Transformers 文档

BART

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

PyTorch TensorFlow Flax FlashAttention SDPA

BART

BART 是一个序列到序列模型,结合了 BERT 和 GPT 的预训练目标。它通过多种方式(如删除单词、打乱句子或掩盖词元)破坏文本,并学习如何修复文本来进行预训练。编码器对损坏的文档进行编码,解码器则修复损坏的文本。由于 BART 学会了恢复原始文本,因此它在理解和生成语言方面都表现出色。

你可以在 AI at Meta 组织下找到所有原始的 BART 检查点。

以下示例演示了如何使用 PipelineAutoModel 和命令行来预测 [MASK] 词元。

流水线
自动模型
Transformers CLI
import torch
from transformers import pipeline

pipeline = pipeline(
    task="fill-mask",
    model="facebook/bart-large",
    torch_dtype=torch.float16,
    device=0
)
pipeline("Plants create <mask> through a process known as photosynthesis.")

注意

  • 输入应在右侧进行填充,因为 BERT 使用绝对位置嵌入。
  • facebook/bart-large-cnn 检查点不包含 mask_token_id,这意味着它无法执行掩码填充任务。
  • BART 在序列分类任务中不使用 token_type_ids。请使用 BartTokenizerencode() 来获取正确的分词结果。
  • BartModel 的前向传播过程会在未传递 decoder_input_ids 时自动创建它们。这可能与其他模型的 API 不同,但对于掩码填充任务来说是一个有用的功能。
  • forced_bos_token_id=0 时,模型的预测结果旨在与原始实现保持一致。这仅在传递给 fairseq.encode 的文本以空格开头时才有效。
  • 对于摘要等条件生成任务,应使用 generate()

BartConfig

class transformers.BartConfig

< >

( vocab_size = 50265 max_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 activation_function = 'gelu' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 classifier_dropout = 0.0 scale_embedding = False use_cache = True num_labels = 3 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 is_encoder_decoder = True decoder_start_token_id = 2 forced_eos_token_id = 2 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 50265) — BART 模型的词汇表大小。定义了在调用 BartModelTFBartModel 时,可以通过 inputs_ids 表示的不同词元的数量。
  • d_model (int, 可选, 默认为 1024) — 层和池化层的维度。
  • encoder_layers (int, 可选, 默认为 12) — 编码器层数。
  • decoder_layers (int, 可选, 默认为 12) — 解码器层数。
  • encoder_attention_heads (int, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数量。
  • decoder_attention_heads (int, 可选, 默认为 16) — Transformer 解码器中每个注意力层的注意力头数量。
  • decoder_ffn_dim (int, 可选, 默认为 4096) — 解码器中“中间”(通常称为前馈)层的维度。
  • encoder_ffn_dim (int, 可选, 默认为 4096) — 解码器中“中间”(通常称为前馈)层的维度。
  • activation_function (strfunction, 可选, 默认为 "gelu") — 编码器和池化层中的非线性激活函数(函数或字符串)。如果为字符串,支持 "gelu""relu""silu""gelu_new"
  • dropout (float, 可选, 默认为 0.1) — 嵌入层、编码器和池化层中所有全连接层的丢弃概率。
  • attention_dropout (float, 可选, 默认为 0.0) — 注意力概率的丢弃率。
  • activation_dropout (float, 可选, 默认为 0.0) — 全连接层内激活函数的丢弃率。
  • classifier_dropout (float, 可选, 默认为 0.0) — 分类器的丢弃率。
  • max_position_embeddings (int, 可选, 默认为 1024) — 该模型可能使用的最大序列长度。通常设置为一个较大的值以备不时之需(例如,512、1024 或 2048)。
  • init_std (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • encoder_layerdrop (float, 可选, 默认为 0.0) — 编码器的 LayerDrop 概率。更多详情请参阅[LayerDrop 论文](参见 https://huggingface.co/papers/1909.11556)。
  • decoder_layerdrop (float, 可选, 默认为 0.0) — 解码器的 LayerDrop 概率。更多详情请参阅[LayerDrop 论文](参见 https://huggingface.co/papers/1909.11556)。
  • scale_embedding (bool, 可选, 默认为 False) — 通过除以 sqrt(d_model) 来缩放嵌入。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。
  • num_labels (int, 可选, 默认为 3) — 在 BartForSequenceClassification 中使用的标签数量。
  • forced_eos_token_id (int, 可选, 默认为 2) — 当达到 max_length 时,强制作为最后生成的词元的 ID。通常设置为 eos_token_id

这是一个用于存储 BartModel 配置的配置类。它用于根据指定的参数实例化一个 BART 模型,定义了模型架构。使用默认值实例化一个配置将产生一个与 BART facebook/bart-large 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。更多信息请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import BartConfig, BartModel

>>> # Initializing a BART facebook/bart-large style configuration
>>> configuration = BartConfig()

>>> # Initializing a model (with random weights) from the facebook/bart-large style configuration
>>> model = BartModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

BartTokenizer

class transformers.BartTokenizer

< >

( vocab_file merges_file errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • merges_file (str) — 合并文件的路径。
  • errors (str, 可选, 默认为 "replace") — 解码字节为 UTF-8 时遵循的范式。更多信息请参阅 bytes.decode
  • bos_token (str, 可选, 默认为 "<s>") — 预训练期间使用的序列开始标记。可用作序列分类器标记。

    当使用特殊标记构建序列时,这不是用于序列开始的标记。实际使用的标记是 cls_token

  • eos_token (str, 可选, 默认为 "</s>") — 序列结束标记。

    当使用特殊标记构建序列时,这不是用于序列结束的标记。实际使用的标记是 sep_token

  • sep_token (str, 可选, 默认为 "</s>") — 分隔符标记,用于从多个序列构建一个序列,例如用于序列分类的两个序列,或用于问答任务的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, 可选, 默认为 "<s>") — 分类器标记,用于进行序列分类(对整个序列而不是逐个标记进行分类)。它是使用特殊标记构建的序列的第一个标记。
  • unk_token (str, 可选, 默认为 "<unk>") — 未知标记。词汇表中不存在的标记无法转换为 ID,将被设置为此标记。
  • pad_token (str, 可选, 默认为 "<pad>") — 用于填充的标记,例如在批处理不同长度的序列时使用。
  • mask_token (str, 可选, 默认为 "<mask>") — 用于掩码值的标记。这是使用掩码语言模型训练此模型时使用的标记。模型将尝试预测此标记。
  • add_prefix_space (bool, 可选, 默认为 False) — 是否在输入前添加一个初始空格。这允许将开头的单词像其他单词一样处理。(BART 分词器通过前面的空格来检测单词的开头)。

构建一个 BART 分词器,它与 RoBERTa 分词器类似,使用字节级字节对编码(Byte-Pair-Encoding)。

这个分词器经过训练,将空格视为词元的一部分(有点像 sentencepiece),所以一个词会

无论是否在句子开头(无空格),编码方式都会不同

>>> from transformers import BartTokenizer

>>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]

>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]

您可以通过在实例化此分词器时或在对某些文本调用它时传递 add_prefix_space=True 来绕过此行为,但由于模型并非以这种方式进行预训练,这可能会导致性能下降。

当与 is_split_into_words=True 一起使用时,此分词器会在每个词(甚至是第一个词)之前添加一个空格。

该分词器继承自 PreTrainedTokenizer,其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) list[int]

参数

  • token_ids_0 (list[int]) — 将要添加特殊标记的 ID 列表。
  • token_ids_1 (list[int], 可选) — 用于序列对的可选的第二个 ID 列表。

返回

list[int]

带有适当特殊标记的输入ID列表。

通过连接和添加特殊标记,从一个序列或一对序列为序列分类任务构建模型输入。BART 序列具有以下格式

  • 单个序列:<s> X </s>
  • 序列对:<s> A </s></s> B </s>

convert_tokens_to_string

< >

( tokens )

将标记序列(字符串)转换为单个字符串。

create_token_type_ids_from_sequences

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) list[int]

参数

  • token_ids_0 (list[int]) — ID 列表。
  • token_ids_1 (list[int], 可选) — 用于序列对的可选的第二个 ID 列表。

返回

list[int]

