Transformers 文档

XLM-RoBERTa-XL

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

PyTorch SDPA

XLM-RoBERTa-XL

XLM-RoBERTa-XL 是一个拥有 35 亿参数的多语言掩码语言模型,在 100 种语言上进行了预训练。它表明,通过扩展模型容量,多语言模型在高资源语言上表现出色,甚至可以对低资源语言进行零样本学习。

你可以在 AI at Meta 组织下找到所有原始的 XLM-RoBERTa-XL 检查点。

点击右侧边栏中的 XLM-RoBERTa-XL 模型,查看更多如何将 XLM-RoBERTa-XL 应用于不同跨语言任务(如分类、翻译和问答)的示例。

下面的示例演示了如何使用 PipelineAutoModel 以及从命令行预测 <mask> 标记。

流水线
自动模型
Transformers CLI
import torch  
from transformers import pipeline  

pipeline = pipeline(  
    task="fill-mask",  
    model="facebook/xlm-roberta-xl",  
    torch_dtype=torch.float16,  
    device=0  
)  
pipeline("Bonjour, je suis un modèle <mask>.")  

量化通过以较低精度表示权重来减少大型模型的内存负担。有关更多可用量化后端,请参阅量化概述。

以下示例使用torchao仅将权重量化为int4。

import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer, TorchAoConfig

quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
tokenizer = AutoTokenizer.from_pretrained(
    "facebook/xlm-roberta-xl",
)
model = AutoModelForMaskedLM.from_pretrained(
    "facebook/xlm-roberta-xl",
    torch_dtype=torch.float16,
    device_map="auto",
    attn_implementation="sdpa",
    quantization_config=quantization_config
)
inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to("cuda")

with torch.no_grad():
    outputs = model(**inputs)
    predictions = outputs.logits

masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)

print(f"The predicted token is: {predicted_token}")

注意

  • 与其他一些 XLM 模型不同,XLM-RoBERTa-XL 不需要 lang 张量来理解使用的是哪种语言。它会根据输入 ID 自动确定语言。

XLMRobertaXLConfig

class transformers.XLMRobertaXLConfig

< >

( vocab_size = 250880 hidden_size = 2560 num_hidden_layers = 36 num_attention_heads = 32 intermediate_size = 10240 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 514 type_vocab_size = 1 initializer_range = 0.02 layer_norm_eps = 1e-05 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )

参数

  • vocab_size (int, 可选, 默认为 250880) — XLM_ROBERTA_XL 模型的词汇表大小。定义了在调用 XLMRobertaXLModel 时,可以通过 inputs_ids 表示的不同标记的数量。
  • hidden_size (int, 可选, 默认为 2560) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 36) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, 可选, 默认为 32) — Transformer 编码器中每个注意力层的注意力头数量。
  • intermediate_size (int, 可选, 默认为 10240) — Transformer 编码器中“中间层”(通常称为前馈层)的维度。
  • hidden_act (strCallable, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,支持 "gelu""relu""silu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的丢弃率。
  • max_position_embeddings (int, 可选, 默认为 514) — 此模型可能使用的最大序列长度。通常将其设置为一个较大的值以备不时之需(例如,512、1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 1) — 调用 XLMRobertaXLModelTFXLMRobertaXLModel 时传递的 token_type_ids 的词汇表大小。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-5) — 层归一化层使用的 epsilon 值。
  • position_embedding_type (str, 可选, 默认为 "absolute") — 位置嵌入的类型。选择 "absolute""relative_key""relative_key_query" 中的一个。对于位置嵌入,请使用 "absolute"。有关 "relative_key" 的更多信息,请参阅 Self-Attention with Relative Position Representations (Shaw et al.)。有关 "relative_key_query" 的更多信息,请参阅 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的 方法 4
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。仅当 config.is_decoder=True 时相关。
  • classifier_dropout (float, 可选) — 分类头的丢弃率。

这是用于存储 XLMRobertaXLModelTFXLMRobertaXLModel 配置的配置类。它用于根据指定的参数实例化一个 XLM_ROBERTA_XL 模型,定义模型架构。使用默认值实例化配置将产生与 XLM_ROBERTA_XL facebook/xlm-roberta-xl 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import XLMRobertaXLConfig, XLMRobertaXLModel

