 默认为 4096) — Transformer 编码器中“中间层”(通常称为前馈层)的维度。 - hidden_act (
str
或Callable
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。 - max_position_embeddings (
int
, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如 512、1024 或 2048)。 - type_vocab_size (
int
, 可选, 默认为 2) — 调用 MegatronBertModel 时传递的 `token_type_ids` 的词汇表大小。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。 - position_embedding_type (
str
, 可选, 默认为"absolute"
) — 位置嵌入的类型。从"absolute"
,"relative_key"
,"relative_key_query"
中选择一个。对于位置嵌入,请使用"absolute"
。有关"relative_key"
的更多信息,请参阅 Self-Attention with Relative Position Representations (Shaw et al.)。有关"relative_key_query"
的更多信息,请参阅 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的 *方法 4*。 - is_decoder (
bool
, 可选, 默认为False
) — 模型是否用作解码器。如果为False
,则模型用作编码器。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。仅当 `config.is_decoder=True` 时相关。
这是用于存储 MegatronBertModel 配置的配置类。它用于根据指定的参数实例化一个 MEGATRON_BERT 模型,定义模型架构。使用默认值实例化配置将产生与 MEGATRON_BERT nvidia/megatron-bert-uncased-345m 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import MegatronBertConfig, MegatronBertModel
>>> # Initializing a MEGATRON_BERT google-bert/bert-base-uncased style configuration
>>> configuration = MegatronBertConfig()
>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
>>> model = MegatronBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
MegatronBertModel
class transformers.MegatronBertModel
< 源代码 >( config add_pooling_layer = True )
参数
- config (MegatronBertModel) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- add_pooling_layer (
bool
, 可选, 默认为True
) — 是否添加池化层。
这是一个基础的 Megatron Bert 模型,输出原始的隐藏状态,顶部没有任何特定的头(head)。
此模型继承自 PreTrainedModel。请查看父类的文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像使用常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[tuple[tuple[torch.Tensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被遮盖,
- 0 表示标记已被遮盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于指示输入的第一和第二部分的片段标记索引。索引在[0, 1]
中选择:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于置零自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示该头未被遮盖,
- 0 表示该头已被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想更好地控制如何将input_ids
索引转换为关联向量,而不是使用模型内部的嵌入查找矩阵,这会很有用。 - encoder_hidden_states (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对编码器输入的填充标记索引执行注意力的掩码。如果模型配置为解码器,则此掩码用于交叉注意力。掩码值在[0, 1]
中选择:- 1 表示标记未被遮盖,
- 0 表示标记已被遮盖。
- past_key_values (
tuple[tuple[torch.Tensor]]
, 可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括在解码的先前阶段由模型返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有两个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回传统缓存格式。如果使用
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有为其提供过去键值状态的 ID),而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(MegatronBertConfig)和输入包含不同的元素。
-
last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
,形状为(batch_size, hidden_size)
) — 序列的第一个标记(分类标记)的最后一层隐藏状态,经过用于辅助预训练任务的层的进一步处理。例如,对于 BERT 族模型,这返回经过线性层和 tanh 激活函数处理后的分类标记。线性层的权重是在预训练期间通过下一句预测(分类)目标进行训练的。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
和config.add_cross_attention=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
-
past_key_values (
Cache
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南。包含预计算的隐藏状态(自注意力块中的键和值,以及可选地,如果
config.is_encoder_decoder=True
,在交叉注意力块中),可用于(参见past_key_values
输入)加速顺序解码。
MegatronBertModel 的 forward 方法会覆盖 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应调用 Module
实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会默默地忽略它们。
MegatronBertForMaskedLM
class transformers.MegatronBertForMaskedLM
< 源码 >( config )
参数
- config (MegatronBertForMaskedLM) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
带有一个“语言建模”头的 Megatron Bert 模型。
此模型继承自 PreTrainedModel。请查看父类的文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像使用常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被遮盖,
- 0 表示标记已被遮盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于指示输入的第一和第二部分的片段标记索引。索引在[0, 1]
中选择:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于置零自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示该头未被遮盖,
- 0 表示该头已被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想更好地控制如何将input_ids
索引转换为关联向量,而不是使用模型内部的嵌入查找矩阵,这会很有用。 - encoder_hidden_states (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对编码器输入的填充标记索引执行注意力的掩码。如果模型配置为解码器,则此掩码用于交叉注意力。掩码值在[0, 1]
中选择:- 1 表示标记未被遮盖,
- 0 表示标记已被遮盖。
- labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(请参阅input_ids
文档字符串)。索引设置为-100
的标记将被忽略(遮盖),损失仅对标签在[0, ..., config.vocab_size]
中的标记计算。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(MegatronBertConfig)和输入包含不同的元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 掩码语言建模 (MLM) 损失。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegatronBertForMaskedLM 的 forward 方法会覆盖 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应调用 Module
实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MegatronBertForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-uncased-345m")
>>> model = MegatronBertForMaskedLM.from_pretrained("nvidia/megatron-bert-uncased-345m")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
...