零列表。

根据传入的两个序列创建一个掩码,用于序列对分类任务。BART 不使用标记类型 ID,因此返回一个全零列表。

get_special_tokens_mask

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None already_has_special_tokens: bool = False ) list[int]

参数

  • token_ids_0 (list[int]) — ID 列表。
  • token_ids_1 (list[int], 可选) — 用于序列对的可选的第二个 ID 列表。
  • already_has_special_tokens (bool, 可选, 默认为 False) — 标记列表是否已经为模型格式化了特殊标记。

返回

list[int]

一个范围为 [0, 1] 的整数列表:1 表示特殊标记,0 表示序列标记。

从没有添加特殊标记的标记列表中检索序列ID。此方法在使用分词器prepare_for_model方法添加特殊标记时调用。

BartTokenizerFast

class transformers.BartTokenizerFast

< >

( vocab_file = None merges_file = None tokenizer_file = None errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False trim_offsets = True **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • merges_file (str) — 合并文件的路径。
  • errors (str, 可选, 默认为 "replace") — 解码字节为 UTF-8 时遵循的范式。更多信息请参阅 bytes.decode
  • bos_token (str, 可选, 默认为 "<s>") — 预训练期间使用的序列开始标记。可用作序列分类器标记。

    当使用特殊标记构建序列时,这不是用于序列开始的标记。实际使用的标记是 cls_token

  • eos_token (str, 可选, 默认为 "</s>") — 序列结束标记。

    当使用特殊标记构建序列时,这不是用于序列结束的标记。实际使用的标记是 sep_token

  • sep_token (str, 可选, 默认为 "</s>") — 分隔符标记,用于从多个序列构建一个序列,例如用于序列分类的两个序列,或用于问答任务的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, 可选, 默认为 "<s>") — 分类器标记,用于进行序列分类(对整个序列而不是逐个标记进行分类)。它是使用特殊标记构建的序列的第一个标记。
  • unk_token (str, 可选, 默认为 "<unk>") — 未知标记。词汇表中不存在的标记无法转换为 ID,将被设置为此标记。
  • pad_token (str, 可选, 默认为 "<pad>") — 用于填充的标记,例如在批处理不同长度的序列时使用。
  • mask_token (str, 可选, 默认为 "<mask>") — 用于掩码值的标记。这是使用掩码语言模型训练此模型时使用的标记。模型将尝试预测此标记。
  • add_prefix_space (bool, 可选, 默认为 False) — 是否在输入前添加一个初始空格。这允许将开头的单词像其他单词一样处理。(BART 分词器通过前面的空格来检测单词的开头)。
  • trim_offsets (bool, 可选, 默认为 True) — 后处理步骤是否应修剪偏移量以避免包含空白字符。

构建一个“快速”的 BART 分词器(由 HuggingFace 的 tokenizers 库支持),它源自 GPT-2 分词器,使用字节级字节对编码(Byte-Pair-Encoding)。

这个分词器经过训练,将空格视为词元的一部分(有点像 sentencepiece),所以一个词会

无论是否在句子开头(无空格),编码方式都会不同

>>> from transformers import BartTokenizerFast

>>> tokenizer = BartTokenizerFast.from_pretrained("facebook/bart-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]

>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]

您可以通过在实例化此分词器时或在对某些文本调用它时传递 add_prefix_space=True 来绕过此行为,但由于模型并非以这种方式进行预训练,这可能会导致性能下降。

当与 is_split_into_words=True 一起使用时,此分词器需要以 add_prefix_space=True 进行实例化。

该分词器继承自 PreTrainedTokenizerFast,其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

create_token_type_ids_from_sequences

< >

( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) list[int]

参数

  • token_ids_0 (list[int]) — ID 列表。
  • token_ids_1 (list[int], 可选) — 用于序列对的可选的第二个 ID 列表。

返回

list[int]

零列表。

根据传入的两个序列创建一个掩码,用于序列对分类任务。BART 不使用标记类型 ID,因此返回一个全零列表。

Pytorch
隐藏 Pytorch 内容

BartModel

class transformers.BartModel

< >

( config: BartConfig )

参数

  • config (BartConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

基础的 Bart 模型,输出原始的隐藏状态,顶部没有任何特定的头。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[list[torch.FloatTensor]] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力计算的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor,形状为 (batch_size, target_sequence_length)可选) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    Bart 使用 eos_token_id 作为生成 decoder_input_ids 的起始标记。如果使用 past_key_values,可以选择只输入最后的 decoder_input_ids(请参阅 past_key_values)。

    对于翻译和摘要训练,应提供 decoder_input_ids。如果未提供 decoder_input_ids,模型将按照论文中的方法,通过将 input_ids 右移一位来创建此张量,以进行去噪预训练。

  • decoder_attention_mask (torch.LongTensor,形状为 (batch_size, target_sequence_length)可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。默认情况下也会使用因果掩码。

    如果你想改变填充行为,你应该阅读 modeling_bart._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参阅论文中的图 1。

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示该头未被掩码,
    • 0 表示该头已被掩码
  • decoder_head_mask (torch.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于使解码器中注意力模块选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示该头未被掩码,
    • 0 表示该头已被掩码
  • cross_attn_head_mask (torch.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于使解码器中交叉注意力模块选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示该头未被掩码,
    • 0 表示该头已被掩码
  • encoder_outputs (list[torch.FloatTensor]可选) — 元组包含 (last_hidden_state, 可选: hidden_states, 可选: attentions) last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)可选) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力机制。
  • past_key_values (list[torch.FloatTensor]可选) — 预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常由模型在解码的前一阶段返回的 past_key_values 组成,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也被称为旧版缓存格式。

    模型将输出与输入相同的缓存格式。如果未传递 past_key_values,将返回旧版缓存格式。

    如果使用 past_key_values,用户可以选择只输入最后的 input_ids(那些没有为其提供过去键值状态的 ID),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以不传递 input_ids,而是直接传递一个嵌入表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这会很有用。
  • decoder_inputs_embeds (torch.FloatTensor,形状为 (batch_size, target_sequence_length, hidden_size)可选) — 可选地,你可以不传递 decoder_input_ids,而是直接传递一个嵌入表示。如果使用了 past_key_values,可以选择只输入最后的 decoder_inputs_embeds(参见 past_key_values)。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 decoder_input_ids 索引转换为相关向量,这会很有用。

    如果 decoder_input_idsdecoder_inputs_embeds 都未设置,decoder_inputs_embeds 将取 inputs_embeds 的值。

  • use_cache (bool可选) — 如果设置为 True,则会返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 描述输入序列标记在序列中位置的索引。与 position_ids 相反,此张量不受填充影响。它用于在正确的位置更新缓存并推断完整的序列长度。

返回

transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (BartConfig) 和输入。

  • last_hidden_state (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型解码器最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (EncoderDecoderCache可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 EncoderDecoderCache 实例。更多详情,请参阅我们的 kv 缓存指南

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,一个是嵌入层的输出,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每个层输出的隐藏状态,加上可选的初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • encoder_last_hidden_state (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,一个是嵌入层的输出,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    编码器在每个层输出的隐藏状态,加上可选的初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

BartModel 的 forward 方法重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

BartForConditionalGeneration

class transformers.BartForConditionalGeneration

< >

( config: BartConfig )

参数

  • config (BartConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

带有语言建模头的 BART 模型。可用于摘要任务。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[list[torch.FloatTensor]] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 避免对填充标记索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码,
    • 0 表示标记已被掩码

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor,形状为 (batch_size, target_sequence_length)可选) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    Bart 使用 eos_token_id 作为生成 decoder_input_ids 的起始标记。如果使用 past_key_values,可以选择只输入最后的 decoder_input_ids(参见 past_key_values)。

    对于翻译和摘要训练,应提供 decoder_input_ids。如果没有提供 decoder_input_ids,模型将按照论文中的方法,通过将 input_ids 右移来创建此张量,以进行去噪预训练。

  • decoder_attention_mask (torch.LongTensor,形状为 (batch_size, target_sequence_length)可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。默认情况下也会使用因果掩码。

    如果你想改变填充行为,你应该阅读 modeling_bart._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参阅论文中的图 1。

