Transformers 文档

MRA

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

MRA

PyTorch

概述

MRA 模型由 Zhanpeng Zeng、Sourav Pal、Jeffery Kline、Glenn M Fung 和 Vikas Singh 在论文 《用于近似自注意力的多分辨率分析 (MRA)》 中提出。

论文摘要如下:

Transformers 已成为自然语言处理和视觉领域中许多任务的首选模型。近期关于更高效地训练和部署 Transformers 的研究已经确定了许多近似自注意力矩阵的策略,而自注意力矩阵是 Transformer 架构中的一个关键模块。有效的思路包括各种预先指定的稀疏模式、低秩基展开及其组合。在本文中,我们重新审视了经典的多分辨率分析 (MRA) 概念,如小波,其在这一领域的潜在价值至今仍未得到充分探索。我们表明,基于经验反馈和现代硬件及实现挑战所带来的设计选择,简单的近似方法最终产生了一种基于 MRA 的自注意力方法,该方法在大多数感兴趣的标准上都具有出色的性能。我们进行了广泛的实验,并证明了这种多分辨率方案优于大多数高效的自注意力方案,并且对短序列和长序列都有利。代码可在 https://github.com/mlpen/mra-attention 获取。

此模型由 novice03 贡献。原始代码可以在这里找到。

MraConfig

class transformers.MraConfig

< >

( vocab_size = 50265 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 1 initializer_range = 0.02 layer_norm_eps = 1e-05 position_embedding_type = 'absolute' block_per_row = 4 approx_mode = 'full' initial_prior_first_n_blocks = 0 initial_prior_diagonal_n_blocks = 0 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 50265) — Mra 模型的词汇表大小。定义了在调用 MraModel 时传递的 inputs_ids 可以表示的不同标记的数量。
  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数量。
  • intermediate_size (int, 可选, 默认为 3072) — Transformer 编码器中“中间”层(即前馈层)的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu") — 编码器和池化层中的非线性激活函数(函数或字符串)。如果为字符串,支持 "gelu""relu""selu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入层、编码器和池化层中所有全连接层的丢弃概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的丢弃率。
  • max_position_embeddings (int, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为一个较大的值以防万一(例如 512、1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 1) — 在调用 MraModel 时传递的 token_type_ids 的词汇表大小。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-5) — 层归一化层使用的 epsilon 值。
  • position_embedding_type (str, 可选, 默认为 "absolute") — 位置嵌入的类型。从 "absolute""relative_key""relative_key_query" 中选择一种。
  • block_per_row (int, 可选, 默认为 4) — 用于设置高分辨率尺度的预算。
  • approx_mode (str, 可选, 默认为 "full") — 控制是否同时使用低分辨率和高分辨率近似。设置为 "full" 表示同时使用低分辨率和高分辨率,设置为 "sparse" 表示仅使用低分辨率。
  • initial_prior_first_n_blocks (int, 可选, 默认为 0) — 初始使用高分辨率的块数。
  • initial_prior_diagonal_n_blocks (int, 可选, 默认为 0) — 使用高分辨率的对角块数。

这是一个用于存储 MraModel 配置的配置类。它用于根据指定的参数实例化一个 MRA 模型,定义模型架构。使用默认值实例化配置将产生与 Mra uw-madison/mra-base-512-4 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import MraConfig, MraModel

>>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration
>>> configuration = MraConfig()

>>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration
>>> model = MraModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

MraModel

class transformers.MraModel

< >

( config )

参数

  • config (MraModel) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

裸 Mra 模型,输出原始的隐藏状态,顶部没有任何特定的头部。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 避免对填充标记索引执行注意力的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引选自 [0, 1]

    • 0 对应于句子 A 的标记,
    • 1 对应于句子 B 的标记。

    什么是标记类型 ID?