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
...
MegatronBertForCausalLM
class transformers.MegatronBertForCausalLM
< 源码 >( config )
参数
- config (MegatronBertForCausalLM) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
MegatronBert 模型,顶部带有一个用于 CLM 微调的 语言建模
头。
此模型继承自 PreTrainedModel。请查看父类的文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像使用常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[tuple[tuple[torch.Tensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被遮盖,
- 0 表示标记已被遮盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于指示输入的第一和第二部分的片段标记索引。索引在[0, 1]
中选择:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于置零自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示该头未被遮盖,
- 0 表示该头已被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想更好地控制如何将input_ids
索引转换为关联向量,而不是使用模型内部的嵌入查找矩阵,这会很有用。 - encoder_hidden_states (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在编码器输入的填充标记索引上执行注意力操作的掩码。如果模型被配置为解码器,该掩码将用于交叉注意力。掩码值的取值范围为[0, 1]
:- 1 表示标记未被掩码,
- 0 表示标记已被掩码。
- labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算从左到右语言模型损失(下一个词预测)的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
范围内的标记进行计算。 - past_key_values (
tuple[tuple[torch.Tensor]]
, 可选) — 预计算的隐藏状态(自注意力和交叉注意力块中的键和值),可用于加速序列解码。这通常包含模型在解码的先前阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后input_ids
(那些没有向该模型提供其过去键值状态的 `input_ids`),而不是形状为(batch_size, sequence_length)
的所有 `input_ids`。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置 (MegatronBertConfig) 和输入的不同元素。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均。
-
past_key_values (
Cache
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。
MegatronBertForCausalLM 的 forward 方法,重写了 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应调用 Module
实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MegatronBertForCausalLM, MegatronBertConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForCausalLM.from_pretrained("nvidia/megatron-bert-cased-345m", is_decoder=True)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
MegatronBertForNextSentencePrediction
class transformers.MegatronBertForNextSentencePrediction
< 源 >( config )
参数
- config (MegatronBertForNextSentencePrediction) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
在 MegatronBert 模型之上带有一个“下一句预测(分类)”头的模型。
此模型继承自 PreTrainedModel。请查看父类的文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像使用常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.NextSentencePredictorOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力操作的掩码。掩码值的取值范围为[0, 1]
:- 1 表示标记未被掩码,
- 0 表示标记已被掩码。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引的取值范围为[0, 1]
:- 0 对应于 *句子 A* 的标记,
- 1 对应于 *句子 B* 的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。取值范围为[0, config.n_positions - 1]
。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值的取值范围为[0, 1]
:- 1 表示头未被掩码,
- 0 表示头已被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递一个嵌入表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为相关向量,这将非常有用。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算下一序列预测(分类)损失的标签。输入应该是一个序列对(参见input_ids
文档字符串)。索引应在[0, 1]
范围内:- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是一个随机序列。
- output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.NextSentencePredictorOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置 (MegatronBertConfig) 和输入的不同元素。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供next_sentence_label
时返回) — 下一个序列预测(分类)损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, 2)
) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的真/假延续分数)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegatronBertForNextSentencePrediction 的 forward 方法,重写了 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应调用 Module
实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MegatronBertForNextSentencePrediction
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForNextSentencePrediction.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
MegatronBertForPreTraining
class transformers.MegatronBertForPreTraining
< 源 >( config add_binary_head = True )
参数
- config (MegatronBertForPreTraining) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- add_binary_head (
bool
,可选,默认为True
) — 是否添加一个二元头。
MegatronBert 模型,在顶部有两个头,就像预训练时那样:一个 `掩码语言建模` 头和一个 `下一句预测(分类)` 头。
此模型继承自 PreTrainedModel。请查看父类的文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像使用常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None next_sentence_label: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTrainingOutput
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力操作的掩码。掩码值的取值范围为[0, 1]
:- 1 表示标记未被掩码,
- 0 表示标记已被掩码。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引的取值范围为[0, 1]
:- 0 对应于 *句子 A* 的标记,
- 1 对应于 *句子 B* 的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。取值范围为[0, config.n_positions - 1]