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示该头未被掩码,
    • 0 表示该头已被掩码
  • decoder_head_mask (torch.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于使解码器中注意力模块选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示该头未被掩码,
    • 0 表示该头已被掩码
  • cross_attn_head_mask (torch.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于使解码器中交叉注意力模块选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示该头未被掩码,
    • 0 表示该头已被掩码
  • encoder_outputs (list[torch.FloatTensor]可选) — 元组包含 (last_hidden_state, 可选: hidden_states, 可选: attentions) last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)可选) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力机制。
  • past_key_values (list[torch.FloatTensor]可选) — 预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常由模型在解码的前一阶段返回的 past_key_values 组成,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也被称为旧版缓存格式。

    模型将输出与输入相同的缓存格式。如果未传递 past_key_values,将返回旧版缓存格式。

    如果使用 past_key_values,用户可以选择只输入最后的 input_ids(那些没有为其提供过去键值状态的 ID),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以不传递 input_ids,而是直接传递一个嵌入表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这会很有用。
  • decoder_inputs_embeds (torch.FloatTensor,形状为 (batch_size, target_sequence_length, hidden_size)可选) — 可选地,你可以不传递 decoder_input_ids,而是直接传递一个嵌入表示。如果使用了 past_key_values,可以选择只输入最后的 decoder_inputs_embeds(参见 past_key_values)。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 decoder_input_ids 索引转换为相关向量,这会很有用。

    如果 decoder_input_idsdecoder_inputs_embeds 都未设置,decoder_inputs_embeds 将取 inputs_embeds 的值。

  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档字符串)。索引设置为 -100 的标记会被忽略(掩码),损失仅对标签在 [0, ..., config.vocab_size] 内的标记计算。
  • use_cache (bool可选) — 如果设置为 True,则会返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 描述输入序列标记在序列中位置的索引。与 position_ids 相反,此张量不受填充影响。它用于在正确的位置更新缓存并推断完整的序列长度。

返回

transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (BartConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • past_key_values (EncoderDecoderCache可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 EncoderDecoderCache 实例。更多详情,请参阅我们的 kv 缓存指南

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,一个是嵌入层的输出,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • encoder_last_hidden_state (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,一个是嵌入层的输出,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

BartForConditionalGeneration 的 forward 方法重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

摘要示例

>>> from transformers import AutoTokenizer, BartForConditionalGeneration

>>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")

>>> ARTICLE_TO_SUMMARIZE = (
...     "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
...     "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
...     "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt")

>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=0, max_length=20)
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'PG&E scheduled the blackouts in response to forecasts for high winds amid dry conditions'

掩码填充示例

>>> from transformers import AutoTokenizer, BartForConditionalGeneration

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")

>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits

>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)

>>> tokenizer.decode(predictions).split()
['not', 'good', 'healthy', 'great', 'very']

BartForSequenceClassification

class transformers.BartForSequenceClassification

< >

( config: BartConfig **kwargs )

参数

  • config (BartConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Bart 模型在顶部带有一个序列分类/头部(在池化输出之上有一个线性层),例如用于 GLUE 任务。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.Seq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 避免对填充标记索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码,
    • 0 表示标记已被掩码

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor,形状为 (batch_size, target_sequence_length)可选) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    Bart 使用 eos_token_id 作为生成 decoder_input_ids 的起始标记。如果使用 past_key_values,可以选择只输入最后的 decoder_input_ids(参见 past_key_values)。

    对于翻译和摘要训练,应提供 decoder_input_ids。如果没有提供 decoder_input_ids,模型将按照论文中的方法,通过将 input_ids 右移来创建此张量,以进行去噪预训练。

  • decoder_attention_mask (torch.LongTensor,形状为 (batch_size, target_sequence_length)可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。默认情况下也会使用因果掩码。

    如果你想改变填充行为,你应该阅读 modeling_bart._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参阅论文中的图 1。

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示该头未被掩码,
    • 0 表示该头已被掩码
  • decoder_head_mask (torch.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于使解码器中注意力模块选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示该头未被掩码,
    • 0 表示该头已被掩码
  • cross_attn_head_mask (torch.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于使解码器中交叉注意力模块选定的头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示该头未被掩码,
    • 0 表示该头已被掩码
  • encoder_outputs (list[torch.FloatTensor]可选) — 元组包含 (last_hidden_state, 可选: hidden_states, 可选: attentions) last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)可选) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力机制。
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以不传递 input_ids,而是选择直接传递嵌入式表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这会很有用。
  • decoder_inputs_embeds (torch.FloatTensor,形状为 (batch_size, target_sequence_length, hidden_size)可选) — 可选地,你可以不传递 decoder_input_ids,而是选择直接传递嵌入式表示。如果使用 past_key_values,可以选择只输入最后一个 decoder_inputs_embeds(参见 past_key_values)。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 decoder_input_ids 索引转换为相关向量,这会很有用。

    如果 decoder_input_idsdecoder_inputs_embeds 都未设置,decoder_inputs_embeds 将取 inputs_embeds 的值。

  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels > 1,则计算分类损失(交叉熵)。
  • use_cache (bool可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 描述输入序列中词元位置的索引。与 position_ids 相反,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整的序列长度。

返回

transformers.modeling_outputs.Seq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=Falseconfig.return_dict=False),根据配置(BartConfig)和输入包含各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 label 时返回) — 分类 (如果 config.num_labels==1 则为回归) 损失。

  • logits (形状为 (batch_size, config.num_labels)torch.FloatTensor) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。

  • past_key_values (EncoderDecoderCache可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 EncoderDecoderCache 实例。更多详情,请参阅我们的 kv 缓存指南

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,一个是嵌入层的输出,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • encoder_last_hidden_state (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,一个是嵌入层的输出,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

BartForSequenceClassification 的 forward 方法会覆盖 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, BartForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
>>> model = BartForSequenceClassification.from_pretrained("facebook/bart-large")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BartForSequenceClassification.from_pretrained("facebook/bart-large", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, BartForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
>>> model = BartForSequenceClassification.from_pretrained("facebook/bart-large", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BartForSequenceClassification.from_pretrained(
...     "facebook/bart-large", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

用于问答任务的Bart模型

class transformers.BartForQuestionAnswering

< >

( config )

参数

  • config (BartForQuestionAnswering) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Bart transformer 模型,顶部带有一个用于抽取式问答任务(如 SQuAD)的片段分类头(在隐藏状态输出之上有一个线性层,用于计算 span start logitsspan end logits)。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[list[torch.FloatTensor]] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 避免对填充词元索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被屏蔽
    • 0 表示词元被屏蔽

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor,形状为 (batch_size, target_sequence_length)可选) — 词汇表中解码器输入序列词元的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    Bart 使用 eos_token_id 作为生成 decoder_input_ids 的起始词元。如果使用 past_key_values,可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    对于翻译和摘要训练,应提供 decoder_input_ids。如果未提供 decoder_input_ids,模型将按照论文中的方法,通过将 input_ids 右移来创建此张量,以进行去噪预训练。

  • decoder_attention_mask (torch.LongTensor,形状为 (batch_size, target_sequence_length)可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充词元的张量。默认情况下也会使用因果掩码。

    如果你想更改填充行为,应阅读 modeling_bart._prepare_decoder_attention_mask 并根据需要进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被屏蔽
    • 0 表示头被屏蔽
  • decoder_head_mask (torch.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于使解码器中注意力模块的选定头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被屏蔽
    • 0 表示头被屏蔽
  • cross_attn_head_mask (torch.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于使解码器中交叉注意力模块的选定头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被屏蔽
    • 0 表示头被屏蔽
  • encoder_outputs (list[torch.FloatTensor]可选) — 由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成的元组。形状为 (batch_size, sequence_length, hidden_size)last_hidden_state可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。
  • start_positions (torch.LongTensor,形状为 (batch_size,)可选) — 标记片段开始位置(索引)的标签,用于计算词元分类损失。位置被限制在序列长度(sequence_length)内。超出序列的位置不计入损失计算。
  • end_positions (torch.LongTensor,形状为 (batch_size,)可选) — 标记片段结束位置(索引)的标签,用于计算词元分类损失。位置被限制在序列长度(sequence_length)内。超出序列的位置不计入损失计算。
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以不传递 input_ids,而是选择直接传递嵌入式表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这会很有用。
  • decoder_inputs_embeds (torch.FloatTensor,形状为 (batch_size, target_sequence_length, hidden_size)可选) — 可选地,你可以不传递 decoder_input_ids,而是选择直接传递嵌入式表示。如果使用 past_key_values,可以选择只输入最后一个 decoder_inputs_embeds(参见 past_key_values)。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 decoder_input_ids 索引转换为相关向量,这会很有用。

    如果 decoder_input_idsdecoder_inputs_embeds 都未设置,decoder_inputs_embeds 将取 inputs_embeds 的值。

  • use_cache (bool可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 描述输入序列中词元位置的索引。与 position_ids 相反,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整的序列长度。

返回

transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=Falseconfig.return_dict=False),根据配置(BartConfig)和输入包含各种元素。

  • loss (torch.FloatTensor of shape (1,), 可选, 当提供 labels 时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围起始分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围结束分数(SoftMax 之前)。

  • past_key_values (EncoderDecoderCache可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 EncoderDecoderCache 实例。更多详情,请参阅我们的 kv 缓存指南

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,一个是嵌入层的输出,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • encoder_last_hidden_state (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,一个是嵌入层的输出,+ 每个层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

BartForQuestionAnswering 的 forward 方法会覆盖 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, BartForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
>>> model = BartForQuestionAnswering.from_pretrained("facebook/bart-large")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...