>>> # Initializing a XLM_ROBERTA_XL google-bert/bert-base-uncased style configuration
>>> configuration = XLMRobertaXLConfig()

>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
>>> model = XLMRobertaXLModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

XLMRobertaXLModel

class transformers.XLMRobertaXLModel

< >

( config add_pooling_layer = True )

参数

  • config (XLMRobertaXLModel) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • add_pooling_layer (bool, 可选, 默认为 True) — 是否添加池化层

基础的 Xlm Roberta Xl 模型,输出原始的隐藏状态,顶部没有任何特定的头。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被遮盖
    • 0 表示标记已被遮盖

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引选自 [0, 1]

    • 0 对应于*句子 A* 的标记,
    • 1 对应于*句子 B* 的标记。

    什么是标记类型 ID?

  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围 [0, config.n_positions - 1]

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自 [0, 1]

    • 1 表示头未被遮盖
    • 0 表示头已被遮盖
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这将非常有用。
  • encoder_hidden_states (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则用于交叉注意力。
  • encoder_attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对编码器输入的填充标记索引执行注意力的掩码。如果模型被配置为解码器,则此掩码用于交叉注意力。掩码值选自 [0, 1]

    • 1 表示标记未被遮盖
    • 0 表示标记已被遮盖
  • past_key_values (list[torch.FloatTensor]可选) — 预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常包括模型在解码的先前阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • 一个 Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量。这也称为旧版缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,用户可以选择只输入最后一个 input_ids(那些没有为其提供过去键值状态的 input_ids),其形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置(XLMRobertaXLConfig)和输入。

  • last_hidden_state (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (torch.FloatTensor,形状为 (batch_size, hidden_size)) — 序列的第一个标记(分类标记)的最后一层隐藏状态,经过用于辅助预训练任务的层进一步处理。例如,对于 BERT 系列模型,这将返回经过线性层和 tanh 激活函数处理后的分类标记。线性层权重是在预训练期间从下一句预测(分类)目标中训练的。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • past_key_values (Cache可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南

    包含预计算的隐藏状态(自注意力块中的键和值,以及可选地,如果 `config.is_encoder_decoder=True`,则在交叉注意力块中),可用于(请参阅 `past_key_values` 输入)加速序列解码。

XLMRobertaXLModel 的 forward 方法重写了 `__call__` 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

XLMRobertaXLForCausalLM

class transformers.XLMRobertaXLForCausalLM

< >

( config )

参数

  • config (XLMRobertaXLForCausalLM) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

XLM-RoBERTa-XL 模型,顶部带有一个用于因果语言模型(CLM)微调的 `language modeling` 头。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被遮盖
    • 0 表示标记已被遮盖

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引选自 [0, 1]

    • 0 对应于*句子 A* 的标记,
    • 1 对应于*句子 B* 的标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围 [0, config.n_positions - 1]

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自 [0, 1]

    • 1 表示头未被遮盖
    • 0 表示头已被遮盖
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这将非常有用。
  • encoder_hidden_states (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则用于交叉注意力。
  • encoder_attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免对编码器输入的填充标记索引执行注意力的掩码。如果模型被配置为解码器,则此掩码用于交叉注意力。掩码值选自 [0, 1]

    • 1 表示标记未被遮盖
    • 0 表示标记已被遮盖
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算从左到右语言模型损失(下一个词预测)的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(请参阅 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(遮盖),损失仅对标签在 [0, ..., config.vocab_size] 范围内的标记进行计算。
  • past_key_values (tuple[tuple[torch.FloatTensor]]可选) — 预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常包括模型在解码的先前阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • 一个 Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量。这也称为旧版缓存格式。

    模型将输出与输入相同的缓存格式。如果没有传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,用户可以选择只输入最后一个 input_ids(那些没有为其提供过去键值状态的 input_ids),其形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置(XLMRobertaXLConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个 token 预测)。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均。