。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值的取值范围为[0, 1]
:- 1 表示头未被掩码,
- 0 表示头已被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递一个嵌入表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为相关向量,这将非常有用。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
范围内的标记进行计算。 - next_sentence_label (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算下一序列预测(分类)损失的标签。输入应该是一个序列对(参见input_ids
文档字符串)。索引应在[0, 1]
范围内:- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是一个随机序列。
- output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTrainingOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.megatron_bert.modeling_megatron_bert.MegatronBertForPreTrainingOutput
或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置 (MegatronBertConfig) 和输入的不同元素。
-
loss (
*可选*
, 当提供了labels
时返回,torch.FloatTensor
,形状为(1,)
) — 总损失,为掩码语言建模损失和下一序列预测(分类)损失之和。 -
prediction_logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇 token 的分数)。 -
seq_relationship_logits (
torch.FloatTensor
形状为(batch_size, 2)
) — 下一序列预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。 -
hidden_states (
tuple[torch.FloatTensor]
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则一个用于嵌入层的输出,+ 每层一个输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple[torch.FloatTensor]
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegatronBertForPreTraining 的 forward 方法,重写了 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应调用 Module
实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MegatronBertForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> model = MegatronBertForPreTraining.from_pretrained("nvidia/megatron-bert-cased-345m")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
MegatronBertForSequenceClassification
class transformers.MegatronBertForSequenceClassification
< 源 >( config )
参数
- config (MegatronBertForSequenceClassification) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
MegatronBert Transformer 模型,在顶部带有一个序列分类/回归头(在池化输出之上有一个线性层),例如用于 GLUE 任务。
此模型继承自 PreTrainedModel。请查看父类的文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像使用常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力操作的掩码。掩码值的取值范围为[0, 1]
:- 1 表示标记未被掩码,
- 0 表示标记已被掩码。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引的取值范围为[0, 1]
:- 0 对应于 *句子 A* 的标记,
- 1 对应于 *句子 B* 的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。取值范围为[0, config.n_positions - 1]
。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值的取值范围为[0, 1]
:- 1 表示头未被掩码,
- 0 表示头已被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以不传递input_ids
,而是直接传递嵌入表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这会非常有用。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失 (均方损失);如果config.num_labels > 1
,则计算分类损失 (交叉熵)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或 config.return_dict=False
),根据配置 (MegatronBertConfig) 和输入包含不同的元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。 -
logits (形状为
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegatronBertForSequenceClassification 的 forward 方法重写了 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应调用 Module
实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会默默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, MegatronBertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-uncased-345m")
>>> model = MegatronBertForSequenceClassification.from_pretrained("nvidia/megatron-bert-uncased-345m")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MegatronBertForSequenceClassification.from_pretrained("nvidia/megatron-bert-uncased-345m", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, MegatronBertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-uncased-345m")
>>> model = MegatronBertForSequenceClassification.from_pretrained("nvidia/megatron-bert-uncased-345m", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MegatronBertForSequenceClassification.from_pretrained(
... "nvidia/megatron-bert-uncased-345m", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
MegatronBertForMultipleChoice
class transformers.MegatronBertForMultipleChoice
< 来源 >( config )
参数
- config (MegatronBertForMultipleChoice) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
带有选择题分类头的 Megatron Bert 模型(在池化输出之上有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 PreTrainedModel。请查看父类的文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像使用常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 来源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列标记的索引。索引可以使用 AutoTokenizer 获得。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,用于避免在填充标记索引上执行注意力。掩码值在[0, 1]
中选择:- 1 表示标记未被遮盖,
- 0 表示标记被遮盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 段标记索引,用于指示输入的第一和第二部分。索引在[0, 1]
中选择:- 0 对应于句子 A 的标记,
- 1 对应于句子 B 的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码,用于将自注意力模块的选定头置零。掩码值在[0, 1]
