Transformers 文档

MRA

Hugging Face's logo
加入 Hugging Face 社区

并获得增强型文档体验

开始使用

MRA

概述

MRA 模型在 用于近似自注意力的多重分辨率分析 (MRA) 中由 Zhanpeng Zeng、Sourav Pal、Jeffery Kline、Glenn M Fung 和 Vikas Singh 提出。

论文中的摘要如下:

Transformer 已成为自然语言处理和计算机视觉中许多任务的首选模型。最近,在更有效地训练和部署 Transformer 方面,人们确定了许多策略来近似自注意力矩阵,它是 Transformer 架构中的一个关键模块。有效的想法包括各种预先指定的稀疏性模式、低秩基扩展及其组合。在本文中,我们重新审视了经典的多重分辨率分析 (MRA) 概念,例如小波,它们在此设置中的潜在价值迄今为止尚未得到充分探索。我们表明,基于经验反馈和受现代硬件和实现挑战启发的设计选择的简单近似,最终产生了基于 MRA 的自注意力方法,该方法在大多数感兴趣的标准中都具有出色的性能特征。我们进行了一系列广泛的实验,并证明了这种多分辨率方案优于大多数高效的自注意力提案,并且对短序列和长序列都有利。代码可在 https://github.com/mlpen/mra-attention 获取。

该模型由 novice03 贡献。原始代码可在此处找到 here

MraConfig

class transformers.MraConfig

< >

( vocab_size = 50265 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 1 initializer_range = 0.02 layer_norm_eps = 1e-05 position_embedding_type = 'absolute' block_per_row = 4 approx_mode = 'full' initial_prior_first_n_blocks = 0 initial_prior_diagonal_n_blocks = 0 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )

参数

  • vocab_size (int, 可选, 默认值 50265) — Mra 模型的词汇量大小。定义调用 MraModel 时传递的 inputs_ids 可以表示的不同标记的数量。
  • hidden_size (int, 可选, 默认值 768) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认值 12) — Transformer 编码器中的隐藏层数。
  • num_attention_heads (int, 可选, 默认值 12) — Transformer 编码器中每个注意力层中的注意力头数。
  • intermediate_size (int, 可选, 默认值为 3072) — Transformer 编码器中“中间” (即前馈) 层的维度。
  • hidden_act (strfunction, 可选, 默认值为 "gelu") — 编码器和池化器中的非线性激活函数 (函数或字符串)。 如果是字符串,则支持 "gelu", "relu", "selu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认值为 0.1) — 嵌入、编码器和池化器中所有全连接层的丢弃概率。
  • attention_probs_dropout_prob (float, 可选, 默认值为 0.1) — 注意概率的丢弃比率。
  • max_position_embeddings (int, 可选, 默认值为 512) — 此模型可能使用的最大序列长度。 通常将其设置为一个较大的值,以防万一 (例如,512 或 1024 或 2048)。
  • type_vocab_size (int, 可选, 默认值为 1) — 调用 MraModel 时传递的 token_type_ids 的词汇量。
  • initializer_range (float, 可选, 默认值为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认值为 1e-5) — 层归一化层使用的 epsilon。
  • position_embedding_type (str, 可选, 默认值为 "absolute") — 位置嵌入类型。 选择 "absolute", "relative_key", "relative_key_query" 之一。
  • block_per_row (int, 可选, 默认值为 4) — 用于设置高分辨率比例的预算。
  • initial_prior_first_n_blocks (int, 可选, 默认值为 0) — 使用高分辨率的初始块数量。
  • initial_prior_diagonal_n_blocks (int, 可选, 默认值为 0) — 使用高分辨率的对角线块数量。

这是一个配置类,用于存储 MraModel 的配置。 它用于根据指定的参数实例化 MRA 模型,定义模型架构。 使用默认值实例化配置将产生类似于 Mra uw-madison/mra-base-512-4 架构的配置。

配置对象继承自 PretrainedConfig 并且可以用于控制模型输出。 阅读 PretrainedConfig 中的文档以了解更多信息。

示例

>>> from transformers import MraConfig, MraModel

>>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration
>>> configuration = MraConfig()

>>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration
>>> model = MraModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