用于因果语言建模的Bart模型

class transformers.BartForCausalLM

< >

( config )

参数

  • config (BartForCausalLM) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

BART 解码器,顶部带有一个语言建模头(线性层,权重与输入嵌入绑定)。

该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

该模型也是一个 PyTorch torch.nn.Module 子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与通用用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 避免对填充词元索引执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被屏蔽
    • 0 表示词元被屏蔽

    什么是注意力掩码?

  • encoder_hidden_states (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则用于交叉注意力。
  • encoder_attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 避免对编码器输入的填充词元索引执行注意力的掩码。如果模型被配置为解码器,此掩码用于交叉注意力。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被屏蔽
    • 0 表示词元被屏蔽
  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被屏蔽
    • 0 表示头被屏蔽
  • cross_attn_head_mask (torch.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于使交叉注意力模块的选定头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被屏蔽
    • 0 表示头被屏蔽
  • past_key_values (list[torch.FloatTensor]可选) — 预计算的隐藏状态(自注意力和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括在解码的先前阶段由模型返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • 一个 Cache 实例,参见我们的 kv 缓存指南
    • 一个长度为 config.n_layerstuple(torch.FloatTensor) 元组,其中每个元组有两个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也称为旧版缓存格式。

    模型将输出与输入相同的缓存格式。如果未传递 past_key_values,将返回旧版缓存格式。

    如果使用 past_key_values,用户可以选择只输入最后一个 input_ids(那些没有为其提供过去键值状态的词元),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以不传递 input_ids,而是选择直接传递嵌入式表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这会很有用。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档字符串)。索引设置为 -100 的词元将被忽略(屏蔽),损失仅对标签在 [0, ..., config.vocab_size] 范围内的词元计算。
  • use_cache (bool可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 描述输入序列中标记(token)位置的索引。与 position_ids 相反,此张量不受填充(padding)的影响。它用于在正确的位置更新缓存,并推断完整的序列长度。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置(BartConfig)和输入而不同的各种元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个 token 预测)。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入层的输出,另外每个层各有一个输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均。

  • past_key_values (Cache可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 这是一个 Cache 实例。更多详情,请参阅我们的 KV 缓存指南

    包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

BartForCausalLM 的前向方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, BartForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = BartForCausalLM.from_pretrained("facebook/bart-base", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
TensorFlow
隐藏 TensorFlow 内容

TFBartModel

class transformers.TFBartModel

< >

( config: BartConfig load_weight_prefix = None *inputs **kwargs )

参数

  • config (BartConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

基础的 BART 模型,输出原始的隐藏状态,顶部没有任何特定的头部。该模型继承自 TFPreTrainedModel。请查看超类文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个 keras.Model 子类。可以像常规的 TF 2.0 Keras 模型一样使用它,并参考 TF 2.0 文档了解所有与通用用法和行为相关的事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入作为关键字参数(如 PyTorch 模型),或
  • 所有输入作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,Keras 方法在向模型和层传递输入时更喜欢这种格式。由于这种支持,当使用像 model.fit() 这样的方法时,一切应该“正常工作”——只需以 model.fit() 支持的任何格式传递你的输入和标签!但是,如果你想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建自己的层或模型时,有三种可能的方法可以将所有输入张量收集到第一个位置参数中:

  • 只有一个 input_ids 的单个张量,没有其他:model(input_ids)
  • 长度可变的列表,包含一个或多个输入张量,按文档字符串中给出的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,在使用子类化创建模型和层时,您无需担心这些问题,因为您可以像调用任何其他 Python 函数一样传递输入!

调用

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None decoder_position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None decoder_head_mask: np.ndarray | tf.Tensor | None = None cross_attn_head_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: Optional[Union[tuple, TFBaseModelOutput]] = None past_key_values: Optional[tuple[tuple[Union[np.ndarray, tf.Tensor]]]] = None inputs_embeds: np.ndarray | tf.Tensor | None = None decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False **kwargs ) transformers.modeling_tf_outputs.TFSeq2SeqModelOutputtuple(tf.Tensor)

参数

  • input_ids (tf.Tensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (tf.Tensor,形状为 (batch_size, sequence_length)可选) — 掩码,用于避免对填充标记索引执行注意力计算。掩码值选自 [0, 1]

    • 1 表示标记未被遮盖
    • 0 表示标记已被遮盖

    什么是注意力掩码?

  • decoder_input_ids (tf.Tensor,形状为 (batch_size, target_sequence_length)可选) — 解码器输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    Bart 使用 eos_token_id 作为生成 decoder_input_ids 的起始标记。如果使用 past_key_values,则可以选择只输入最后一个 decoder_input_ids(请参阅 past_key_values)。

    对于翻译和摘要训练,应提供 decoder_input_ids。如果未提供 decoder_input_ids,模型将根据论文中的方法,通过将 input_ids 右移来创建此张量,以进行去噪预训练。

  • decoder_attention_mask (tf.Tensor,形状为 (batch_size, target_sequence_length)可选) — 默认情况下会自动创建并忽略填充标记。在大多数情况下,不建议设置此参数。
  • decoder_position_ids (tf.Tensor,形状为 (batch_size, sequence_length)可选) — 解码器每个输入序列标记在位置嵌入中的位置索引。取值范围为 [0, config.max_position_embeddings - 1]
  • head_mask (tf.Tensor,形状为 (encoder_layers, encoder_attention_heads)可选) — 用于置零编码器中注意力模块选定头部的掩码。掩码值选自 [0, 1]

    • 1 表示头部未被遮盖
    • 0 表示头部已被遮盖
  • decoder_head_mask (tf.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于置零解码器中注意力模块选定头部的掩码。掩码值选自 [0, 1]

    • 1 表示头部未被遮盖
    • 0 表示头部已被遮盖
  • cross_attn_head_mask (tf.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于置零交叉注意力模块选定头部的掩码。掩码值选自 [0, 1]

    • 1 表示头部未被遮盖
    • 0 表示头部已被遮盖
  • encoder_outputs (tf.FloatTensor可选) — 编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。形状为 (batch_size, sequence_length, hidden_size)
  • past_key_values (长度为 config.n_layerstuple[tuple[tf.Tensor]]) — 包含预先计算的注意力块的键和值隐藏状态。可用于加速解码。如果使用 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids(那些没有为其提供过去键值状态的标记),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可以选择直接传递嵌入表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这将非常有用。
  • use_cache (bool可选,默认为 True) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(请参阅 past_key_values)。在训练期间设置为 False,在生成期间设置为 True
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 attentions。此参数只能在即时(eager)模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 hidden_states。此参数只能在即时(eager)模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。此参数可以在即时(eager)模式下使用,在图模式下,该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否以训练模式使用模型(某些模块如 dropout 模块在训练和评估之间有不同的行为)。

返回

transformers.modeling_tf_outputs.TFSeq2SeqModelOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或一个 tf.Tensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置(BartConfig)和输入而不同的各种元素。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)tf.Tensor) — 模型解码器最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (list[tf.Tensor]可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个张量的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head))。