  • past_key_values (Cache可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南

    包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

XLMRobertaXLForCausalLM 的 forward 方法重写了 `__call__` 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, RobertaForCausalLM, RobertaConfig
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> config = RobertaConfig.from_pretrained("FacebookAI/roberta-base")
>>> config.is_decoder = True
>>> model = RobertaForCausalLM.from_pretrained("FacebookAI/roberta-base", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits

XLMRobertaXLForMaskedLM

class transformers.XLMRobertaXLForMaskedLM

< >

( config )

参数

  • config (XLMRobertaXLForMaskedLM) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Xlm Roberta Xl 模型,顶部带有一个 `language modeling` 头。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被遮盖
    • 0 表示标记已被遮盖

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于指示输入第一部分和第二部分的片段词元索引。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 的词元,
    • 1 对应于 句子 B 的词元。

    什么是词元类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列词元的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于屏蔽自注意力模块中选定头的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被屏蔽
    • 0 表示头被屏蔽
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以不传递 input_ids,而是直接传递一个嵌入表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关联的向量,这会非常有用。
  • encoder_hidden_states (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免对编码器输入的填充词元索引执行注意力的掩码。如果模型被配置为解码器,则该掩码在交叉注意力中使用。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被屏蔽
    • 0 表示词元被屏蔽
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(参见 input_ids 文档)。索引设置为 -100 的词元将被忽略(被屏蔽),损失仅对标签在 [0, ..., config.vocab_size] 范围内的词元进行计算。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置 (XLMRobertaXLConfig) 和输入,包含不同的元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 掩码语言建模 (MLM) 损失。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

XLMRobertaXLForMaskedLM 的前向方法覆盖了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, XLMRobertaXLForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/xlm-roberta-xl")
>>> model = XLMRobertaXLForMaskedLM.from_pretrained("facebook/xlm-roberta-xl")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
...

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
...

XLMRobertaXLForSequenceClassification

class transformers.XLMRobertaXLForSequenceClassification

< >

( config )

参数

XLM-RoBERTa-XL 模型,其顶部带有一个序列分类/回归头(在池化输出之上有一个线性层),例如用于 GLUE 任务。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充词元索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被屏蔽
    • 0 表示词元被屏蔽

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于指示输入第一部分和第二部分的片段词元索引。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 的词元,
    • 1 对应于 句子 B 的词元。

    什么是词元类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列词元的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于屏蔽自注意力模块中选定头的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被屏蔽
    • 0 表示头被屏蔽
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以不传递 input_ids,而是直接传递一个嵌入表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关联的向量,这会非常有用。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置 (XLMRobertaXLConfig) 和输入,包含不同的元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。

  • logits (形状为 (batch_size, config.num_labels)torch.FloatTensor) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

XLMRobertaXLForSequenceClassification 的前向方法覆盖了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, XLMRobertaXLForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/xlm-roberta-xl")
>>> model = XLMRobertaXLForSequenceClassification.from_pretrained("facebook/xlm-roberta-xl")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = XLMRobertaXLForSequenceClassification.from_pretrained("facebook/xlm-roberta-xl", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, XLMRobertaXLForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/xlm-roberta-xl")
>>> model = XLMRobertaXLForSequenceClassification.from_pretrained("facebook/xlm-roberta-xl", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = XLMRobertaXLForSequenceClassification.from_pretrained(
...     "facebook/xlm-roberta-xl", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

XLMRobertaXLForMultipleChoice

class transformers.XLMRobertaXLForMultipleChoice

< >

( config )

参数

  • config (XLMRobertaXLForMultipleChoice) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法以加载模型权重。

Xlm Roberta Xl 模型,其顶部带有一个多项选择分类头(在池化输出之上有一个线性和 softmax 层),例如用于 RocStories/SWAG 任务。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)) — 词汇表中输入序列词元的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()什么是输入 ID?
  • token_type_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 用于指示输入第一部分和第二部分的片段词元索引。索引在 [0, 1] 中选择:

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充词元索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被屏蔽
    • 0 表示词元被屏蔽

    什么是注意力掩码?