  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围 [0, config.n_positions - 1]

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads), 可选) — 掩码,用于置零自注意力模块中选定的头。掩码值选自 [0, 1]

    • 1 表示该头未被掩码
    • 0 表示该头被掩码
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以不传递 input_ids,而是选择直接传递嵌入式表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关联的向量,这会很有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithCrossAttentions 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(MraConfig)和输入,包含各种元素。

  • last_hidden_state (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入层的输出,另外每个层一个输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。

MraModel 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是这个函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

MraForMaskedLM

class transformers.MraForMaskedLM

< >

( config )

参数

  • config (MraForMaskedLM) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

在其顶部带有 `language modeling` 头的 Mra 模型。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充词元索引执行注意力机制的掩码。掩码值选自 [0, 1]

    • 1 表示词元未被掩码
    • 0 表示词元被掩码

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 段词元索引,用于指示输入的第一部分和第二部分。索引选自 [0, 1]

    • 0 对应于 句子 A 的词元,
    • 1 对应于 句子 B 的词元。

    什么是词元类型 ID?

  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列词元在位置嵌入中的位置索引。选自范围 [0, config.n_positions - 1]

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自 [0, 1]

    • 1 表示头未被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以不传递 input_ids,而是选择直接传递嵌入式表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关联的向量,这会很有用。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(请参阅 input_ids 的文档字符串)。索引设置为 -100 的词元将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 范围内的词元进行计算。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(MraConfig)和输入,包含各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 掩码语言建模 (MLM) 损失。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入层的输出,另外每个层一个输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

MraForMaskedLM 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是这个函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MraForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
...

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
...

MraForSequenceClassification

class transformers.MraForSequenceClassification

< >

( config )

参数

  • config (MraForSequenceClassification) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

MRA 模型 Transformer,其顶部带有一个序列分类/回归头(一个在池化输出之上的线性层),例如用于 GLUE 任务。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充词元索引执行注意力机制的掩码。掩码值选自 [0, 1]

    • 1 表示词元未被掩码
    • 0 表示词元被掩码

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 段词元索引,用于指示输入的第一部分和第二部分。索引选自 [0, 1]

    • 0 对应于 句子 A 的词元,
    • 1 对应于 句子 B 的词元。

    什么是词元类型 ID?

  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列词元在位置嵌入中的位置索引。选自范围 [0, config.n_positions - 1]

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自 [0, 1]

    • 1 表示头未被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,你可以不传递 input_ids,而是选择直接传递嵌入式表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关联的向量,这会很有用。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(MraConfig)和输入,包含各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。

  • logits (形状为 (batch_size, config.num_labels)torch.FloatTensor) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入层的输出,另外每个层一个输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

MraForSequenceClassification 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是这个函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, MraForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraForSequenceClassification.from_pretrained("uw-madison/mra-base-512-4")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MraForSequenceClassification.from_pretrained("uw-madison/mra-base-512-4", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, MraForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraForSequenceClassification.from_pretrained("uw-madison/mra-base-512-4", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MraForSequenceClassification.from_pretrained(
...     "uw-madison/mra-base-512-4", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

MraForMultipleChoice

class transformers.MraForMultipleChoice

< >

( config )

参数

  • config (MraForMultipleChoice) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Mra 模型,其顶部带有一个多项选择分类头(一个在池化输出之上的线性层和一个 softmax 层),例如用于 RocStories/SWAG 任务。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)) — 词汇表中输入序列词元的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充词元索引执行注意力机制的掩码。掩码值选自 [0, 1]

    • 1 表示词元未被掩码
    • 0 表示词元被掩码

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 段词元索引,用于指示输入的第一部分和第二部分。索引选自 [0, 1]

    • 0 对应于 句子 A 的词元,
    • 1 对应于 句子 B 的词元。

    什么是词元类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 每个输入序列词元在位置嵌入中的位置索引。选自范围 [0, config.max_position_embeddings - 1]

    什么是位置 ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置零自注意力模块中选定头的掩码。掩码值选自 [0, 1]

    • 1 表示头未被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, num_choices, sequence_length, hidden_size)可选) — 可选地,你可以不传递 input_ids,而是选择直接传递嵌入式表示。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关联的向量,这会很有用。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices-1] 范围内,其中 num_choices 是输入张量第二维的大小。(见上面的 input_ids
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。更多细节请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(MraConfig)和输入,包含各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失。

  • logits (形状为 (batch_size, num_choices)torch.FloatTensor) — num_choices 是输入张量的第二维大小。(请参阅上面的 input_ids)。