中选择:- 1 表示头未被遮盖,
- 0 表示头被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length, hidden_size)
,可选) — 可选地,你可以不传递input_ids
,而是直接传递嵌入表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这会非常有用。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
范围内,其中num_choices
是输入张量第二维的大小。(见上面的input_ids
) - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或 config.return_dict=False
),根据配置 (MegatronBertConfig) 和输入包含不同的元素。
-
loss (形状为 (1,) 的
torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, num_choices)
的torch.FloatTensor
) — num_choices 是输入张量的第二维大小。(请参阅上面的 input_ids)。分类分数(SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegatronBertForMultipleChoice 的 forward 方法重写了 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应调用 Module
实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MegatronBertForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-uncased-345m")
>>> model = MegatronBertForMultipleChoice.from_pretrained("nvidia/megatron-bert-uncased-345m")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
MegatronBertForTokenClassification
class transformers.MegatronBertForTokenClassification
< 来源 >( config )
参数
- config (MegatronBertForTokenClassification) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
带有标记分类头的 Megatron Bert transformer(在隐藏状态输出之上有一个线性层),例如用于命名实体识别(NER)任务。
此模型继承自 PreTrainedModel。请查看父类的文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像使用常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 来源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。索引可以使用 AutoTokenizer 获得。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,用于避免在填充标记索引上执行注意力。掩码值在[0, 1]
中选择:- 1 表示标记未被遮盖,
- 0 表示标记被遮盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一和第二部分。索引在[0, 1]
中选择:- 0 对应于句子 A 的标记,
- 1 对应于句子 B 的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码,用于将自注意力模块的选定头置零。掩码值在[0, 1]
中选择:- 1 表示头未被遮盖,
- 0 表示头被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以不传递input_ids
,而是直接传递嵌入表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这会非常有用。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或 config.return_dict=False
),根据配置 (MegatronBertConfig) 和输入包含不同的元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分类分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegatronBertForTokenClassification 的 forward 方法重写了 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应调用 Module
实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MegatronBertForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-uncased-345m")
>>> model = MegatronBertForTokenClassification.from_pretrained("nvidia/megatron-bert-uncased-345m")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
MegatronBertForQuestionAnswering
class transformers.MegatronBertForQuestionAnswering
< 来源 >( config )
参数
- config (MegatronBertForQuestionAnswering) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
带有片段分类头的 Megatron Bert transformer,用于像 SQuAD 这样的抽取式问答任务(在隐藏状态输出之上有一个线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 PreTrainedModel。请查看父类的文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像使用常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 来源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。索引可以使用 AutoTokenizer 获得。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,用于避免在填充标记索引上执行注意力。掩码值在[0, 1]
中选择:- 1 表示标记未被遮盖,
- 0 表示标记被遮盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一和第二部分。索引在[0, 1]
中选择:- 0 对应于句子 A 的标记,
- 1 对应于句子 B 的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码,用于将自注意力模块的选定头置零。掩码值在[0, 1]
中选择:- 1 表示头未被遮盖,
- 0 表示头被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以不传递input_ids
,而是直接传递嵌入表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这会非常有用。 - start_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 标记片段开始位置(索引)的标签,用于计算标记分类损失。位置被限制在序列长度(sequence_length
)内。序列之外的位置在计算损失时不被考虑。 - end_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 标记片段结束位置(索引)的标签,用于计算标记分类损失。位置被限制在序列长度(sequence_length
)内。序列之外的位置在计算损失时不被考虑。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或 config.return_dict=False
),根据配置 (MegatronBertConfig) 和输入包含不同的元素。
-
loss (
torch.FloatTensor
of shape(1,)
, 可选, 当提供labels
时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 范围起始分数(SoftMax 之前)。 -
end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 范围结束分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 每个层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegatronBertForQuestionAnswering 的 forward 方法重写了 __call__
特殊方法。
虽然前向传播的流程需要在此函数内定义,但之后应调用 Module
实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, MegatronBertForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-uncased-345m")
>>> model = MegatronBertForQuestionAnswering.from_pretrained("nvidia/megatron-bert-uncased-345m")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...