MraModel

class transformers.MraModel

< >

( config )

参数

  • config (MraConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法来加载模型权重。

裸 MRA 模型 Transformer,输出原始隐藏状态,没有任何特定头部。 此模型是 PyTorch torch.nn.Module 的子类。 将其用作常规的 PyTorch 模块,并参考 PyTorch 文档了解所有与一般用法和行为相关的事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.BaseModelOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。 查看 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详细信息。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length), 可选) — 掩码,避免对填充标记索引执行注意力。 在 [0, 1] 中选择掩码值:

    • 1 代表未被掩码的标记,
    • 0 代表被掩码的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 段落标记索引,指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是 token type IDs?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 每个输入序列标记在位置嵌入中的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 掩码,用于使自注意力模块的选定头部无效。在 [0, 1] 中选择掩码值:

    • 1 表示头部 未掩码
    • 0 表示头部 已掩码
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入式表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将 input_ids 索引转换为关联向量,这将很有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是简单的元组。

返回

transformers.modeling_outputs.BaseModelOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithCrossAttentionstorch.FloatTensor 的元组(如果传递 return_dict=False 或当 config.return_dict=False 时),包含取决于配置 (MraConfig) 和输入的各种元素。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层的输出处的隐藏状态序列。

  • hidden_states (tuple(torch.FloatTensor), 可选,在传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入的输出,如果模型具有嵌入层,加上每个层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层的输出处的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,在传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选,在传递 output_attentions=Trueconfig.add_cross_attention=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

MraModel 正向方法覆盖了 __call__ 特殊方法。

尽管需要在这个函数中定义正向传递的配方,但应该在之后调用 Module 实例而不是这个函数,因为前者负责运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MraModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraModel.from_pretrained("uw-madison/mra-base-512-4")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

MraForMaskedLM

class transformers.MraForMaskedLM

< >

( config )

参数

  • config (MraConfig) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained() 方法来加载模型权重。

带有一个语言建模头的 MRA 模型。该模型是 PyTorch 的 torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般使用和行为相关的所有事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length), 可选) — 用于避免对填充标记索引执行注意的掩码。掩码值选择在 [0, 1] 中:

    • 1 表示未屏蔽的标记,
    • 0 表示已屏蔽的标记。

    什么是注意掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引选择在 [0, 1] 中:

    • 0 对应于句子 A 标记,
    • 1 对应于句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列标记位置的索引。选择在 [0, config.max_position_embeddings - 1] 范围内。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择在 [0, 1] 中:

    • 1 表示未屏蔽的头部,
    • 0 表示已屏蔽的头部。
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入式表示,而不是传递 input_ids。如果您想对如何将input_ids 索引转换为关联向量有更多控制权,这很有用,而模型的内部嵌入查找矩阵则无法做到这一点。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量中的hidden_states
  • return_dict
  • labels (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(参见 input_ids 文档字符串)索引设置为 -100 的标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的标记计算。

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含取决于配置 (MraConfig) 和输入的不同元素。

  • loss (torch.FloatTensor 形状为 (1,), 可选, 当提供 labels 时返回) — 掩码语言建模 (MLM) 损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选,在传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入的输出,如果模型具有嵌入层,加上每个层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层的输出处的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,在传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

MraForMaskedLM 正向方法,重写了 __call__ 特殊方法。

尽管需要在这个函数中定义正向传递的配方,但应该在之后调用 Module 实例而不是这个函数,因为前者负责运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MraForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

MraForSequenceClassification

class transformers.MraForSequenceClassification

< >

( config )

参数

  • config (MraConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法加载模型权重。

MRA 模型转换器,顶部具有序列分类/回归头(在池化输出之上有一个线性层),例如用于 GLUE 任务。此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与一般用法和行为相关的所有事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length), 可选) — 掩码以避免对填充标记索引执行注意力。在 [0, 1] 中选择掩码值:

    • 1 表示未掩码的标记,
    • 0 表示掩码的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A 标记,
    • 1 对应于句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部无效的掩码。在 [0, 1] 中选择掩码值:

    • 1 表示头部未被掩盖
    • 0 表示头部被掩盖
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您也可以选择直接传递嵌入式表示,而不是传递 input_ids。如果您想对如何将input_ids 索引转换为关联向量进行更多控制,而不是模型的内部嵌入查找矩阵,这将很有用。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor 形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutputtorch.FloatTensor 的元组(如果传递了 return_dict=Falseconfig.return_dict=False 时),包含取决于配置的各种元素 (MraConfig) 和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,在提供 labels 时返回) — 分类(或如果 config.num_labels==1 则为回归)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, config.num_labels)) — 分类(或如果 config.num_labels==1 则为回归)分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选,在传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入的输出,如果模型具有嵌入层,加上每个层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层的输出处的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,在传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

The MraForSequenceClassification 前向方法,覆盖 __call__ 特殊方法。

尽管需要在这个函数中定义正向传递的配方,但应该在之后调用 Module 实例而不是这个函数,因为前者负责运行前处理和后处理步骤,而后者会静默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, MraForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraForSequenceClassification.from_pretrained("uw-madison/mra-base-512-4")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MraForSequenceClassification.from_pretrained("uw-madison/mra-base-512-4", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, MraForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraForSequenceClassification.from_pretrained("uw-madison/mra-base-512-4", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MraForSequenceClassification.from_pretrained(
...     "uw-madison/mra-base-512-4", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

MraForMultipleChoice

class transformers.MraForMultipleChoice

< >

( config )

参数

  • config (MraConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,只会加载配置。 查看 from_pretrained() 方法加载模型权重。

MRA 模型,顶部是一个多项选择分类头(在池化输出之上是一个线性层,然后是一个 softmax),例如 RocStories/SWAG 任务。 该模型是 PyTorch torch.nn.Module 的子类。 像普通 PyTorch 模块一样使用它,并参考 PyTorch 文档了解与一般用法和行为相关的所有事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length)) — 输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请查看 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices, sequence_length), optional) — 掩码以避免对填充标记索引执行注意力。 在 [0, 1] 中选择掩码值:

    • 1 表示 未掩码 的标记,
    • 0 表示 掩码 的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — 段标记索引,用于指示输入的第一部分和第二部分。 在 [0, 1] 中选择索引:

    • 0 表示 句子 A 标记,
    • 1 表示 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — 位置嵌入中每个输入序列标记的位置索引。 在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 掩码以使自注意力模块的选定头部无效。 在 [0, 1] 中选择掩码值:

    • 1 表示 未掩码 的头部,
    • 0 表示 掩码 的头部。
  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入式表示,而不是传递 input_ids 。 如果您希望比模型的内部嵌入查找矩阵对如何将 input_ids 索引转换为关联向量有更多控制,这将很有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor 形状为 (batch_size,), 可选) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices-1] 中,其中 num_choices 是输入张量第二维的大小。 (参见上面的 input_ids)

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

A transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor 元组 (如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含取决于配置 (MraConfig) 和输入的各种元素。

  • loss (torch.FloatTensor 形状为 (1,), 可选, 当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor 形状为 (batch_size, num_choices)) — num_choices 是输入张量的第二维。(见上面的 input_ids)。

    分类分数 (在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选,在传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入的输出,如果模型具有嵌入层,加上每个层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层的输出处的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,在传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

The MraForMultipleChoice 正向方法,覆盖了 __call__ 特殊方法。

尽管需要在这个函数中定义正向传递的配方,但应该在之后调用 Module 实例而不是这个函数,因为前者负责运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MraForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraForMultipleChoice.from_pretrained("uw-madison/mra-base-512-4")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

MraForTokenClassification

class transformers.MraForTokenClassification

< >

( config )

参数

  • config (MraConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

MRA 模型,顶部有一个令牌分类头 (隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。此模型是 PyTorch torch.nn.Module 子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档了解所有与一般使用和行为相关的事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 词汇表中输入序列令牌的索引。

    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详细信息。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length), 可选) — 用于避免对填充 token 索引执行注意力的掩码。 掩码值选择在 [0, 1] 中:

    • 1 表示 未掩码 的 token,
    • 0 表示 掩码 的 token。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 用于指示输入的第一个和第二个部分的段 token 索引。 索引选择在 [0, 1] 中:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列 token 位置的索引。 选择范围在 [0, config.max_position_embeddings - 1] 中。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于使自注意力模块的选定头无效化的掩码。 掩码值选择在 [0, 1] 中:

    • 1 表示 未掩码 的头,
    • 0 表示 掩码 的头。
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入式表示,而不是传递 input_ids。 如果你想对如何将 input_ids 索引转换为关联的向量进行更多控制,而不是模型的内部嵌入查找矩阵,这很有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关详细信息,请参阅返回张量中的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 用于计算 token 分类损失的标签。 索引应在 [0, ..., config.num_labels - 1] 中。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=Falseconfig.return_dict=False 时),包含各种元素,具体取决于配置 (MraConfig) 和输入。

  • loss (torch.FloatTensor 形状为 (1,), 可选,在提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.num_labels)) — 分类分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选,在传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入的输出,如果模型具有嵌入层,加上每个层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层的输出处的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,在传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

MraForTokenClassification 正向方法覆盖了 __call__ 特殊方法。

尽管需要在这个函数中定义正向传递的配方,但应该在之后调用 Module 实例而不是这个函数,因为前者负责运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MraForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraForTokenClassification.from_pretrained("uw-madison/mra-base-512-4")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

MraForQuestionAnswering

class transformers.MraForQuestionAnswering

  • config (MraConfig) — 模型配置类,包含模型的所有参数。 用配置文件初始化不会加载与模型相关的权重,只会加载配置。 请查看 from_pretrained() 方法加载模型权重。

MRA 模型,顶部有一个跨度分类头,用于像 SQuAD 这样的抽取式问答任务(在隐藏状态输出的顶部有一个线性层,用于计算 span start logitsspan end logits)。 此模型是一个 PyTorch torch.nn.Module 子类。 将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为有关的所有事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 输入序列令牌在词汇表中的索引。

    索引可以使用 AutoTokenizer 获得。 请查看 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 了解详细信息。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length)可选) — 掩码以避免对填充令牌索引执行注意力。 掩码值选择在 [0, 1] 中:

    • 1 表示未掩码的令牌,
    • 0 表示掩码的令牌。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 段令牌索引,用于指示输入的第一部分和第二部分。 索引选择在 [0, 1] 中:

    • 0 对应于句子 A 令牌,
    • 1 对应于句子 B 令牌。

    什么是令牌类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 输入序列令牌在位置嵌入中的位置索引。 选择在 [0, config.max_position_embeddings - 1] 范围内。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads)可选) — 掩码以使自注意力模块的选定头无效。 掩码值选择在 [0, 1] 中:

    • 1 表示未掩码的头,
    • 0 表示掩码的头。
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您想比模型的内部嵌入查找矩阵更细致地控制如何将input_ids 索引转换为关联的向量,这将很有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是普通元组。
  • start_positions (torch.LongTensor 形状为 (batch_size,), 可选) — 用于计算标记分类损失的标记跨度开始位置(索引)的标签。位置被限制在序列的长度(sequence_length)。序列之外的位置不会被考虑用于计算损失。
  • end_positions (torch.LongTensor 形状为 (batch_size,), 可选) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。位置被限制在序列的长度(sequence_length)。序列之外的位置不会被考虑用于计算损失。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutputtorch.FloatTensor 的元组(如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含取决于配置(MraConfig)和输入的各种元素。

  • loss (torch.FloatTensor 形状为 (1,), 可选,当提供 labels 时返回) — 总跨度提取损失是开始和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor 形状为 (batch_size, sequence_length)) — 跨度开始得分(在 SoftMax 之前)。

  • end_logits (torch.FloatTensor 形状为 (batch_size, sequence_length)) — 跨度结束得分(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选,在传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入的输出,如果模型具有嵌入层,加上每个层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层的输出处的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,在传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每个层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

The MraForQuestionAnswering forward 方法覆盖了 __call__ 特殊方法。

尽管需要在这个函数中定义正向传递的配方,但应该在之后调用 Module 实例而不是这个函数,因为前者负责运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MraForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/mra-base-512-4")
>>> model = MraForQuestionAnswering.from_pretrained("uw-madison/mra-base-512-4")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
< > 在 GitHub 上更新