    分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入层的输出,另外每个层一个输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

MraForMultipleChoice 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是这个函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MraForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraForMultipleChoice.from_pretrained("uw-madison/mra-base-512-4")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

MraForTokenClassification

class transformers.MraForTokenClassification

< >

( config )

参数

  • config (MraForTokenClassification) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Mra transformer 模型,在其顶部添加了一个词元(token)分类头(即在隐藏状态输出之上加一个线性层),例如用于命名实体识别(NER)任务。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。

    索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充词元索引执行注意力机制的掩码。掩码值选自 [0, 1]

    • 1 表示词元未被掩码
    • 0 表示词元被掩码

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 片段词元索引,用于指示输入的第一和第二部分。索引选自 [0, 1]

    • 0 对应于 *A 句子* 的词元,
    • 1 对应于 *B 句子* 的词元。

    什么是词元类型ID?

  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列词元在位置嵌入中的位置索引。选自范围 [0, config.n_positions - 1]

    什么是位置ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值选自 [0, 1]

    • 1 表示头未被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可以选择直接传递嵌入表示,而不是传递 `input_ids`。如果你希望比模型内部的嵌入查找矩阵更能控制如何将 `input_ids` 索引转换为相关向量,这会很有用。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算词元分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(MraConfig)和输入的不同,包含各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类损失。

  • logits (形状为 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入层的输出,另外每个层一个输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

MraForTokenClassification 的 forward 方法会覆盖 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是这个函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MraForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraForTokenClassification.from_pretrained("uw-madison/mra-base-512-4")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...

MraForQuestionAnswering

class transformers.MraForQuestionAnswering

< >

( config )

参数

  • config (MraForQuestionAnswering) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

Mra transformer 模型,在其顶部添加了一个片段分类头,用于像 SQuAD 这样的抽取式问答任务(即在隐藏状态输出之上加一个线性层,用于计算 `span start logits` 和 `span end logits`)。

该模型继承自 PreTrainedModel。请查看超类文档,了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是 PyTorch 的 torch.nn.Module 子类。可以像常规的 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None start_positions: typing.Optional[torch.Tensor] = None end_positions: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。

    索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充词元索引执行注意力机制的掩码。掩码值选自 [0, 1]

    • 1 表示词元未被掩码
    • 0 表示词元被掩码

    什么是注意力掩码?

  • token_type_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 片段词元索引,用于指示输入的第一和第二部分。索引选自 [0, 1]

    • 0 对应于 *A 句子* 的词元,
    • 1 对应于 *B 句子* 的词元。

    什么是词元类型ID?

  • position_ids (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列词元在位置嵌入中的位置索引。选自范围 [0, config.n_positions - 1]

    什么是位置ID?

  • head_mask (torch.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选定的头无效的掩码。掩码值选自 [0, 1]

    • 1 表示头未被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可以选择直接传递嵌入表示,而不是传递 `input_ids`。如果你希望比模型内部的嵌入查找矩阵更能控制如何将 `input_ids` 索引转换为相关向量,这会很有用。
  • start_positions (torch.Tensor,形状为 (batch_size,)可选) — 标记的片段开始位置(索引)的标签,用于计算词元分类损失。位置会被限制在序列长度(`sequence_length`)内。序列之外的位置不计入损失计算。
  • end_positions (torch.Tensor,形状为 (batch_size,)可选) — 标记的片段结束位置(索引)的标签,用于计算词元分类损失。位置会被限制在序列长度(`sequence_length`)内。序列之外的位置不计入损失计算。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(MraConfig)和输入的不同,包含各种元素。

  • loss (torch.FloatTensor of shape (1,), 可选, 当提供 labels 时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围起始分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 范围结束分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入层的输出,另外每个层一个输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

The MraForQuestionAnswering forward 方法会覆盖 __call__ 特殊方法。

尽管前向传播的流程需要在此函数内定义,但之后应调用 Module 实例而不是这个函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MraForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraForQuestionAnswering.from_pretrained("uw-madison/mra-base-512-4")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
< > 在 GitHub 上更新