  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices-1] 范围内,其中 num_choices 是输入张量第二维的大小。(参见上面的 input_ids
  • position_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 位置嵌入中每个输入序列词元的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。什么是位置 ID?
  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于屏蔽自注意力模块中选定头的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被屏蔽
    • 0 表示头被屏蔽
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, num_choices, sequence_length, hidden_size)可选) — 可选地,你可以不传递 input_ids,而是直接传递一个嵌入表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关联的向量,这会非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置 (XLMRobertaXLConfig) 和输入,包含不同的元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失。

  • logits (形状为 (batch_size, num_choices)torch.FloatTensor) — num_choices 是输入张量的第二维大小。(请参阅上面的 input_ids)。

    分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

XLMRobertaXLForMultipleChoice 的前向方法覆盖了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, XLMRobertaXLForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/xlm-roberta-xl")
>>> model = XLMRobertaXLForMultipleChoice.from_pretrained("facebook/xlm-roberta-xl")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

XLMRobertaXLForTokenClassification

class transformers.XLMRobertaXLForTokenClassification

< >

( config )

参数

Xlm Roberta Xl transformer,其顶部带有一个词元分类头(在隐藏状态输出之上有一个线性层),例如用于命名实体识别(NER)任务。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充词元索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被屏蔽
    • 0 表示词元被屏蔽

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于指示输入第一部分和第二部分的片段词元索引。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 的词元,
    • 1 对应于 句子 B 的词元。

    什么是词元类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列词元的位置索引。在 [0, config.n_positions - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于将自注意力模块中选定的头(head)置为无效的掩码。掩码值的取值范围为 [0, 1]

    • 1 表示头未被屏蔽
    • 0 表示头已被屏蔽
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可以选择直接传递嵌入式表示,而不是传递 `input_ids`。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 `input_ids` 索引转换为相关向量,这会很有用。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算词元分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 `attentions`。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 `hidden_states`。
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(XLMRobertaXLConfig)和输入,包含各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失。

  • logits (形状为 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

XLMRobertaXLForTokenClassification 的 forward 方法覆盖了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, XLMRobertaXLForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/xlm-roberta-xl")
>>> model = XLMRobertaXLForTokenClassification.from_pretrained("facebook/xlm-roberta-xl")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

XLMRobertaXLForQuestionAnswering

class transformers.XLMRobertaXLForQuestionAnswering

< >

( config )

参数

带有片段分类头的 Xlm Roberta Xl transformer,用于抽取式问答任务,如 SQuAD(在隐藏状态输出之上有一个线性层,用于计算 `span start logits` 和 `span end logits`)。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解与通用用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是 input IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充词元索引执行注意力的掩码。掩码值的取值范围为 [0, 1]

    • 1 表示词元未被屏蔽
    • 0 表示词元已被屏蔽

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一和第二部分。索引的取值范围为 [0, 1]

    • 0 对应于 *句子 A* 的词元,
    • 1 对应于 *句子 B* 的词元。

    什么是词元类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列词元的位置索引。取值范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于将自注意力模块中选定的头(head)置为无效的掩码。掩码值的取值范围为 [0, 1]

    • 1 表示头未被屏蔽
    • 0 表示头已被屏蔽
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可以选择直接传递嵌入式表示,而不是传递 `input_ids`。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 `input_ids` 索引转换为相关向量,这会很有用。
  • start_positions (torch.LongTensor,形状为 (batch_size,)可选) — 标记片段开始位置(索引)的标签,用于计算词元分类损失。位置被限制在序列长度(`sequence_length`)内。序列之外的位置在计算损失时不被考虑。
  • end_positions (torch.LongTensor,形状为 (batch_size,)可选) — 标记片段结束位置(索引)的标签,用于计算词元分类损失。位置被限制在序列长度(`sequence_length`)内。序列之外的位置在计算损失时不被考虑。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 `attentions`。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 `hidden_states`。
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(XLMRobertaXLConfig)和输入,包含各种元素。

  • loss (torch.FloatTensor of shape (1,), 可选, 当提供 labels 时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围起始分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围结束分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

XLMRobertaXLForQuestionAnswering 的 forward 方法覆盖了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, XLMRobertaXLForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/xlm-roberta-xl")
>>> model = XLMRobertaXLForQuestionAnswering.from_pretrained("facebook/xlm-roberta-xl")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
< > 在 GitHub 上更新