    包含解码器注意力块的预计算隐藏状态(键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的元组(一个是嵌入层的输出 + 每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • decoder_attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

  • cross_attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • encoder_last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)tf.Tensor, 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的元组(一个是嵌入层的输出 + 每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • encoder_attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

TFBartModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, TFBartModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
>>> model = TFBartModel.from_pretrained("facebook/bart-large")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFBartForConditionalGeneration

class transformers.TFBartForConditionalGeneration

< >

( config load_weight_prefix = None *inputs **kwargs )

参数

  • config (BartConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

带有语言建模头部的 BART 模型。可用于文本摘要。该模型继承自 TFPreTrainedModel。请查看超类文档以了解该库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个 keras.Model 子类。可以像常规的 TF 2.0 Keras 模型一样使用它,并参考 TF 2.0 文档了解所有与通用用法和行为相关的事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入作为关键字参数(如 PyTorch 模型),或
  • 所有输入作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,Keras 方法在向模型和层传递输入时更喜欢这种格式。由于这种支持,当使用像 model.fit() 这样的方法时,一切应该“正常工作”——只需以 model.fit() 支持的任何格式传递你的输入和标签!但是,如果你想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建自己的层或模型时,有三种可能的方法可以将所有输入张量收集到第一个位置参数中:

  • 只有一个 input_ids 的单个张量,没有其他:model(input_ids)
  • 长度可变的列表,包含一个或多个输入张量,按文档字符串中给出的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,在使用子类化创建模型和层时,您无需担心这些问题,因为您可以像调用任何其他 Python 函数一样传递输入!

调用

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None decoder_position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None decoder_head_mask: np.ndarray | tf.Tensor | None = None cross_attn_head_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: Optional[TFBaseModelOutput] = None past_key_values: Optional[tuple[tuple[Union[np.ndarray, tf.Tensor]]]] = None inputs_embeds: np.ndarray | tf.Tensor | None = None decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFSeq2SeqLMOutputtuple(tf.Tensor)

参数

  • input_ids (tf.Tensor,形状为 ({0})) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (tf.Tensor,形状为 ({0})可选) — 掩码,用于避免对填充标记索引执行注意力计算。掩码值选自 [0, 1]

    • 1 表示标记未被遮盖
    • 0 表示标记已被遮盖

    什么是注意力掩码?

  • decoder_input_ids (tf.Tensor,形状为 (batch_size, target_sequence_length)可选) — 解码器输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    Bart 使用 eos_token_id 作为生成 decoder_input_ids 的起始标记。如果使用 past_key_values,则可以选择只输入最后一个 decoder_input_ids(请参阅 past_key_values)。

    对于翻译和摘要训练,应提供 decoder_input_ids。如果未提供 decoder_input_ids,模型将根据论文中的方法,通过将 input_ids 右移来创建此张量,以进行去噪预训练。

  • decoder_attention_mask (tf.Tensor,形状为 (batch_size, target_sequence_length)可选) — 默认情况下会自动创建并忽略填充标记。在大多数情况下,不建议设置此参数。
  • decoder_position_ids (tf.Tensor,形状为 (batch_size, sequence_length)可选) — 解码器每个输入序列标记在位置嵌入中的位置索引。取值范围为 [0, config.max_position_embeddings - 1]
  • head_mask (tf.Tensor,形状为 (encoder_layers, encoder_attention_heads)可选) — 用于置零编码器中注意力模块选定头部的掩码。掩码值选自 [0, 1]

    • 1 表示头部未被遮盖
    • 0 表示头部已被遮盖
  • decoder_head_mask (tf.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于置零解码器中注意力模块选定头部的掩码。掩码值选自 [0, 1]

    • 1 表示头部未被遮盖
    • 0 表示头部已被遮盖
  • cross_attn_head_mask (tf.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于置零交叉注意力模块选定头部的掩码。掩码值选自 [0, 1]

    • 1 表示头部未被遮盖
    • 0 表示头部已被遮盖
  • encoder_outputs (tf.FloatTensor可选) — 编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。形状为 (batch_size, sequence_length, hidden_size)
  • past_key_values (长度为 config.n_layerstuple[tuple[tf.Tensor]]) — 包含预先计算的注意力块的键和值隐藏状态。可用于加速解码。如果使用 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids(那些没有为其提供过去键值状态的标记),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可以选择直接传递嵌入表示,而不是传递 input_ids。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这将非常有用。
  • use_cache (bool可选,默认为 True) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(请参阅 past_key_values)。在训练期间设置为 False,在生成期间设置为 True
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 attentions。此参数只能在即时(eager)模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 `hidden_states`。此参数只能在 Eager 模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。此参数可以在 Eager 模式下使用,在图模式下,该值将始终设置为 True。
  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(某些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • labels (tf.Tensor, 形状为 (batch_size, sequence_length), 可选) — 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档字符串)。索引设置为 -100 的词元将被忽略(掩码),损失仅对标签在 [0, ..., config.vocab_size] 范围内的词元进行计算。

返回

transformers.modeling_tf_outputs.TFSeq2SeqLMOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或一个 tf.Tensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(BartConfig)和输入,包含各种元素。

  • loss (形状为 (n,)tf.Tensor, 可选, 其中 n 是非掩码标签的数量,当提供 labels 时返回) — 语言建模损失。

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言模型头部的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_values (list[tf.Tensor]可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个张量的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head))。

    包含解码器注意力块的预计算隐藏状态(键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的元组(一个是嵌入层的输出 + 每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • decoder_attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

  • cross_attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • encoder_last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)tf.Tensor, 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的元组(一个是嵌入层的输出 + 每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • encoder_attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

TFBartForConditionalGeneration 的前向方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

摘要示例

>>> from transformers import AutoTokenizer, TFBartForConditionalGeneration

>>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")

>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="tf")

>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))

掩码填充示例

>>> from transformers import AutoTokenizer, TFBartForConditionalGeneration

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
>>> TXT = "My friends are <mask> but they eat too many carbs."

>>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> input_ids = tokenizer([TXT], return_tensors="tf")["input_ids"]
>>> logits = model(input_ids).logits
>>> probs = tf.nn.softmax(logits[0])
>>> # probs[5] is associated with the mask token

TFBartForSequenceClassification

class transformers.TFBartForSequenceClassification

< >

( config: BartConfig load_weight_prefix = None *inputs **kwargs )

参数

  • config (BartConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Bart 模型在顶部带有一个序列分类/头部(在池化输出之上有一个线性层),例如用于 GLUE 任务。

此模型继承自 TFPreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是一个 keras.Model 子类。可以像常规的 TF 2.0 Keras 模型一样使用它,并参考 TF 2.0 文档了解所有与通用用法和行为相关的事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入作为关键字参数(如 PyTorch 模型),或
  • 所有输入作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,Keras 方法在向模型和层传递输入时更喜欢这种格式。由于这种支持,当使用像 model.fit() 这样的方法时,一切应该“正常工作”——只需以 model.fit() 支持的任何格式传递你的输入和标签!但是,如果你想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建自己的层或模型时,有三种可能的方法可以将所有输入张量收集到第一个位置参数中:

  • 只有一个 input_ids 的单个张量,没有其他:model(input_ids)
  • 长度可变的列表,包含一个或多个输入张量,按文档字符串中给出的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,在使用子类化创建模型和层时,您无需担心这些问题,因为您可以像调用任何其他 Python 函数一样传递输入!

调用

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None decoder_position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None decoder_head_mask: np.ndarray | tf.Tensor | None = None cross_attn_head_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: Optional[TFBaseModelOutput] = None past_key_values: Optional[tuple[tuple[Union[np.ndarray, tf.Tensor]]]] = None inputs_embeds: np.ndarray | tf.Tensor | None = None decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFSeq2SeqSequenceClassifierOutputtuple(tf.Tensor)

参数

  • input_ids (tf.Tensor, 形状为 ({0})) — 词汇表中输入序列词元的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (tf.Tensor, 形状为 ({0}), 可选) — 掩码,用于避免对填充词元索引执行注意力。掩码值在 `[0, 1]` 中选择:

    • 1 表示词元未被掩码
    • 0 表示词元被掩码

    什么是注意力掩码?

  • decoder_input_ids (tf.Tensor, 形状为 (batch_size, target_sequence_length), 可选) — 词汇表中解码器输入序列词元的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    Bart 使用 `eos_token_id` 作为生成 `decoder_input_ids` 的起始词元。如果使用 `past_key_values`,可以选择只输入最后一个 `decoder_input_ids`(参见 `past_key_values`)。

    对于翻译和摘要训练,应提供 `decoder_input_ids`。如果未提供 `decoder_input_ids`,模型将通过将 `input_ids` 右移来创建此张量,以进行去噪预训练,遵循论文的设定。

  • decoder_attention_mask (tf.Tensor, 形状为 (batch_size, target_sequence_length), 可选) — 默认情况下将创建并忽略填充词元。在大多数用例中不建议设置此项。
  • decoder_position_ids (tf.Tensor, 形状为 (batch_size, sequence_length), 可选) — 解码器每个输入序列词元在位置嵌入中的位置索引。选择范围为 `[0, config.max_position_embeddings - 1]`。
  • head_mask (tf.Tensor, 形状为 (encoder_layers, encoder_attention_heads), 可选) — 掩码,用于置零编码器中注意力模块的选定头部。掩码值在 `[0, 1]` 中选择:

    • 1 表示头部未被掩码
    • 0 表示头部被掩码
  • decoder_head_mask (tf.Tensor, 形状为 (decoder_layers, decoder_attention_heads), 可选) — 掩码,用于置零解码器中注意力模块的选定头部。掩码值在 `[0, 1]` 中选择:

    • 1 表示头部未被掩码
    • 0 表示头部被掩码
  • cross_attn_head_mask (tf.Tensor, 形状为 (decoder_layers, decoder_attention_heads), 可选) — 掩码,用于置零交叉注意力模块的选定头部。掩码值在 `[0, 1]` 中选择:

    • 1 表示头部未被掩码
    • 0 表示头部被掩码
  • encoder_outputs (tf.FloatTensor, 可选) — 编码器最后一层输出的隐藏状态。用于解码器的交叉注意力。形状为 `(batch_size, sequence_length, hidden_size)`,是一个序列。
  • past_key_values (tuple[tuple[tf.Tensor]],长度为 config.n_layers) — 包含预先计算的注意力块的键和值隐藏状态。可用于加速解码。如果使用 `past_key_values`,用户可以选择只输入最后一个 `decoder_input_ids`(那些没有将其过去的键值状态提供给此模型的词元),形状为 `(batch_size, 1)`,而不是所有形状为 `(batch_size, sequence_length)` 的 `decoder_input_ids`。
  • inputs_embeds (tf.Tensor, 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,你可以选择直接传递嵌入表示而不是 `input_ids`。如果你想比模型的内部嵌入查找矩阵更好地控制如何将 `input_ids` 索引转换为相关向量,这会很有用。
  • use_cache (bool, 可选, 默认为 True) — 如果设置为 `True`,将返回 `past_key_values` 键值状态,并可用于加速解码(参见 `past_key_values`)。在训练期间设置为 `False`,在生成期间设置为 `True`。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 `attentions`。此参数只能在 Eager 模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 `hidden_states`。此参数只能在 Eager 模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。此参数可以在 Eager 模式下使用,在图模式下,该值将始终设置为 True。
  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(某些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • labels (tf.Tensor, 形状为 (batch_size, sequence_length), 可选) — 用于计算序列分类/回归损失的标签。索引应在 `[0, ..., config.num_labels - 1]` 之间。如果 `config.num_labels > 1`,则计算分类损失(交叉熵)。

返回

transformers.modeling_tf_outputs.TFSeq2SeqSequenceClassifierOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSeq2SeqSequenceClassifierOutput 或一个 tf.Tensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(BartConfig)和输入,包含各种元素。

  • loss (tf.Tensor, 形状为 (1,), 可选, 当提供 label 时返回) — 分类(如果 config.num_labels==1,则为回归)损失。

  • logits (tf.Tensor,形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)分数(SoftMax 之前)。

  • past_key_values (list[tf.Tensor]可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个张量的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head))。

    包含解码器注意力块的预计算隐藏状态(键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的元组(一个是嵌入层的输出 + 每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • decoder_attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

  • cross_attentions (tuple(tf.Tensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

  • encoder_last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)tf.Tensor, 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的元组(一个是嵌入层的输出 + 每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • encoder_attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

TFBartForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

JAX
隐藏 JAX 内容

FlaxBartModel

class transformers.FlaxBartModel

< >

( config: BartConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (BartConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 `dtype` 执行。

    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。

    如果你希望更改模型参数的 dtype,请参阅 to_fp16()to_bf16()

基础的 Bart 模型 Transformer,输出原始的隐藏状态,没有任何特定的头部。此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 Flax Linen flax.nn.Module 的子类。像常规 Flax 模块一样使用它,并参考 Flax 文档了解所有与通用用法和行为相关的事项。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids: Array attention_mask: typing.Optional[jax.Array] = None decoder_input_ids: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray, 形状为 (batch_size, sequence_length)) — 词汇表中输入序列词元的索引。如果你提供填充,默认情况下将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (jnp.ndarray, 形状为 (batch_size, sequence_length), 可选) — 掩码,用于避免对填充词元索引执行注意力。掩码值在 `[0, 1]` 中选择:

    • 1 表示词元未被掩码
    • 0 表示词元被掩码

    什么是注意力掩码?

  • decoder_input_ids (jnp.ndarray, 形状为 (batch_size, target_sequence_length), 可选) — 词汇表中解码器输入序列词元的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    对于翻译和摘要训练,应提供 `decoder_input_ids`。如果未提供 `decoder_input_ids`,模型将通过将 `input_ids` 右移来创建此张量,以进行去噪预训练,遵循论文的设定。

  • decoder_attention_mask (jnp.ndarray, 形状为 (batch_size, target_sequence_length), 可选) — 默认行为:生成一个忽略 `decoder_input_ids` 中填充词元的张量。默认情况下也会使用因果掩码。

    如果你想改变填充行为,你应该根据自己的需求进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。

  • position_ids (numpy.ndarray, 形状为 (batch_size, sequence_length), 可选) — 每个输入序列词元在位置嵌入中的位置索引。选择范围为 `[0, config.max_position_embeddings - 1]`。
  • decoder_position_ids (numpy.ndarray, 形状为 (batch_size, sequence_length), 可选) — 解码器每个输入序列词元在位置嵌入中的位置索引。选择范围为 `[0, config.max_position_embeddings - 1]`。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 `attentions`。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 `hidden_states`。
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(BartConfig)和输入,包含各种元素。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray) — 模型解码器最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(jnp.ndarray)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(jnp.ndarray) 的元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个额外的形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • decoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

  • cross_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • encoder_last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • encoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

FlaxBartPreTrainedModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxBartModel

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = FlaxBartModel.from_pretrained("facebook/bart-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

编码

< >

( input_ids: Array attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。如果提供了填充,默认情况下将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (jnp.ndarray,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力计算的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记已被掩码

    什么是注意力掩码?

  • position_ids (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (<class 'transformers.models.bart.configuration_bart.BartConfig'>) 和输入。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

示例

>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration

>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

decode

< >

( decoder_input_ids encoder_outputs encoder_attention_mask: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None past_key_values: typing.Optional[dict] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray,形状为 (batch_size, target_sequence_length)) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    对于翻译和摘要训练,应提供 decoder_input_ids。如果没有提供 decoder_input_ids,模型将按照论文中的方法,通过将 input_ids 右移来创建这个张量,用于去噪预训练。

  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组包含 (last_hidden_state, 可选: hidden_states, 可选: attentions) last_hidden_state 形状为 (batch_size, sequence_length, hidden_size)可选) 是编码器最后一层输出的一系列隐藏状态。用于解码器的交叉注意力中。
  • encoder_attention_mask (jnp.ndarray,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力计算的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记已被掩码

    什么是注意力掩码?

  • decoder_attention_mask (jnp.ndarray,形状为 (batch_size, target_sequence_length)可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。默认情况下也会使用因果掩码。

    如果你想改变填充行为,你应该根据你的需要进行修改。有关默认策略的更多信息,请参阅论文中的图1。

  • decoder_position_ids (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 每个解码器输入序列标记在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • past_key_values (dict[str, np.ndarray]可选,由 init_cache 返回或当传递之前的 past_key_values 时返回) — 预计算的隐藏状态字典(注意力块中的键和值),可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length]
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (<class 'transformers.models.bart.configuration_bart.BartConfig'>) 和输入。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(jnp.ndarray))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — tuple(jnp.ndarray) 的元组,长度为 config.n_layers,其中每个元组有2个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True,则还有2个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,如果 config.is_encoder_decoder=True 则还包括交叉注意力块中的键和值),可用于加速顺序解码(参见 past_key_values 输入)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

示例

>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration

>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state

FlaxBartForConditionalGeneration

class transformers.FlaxBartForConditionalGeneration

< >

( config: BartConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (BartConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • dtype (jax.numpy.dtype可选,默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的 dtype 执行。

    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。

    如果你希望更改模型参数的 dtype,请参阅 to_fp16()to_bf16()

带有语言模型头的 BART 模型。可用于摘要任务。此模型继承自 FlaxPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头等)。

此模型也是 Flax Linen flax.nn.Module 的子类。像常规 Flax 模块一样使用它,并参考 Flax 文档了解所有与通用用法和行为相关的事项。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids: Array attention_mask: typing.Optional[jax.Array] = None decoder_input_ids: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。如果提供了填充,默认情况下将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (jnp.ndarray,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力计算的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记已被掩码

    什么是注意力掩码?

  • decoder_input_ids (jnp.ndarray,形状为 (batch_size, target_sequence_length)可选) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    对于翻译和摘要训练,应提供 decoder_input_ids。如果没有提供 decoder_input_ids,模型将按照论文中的方法,通过将 input_ids 右移来创建这个张量,用于去噪预训练。

  • decoder_attention_mask (jnp.ndarray,形状为 (batch_size, target_sequence_length)可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。默认情况下也会使用因果掩码。

    如果你想改变填充行为,你应该根据你的需要进行修改。有关默认策略的更多信息,请参阅论文中的图1。

  • position_ids (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • decoder_position_ids (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 每个解码器输入序列标记在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (BartConfig) 和输入。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)jnp.ndarray) — 语言建模头的预测分数(SoftMax 之前每个词汇 token 的分数)。

  • past_key_values (tuple(tuple(jnp.ndarray)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(jnp.ndarray) 的元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个额外的形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • decoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

  • cross_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • encoder_last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • encoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

FlaxBartPreTrainedModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

摘要示例

>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration

>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")

>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")

>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"]).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))

掩码填充示例

>>> import jax
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration

>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")

>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> input_ids = tokenizer([TXT], return_tensors="jax")["input_ids"]

>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs, k=1)

>>> tokenizer.decode(predictions).split()

编码

< >

( input_ids: Array attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。如果提供了填充,默认情况下将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (jnp.ndarray,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力计算的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记已被掩码

    什么是注意力掩码?

  • position_ids (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (<class 'transformers.models.bart.configuration_bart.BartConfig'>) 和输入。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

示例

>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration

>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

decode

< >

( decoder_input_ids encoder_outputs encoder_attention_mask: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None past_key_values: typing.Optional[dict] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray,形状为 (batch_size, target_sequence_length)) — 词汇表中解码器输入序列标记的索引。

    索引可以使用 AutoTokenizer 获得。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    对于翻译和摘要训练,应提供 decoder_input_ids。如果没有提供 decoder_input_ids,模型将按照论文中的方法,通过将 input_ids 向右移动来创建此张量,以进行去噪预训练。

  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组包含 (last_hidden_state, 可选: hidden_states, 可选: attentions)。last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size)可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力机制。
  • encoder_attention_mask (jnp.ndarray,形状为 (batch_size, sequence_length), 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • decoder_attention_mask (jnp.ndarray,形状为 (batch_size, target_sequence_length), 可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。默认情况下也会使用因果掩码。

    如果你想改变填充行为,应根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图 1。

  • decoder_position_ids (numpy.ndarray,形状为 (batch_size, sequence_length), 可选) — 解码器每个输入序列标记在位置嵌入中的位置索引。选值范围为 [0, config.max_position_embeddings - 1]
  • past_key_values (dict[str, np.ndarray], 可选, 由 init_cache 返回或在传递先前的 past_key_values 时返回) — 包含预计算隐藏状态(注意力块中的键和值)的字典,可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length]
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(<class 'transformers.models.bart.configuration_bart.BartConfig'>)和输入包含各种元素。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)jnp.ndarray) — 语言建模头的预测分数(SoftMax 之前每个词汇 token 的分数)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均。

  • past_key_values (tuple(tuple(jnp.ndarray)), 可选, 在传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layersjnp.ndarray 元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态(如果模型在编码器-解码器设置中使用)。仅当 config.is_decoder = True 时相关。

    包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

示例

>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration

>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits

FlaxBartForSequenceClassification

class transformers.FlaxBartForSequenceClassification

< >

( config: BartConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (BartConfig) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。要加载模型权重,请查看 from_pretrained() 方法。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 中的一种。

    这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。

    如果你希望更改模型参数的数据类型,请参阅 to_fp16()to_bf16()

Bart 模型在顶部带有一个序列分类/头部(在池化输出之上有一个线性层),例如用于 GLUE 任务。

该模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 Flax Linen flax.nn.Module 的子类。像常规 Flax 模块一样使用它,并参考 Flax 文档了解所有与通用用法和行为相关的事项。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids: Array attention_mask: typing.Optional[jax.Array] = None decoder_input_ids: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。如果提供,填充部分将默认被忽略。

    索引可以使用 AutoTokenizer 获得。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (jnp.ndarray,形状为 (batch_size, sequence_length), 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • decoder_input_ids (jnp.ndarray,形状为 (batch_size, target_sequence_length), 可选) — 词汇表中解码器输入序列标记的索引。

    索引可以使用 AutoTokenizer 获得。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    对于翻译和摘要训练,应提供 decoder_input_ids。如果没有提供 decoder_input_ids,模型将按照论文中的方法,通过将 input_ids 向右移动来创建此张量,以进行去噪预训练。

  • decoder_attention_mask (jnp.ndarray,形状为 (batch_size, target_sequence_length), 可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。默认情况下也会使用因果掩码。

    如果你想改变填充行为,应根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图 1。

  • position_ids (numpy.ndarray,形状为 (batch_size, sequence_length), 可选) — 输入序列中每个标记在位置嵌入中的位置索引。选值范围为 [0, config.max_position_embeddings - 1]
  • decoder_position_ids (numpy.ndarray,形状为 (batch_size, sequence_length), 可选) — 解码器每个输入序列标记在位置嵌入中的位置索引。选值范围为 [0, config.max_position_embeddings - 1]
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(BartConfig)和输入包含各种元素。

  • logits (形状为 (batch_size, config.num_labels)jnp.ndarray) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。

  • past_key_values (tuple(tuple(jnp.ndarray)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(jnp.ndarray) 的元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个额外的形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • decoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

  • cross_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • encoder_last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • encoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

FlaxBartPreTrainedModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxBartForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = FlaxBartForSequenceClassification.from_pretrained("facebook/bart-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

编码

< >

( input_ids: Array attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。如果提供,填充部分将默认被忽略。

    索引可以使用 AutoTokenizer 获得。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (jnp.ndarray,形状为 (batch_size, sequence_length), 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • position_ids (numpy.ndarray,形状为 (batch_size, sequence_length), 可选) — 输入序列中每个标记在位置嵌入中的位置索引。选值范围为 [0, config.max_position_embeddings - 1]
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (<class 'transformers.models.bart.configuration_bart.BartConfig'>) 和输入。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

示例

>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration

>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

decode

< >

( decoder_input_ids encoder_outputs encoder_attention_mask: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None past_key_values: typing.Optional[dict] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray,形状为 (batch_size, target_sequence_length)) — 词汇表中解码器输入序列标记的索引。

    索引可以使用 AutoTokenizer 获得。详情请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    对于翻译和摘要训练,应提供 decoder_input_ids。如果没有提供 decoder_input_ids,模型将按照论文中的方法,通过将 input_ids 向右移动来创建此张量,以进行去噪预训练。

  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组包含 (last_hidden_state, 可选: hidden_states, 可选: attentions)。last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size)可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力机制。
  • encoder_attention_mask (jnp.ndarray,形状为 (batch_size, sequence_length), 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • decoder_attention_mask (jnp.ndarray,形状为 (batch_size, target_sequence_length), 可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。默认情况下也会使用因果掩码。

    如果你想改变填充行为,应根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图 1。

  • decoder_position_ids (numpy.ndarray,形状为 (batch_size, sequence_length), 可选) — 解码器每个输入序列标记在位置嵌入中的位置索引。选值范围为 [0, config.max_position_embeddings - 1]
  • past_key_values (dict[str, np.ndarray], 可选, 由 init_cache 返回或在传递先前的 past_key_values 时返回) — 包含预计算隐藏状态(注意力块中的键和值)的字典,可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length]
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。更多细节请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (<class 'transformers.models.bart.configuration_bart.BartConfig'>) 和输入。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(jnp.ndarray))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — tuple(jnp.ndarray) 的元组,长度为 config.n_layers,其中每个元组有2个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True,则还有2个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,如果 config.is_encoder_decoder=True 则还包括交叉注意力块中的键和值),可用于加速顺序解码(参见 past_key_values 输入)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

示例

>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration

>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state

FlaxBartForQuestionAnswering

class transformers.FlaxBartForQuestionAnswering

< >

( config: BartConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (BartConfig) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。要加载模型权重,请查看 from_pretrained() 方法。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 中的一种。

    这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。

    如果你希望更改模型参数的数据类型,请参阅 to_fp16()to_bf16()

BART 模型,其顶部带有一个用于抽取式问答任务(如 SQuAD)的片段分类头(一个位于隐藏状态输出之上的线性层,用于计算 `span start logits` 和 `span end logits`)。

该模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 Flax Linen flax.nn.Module 的子类。像常规 Flax 模块一样使用它,并参考 Flax 文档了解所有与通用用法和行为相关的事项。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids: Array attention_mask: typing.Optional[jax.Array] = None decoder_input_ids: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray,形状 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。如果您提供填充,默认情况下将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (jnp.ndarray,形状 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力操作的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • decoder_input_ids (jnp.ndarray,形状 (batch_size, target_sequence_length)可选) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    对于翻译和摘要训练,应提供 decoder_input_ids。如果未提供 decoder_input_ids,模型将根据论文中的方法,通过将 input_ids 右移来创建该张量,用于去噪预训练。

  • decoder_attention_mask (jnp.ndarray,形状 (batch_size, target_sequence_length)可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。默认情况下也会使用因果掩码。

    如果您想更改填充行为,应根据您的需求进行修改。有关默认策略的更多信息,请参阅论文中的图 1。

  • position_ids (numpy.ndarray,形状 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围 [0, config.max_position_embeddings - 1]
  • decoder_position_ids (numpy.ndarray,形状 (batch_size, sequence_length)可选) — 每个解码器输入序列标记在位置嵌入中的位置索引。选自范围 [0, config.max_position_embeddings - 1]
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置 (BartConfig) 和输入,包含各种元素。

  • start_logits (jnp.ndarray,形状为 (batch_size, sequence_length)) — 跨度开始得分(SoftMax 之前)。

  • end_logits (jnp.ndarray,形状为 (batch_size, sequence_length)) — 跨度结束得分(SoftMax 之前)。

  • past_key_values (tuple(tuple(jnp.ndarray)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(jnp.ndarray) 的元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个额外的形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • decoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

  • cross_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

  • encoder_last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出时的隐藏状态以及初始嵌入输出。

  • encoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均。

FlaxBartPreTrainedModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxBartForQuestionAnswering

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = FlaxBartForQuestionAnswering.from_pretrained("facebook/bart-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")

>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits

编码

< >

( input_ids: Array attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray,形状 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。如果您提供填充,默认情况下将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (jnp.ndarray,形状 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力操作的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • position_ids (numpy.ndarray,形状 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围 [0, config.max_position_embeddings - 1]
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (<class 'transformers.models.bart.configuration_bart.BartConfig'>) 和输入。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

示例

>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration

>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

decode

< >

( decoder_input_ids encoder_outputs encoder_attention_mask: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None past_key_values: typing.Optional[dict] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray,形状 (batch_size, target_sequence_length)) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    对于翻译和摘要训练,应提供 decoder_input_ids。如果未提供 decoder_input_ids,模型将根据论文中的方法,通过将 input_ids 右移来创建该张量,用于去噪预训练。

  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组包含 (last_hidden_state可选hidden_states可选attentions) last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size)可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力中。
  • encoder_attention_mask (jnp.ndarray,形状 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力操作的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • decoder_attention_mask (jnp.ndarray,形状 (batch_size, target_sequence_length)可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。默认情况下也会使用因果掩码。

    如果您想更改填充行为,应根据您的需求进行修改。有关默认策略的更多信息,请参阅论文中的图 1。

  • decoder_position_ids (numpy.ndarray,形状 (batch_size, sequence_length)可选) — 每个解码器输入序列标记在位置嵌入中的位置索引。选自范围 [0, config.max_position_embeddings - 1]
  • past_key_values (dict[str, np.ndarray]可选,由 init_cache 返回或在传递先前的 past_key_values 时返回) — 包含预计算隐藏状态(注意力块中的键和值)的字典,可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length]
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (<class 'transformers.models.bart.configuration_bart.BartConfig'>) 和输入。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(jnp.ndarray))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — tuple(jnp.ndarray) 的元组,长度为 config.n_layers,其中每个元组有2个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True,则还有2个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,如果 config.is_encoder_decoder=True 则还包括交叉注意力块中的键和值),可用于加速顺序解码(参见 past_key_values 输入)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

示例

>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration

>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state

FlaxBartForCausalLM

class transformers.FlaxBartForCausalLM

< >

( config: BartConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (BartConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。要加载模型权重,请查看 from_pretrained() 方法。
  • dtype (jax.numpy.dtype可选,默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上)。

    这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的 dtype 执行。

    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。

    如果您希望更改模型参数的数据类型,请参阅 to_fp16()to_bf16()

Bart 解码器模型,顶部带有语言建模头(与输入嵌入权重绑定的线性层),例如用于自回归任务。

该模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 Flax Linen flax.nn.Module 的子类。像常规 Flax 模块一样使用它,并参考 Flax 文档了解所有与通用用法和行为相关的事项。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids: Array attention_mask: typing.Optional[jax.Array] = None position_ids: typing.Optional[jax.Array] = None encoder_hidden_states: typing.Optional[jax.Array] = None encoder_attention_mask: typing.Optional[jax.Array] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: typing.Optional[dict] = None past_key_values: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None ) transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray,形状 (batch_size, target_sequence_length)) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入 ID?

    对于翻译和摘要训练,应提供 decoder_input_ids。如果未提供 decoder_input_ids,模型将根据论文中的方法,通过将 input_ids 右移来创建该张量,用于去噪预训练。

  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组包含 (last_hidden_state可选hidden_states可选attentions) last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size)可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力中。
  • encoder_attention_mask (jnp.ndarray,形状 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力操作的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • decoder_attention_mask (jnp.ndarray,形状 (batch_size, target_sequence_length)可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。默认情况下也会使用因果掩码。

    如果您想更改填充行为,应根据您的需求进行修改。有关默认策略的更多信息,请参阅论文中的图 1。

  • decoder_position_ids (numpy.ndarray,形状 (batch_size, sequence_length)可选) — 每个解码器输入序列标记在位置嵌入中的位置索引。选自范围 [0, config.max_position_embeddings - 1]
  • past_key_values (dict[str, np.ndarray]可选,由 init_cache 返回或在传递先前的 past_key_values 时返回) — 包含预计算隐藏状态(注意力块中的键和值)的字典,可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length]
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置 (BartConfig) 和输入,包含各种元素。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)jnp.ndarray) — 语言建模头的预测分数(SoftMax 之前每个词汇 token 的分数)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均。

  • past_key_values (tuple(tuple(jnp.ndarray)), 可选, 在传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layersjnp.ndarray 元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态(如果模型在编码器-解码器设置中使用)。仅当 config.is_decoder = True 时相关。

    包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

FlaxBartDecoderPreTrainedModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxBartForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = FlaxBartForCausalLM.from_pretrained("facebook/bart-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]
< > 在 GitHub 上更新