Transformers 文档

MPNet

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

MPNet

PyTorch TensorFlow

概述

MPNet 模型在 MPNet: Masked and Permuted Pre-training for Language Understanding 中被提出,作者是 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu。

MPNet 采用了一种新颖的预训练方法,名为掩码和置换语言建模,继承了掩码语言建模和置换语言建模在自然语言理解方面的优势。

以下是论文的摘要

BERT 采用掩码语言建模 (MLM) 进行预训练,是最成功的预训练模型之一。由于 BERT 忽略了预测 token 之间的依赖关系,XLNet 引入了置换语言建模 (PLM) 进行预训练以解决这个问题。然而,XLNet 没有充分利用句子的完整位置信息,因此在预训练和微调之间存在位置差异。在本文中,我们提出 MPNet,一种新颖的预训练方法,它继承了 BERT 和 XLNet 的优点,并避免了它们的局限性。MPNet 通过置换语言建模(相对于 BERT 中的 MLM)利用预测 token 之间的依赖关系,并采用辅助位置信息作为输入,使模型看到完整的句子,从而减少位置差异(相对于 XLNet 中的 PLM)。我们在大规模数据集(超过 160GB 文本语料库)上预训练 MPNet,并在各种下游任务(GLUE、SQuAD 等)上进行微调。实验结果表明,MPNet 大幅度优于 MLM 和 PLM,并且在相同的模型设置下,与以前最先进的预训练方法(例如,BERT、XLNet、RoBERTa)相比,在这些任务上取得了更好的结果。

原始代码可以在这里找到。

使用技巧

MPNet 没有 token_type_ids,您不需要指示哪个 token 属于哪个段。只需使用分隔符 token tokenizer.sep_token(或 [sep])分隔您的段即可。

资源

MPNetConfig

transformers.MPNetConfig

< >

( vocab_size = 30527 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 initializer_range = 0.02 layer_norm_eps = 1e-12 relative_attention_num_buckets = 32 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 30527) — MPNet 模型的词汇表大小。定义了在调用 MPNetModelTFMPNetModel 时,可以通过 inputs_ids 传递的不同 token 的数量。
  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中隐藏层的数量。
  • num_attention_heads (int, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。
  • intermediate_size (int, 可选, 默认为 3072) — Transformer 编码器中 “中间层”(通常称为前馈层)的维度。
  • hidden_act (strCallable, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持 "gelu""relu""silu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。
  • max_position_embeddings (int, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。
  • relative_attention_num_buckets (int, 可选, 默认为 32) — 每个注意力层使用的 bucket 数量。

这是用于存储 MPNetModelTFMPNetModel 配置的配置类。它用于根据指定的参数实例化 MPNet 模型,定义模型架构。使用默认值实例化配置将产生与 MPNet microsoft/mpnet-base 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import MPNetModel, MPNetConfig

>>> # Initializing a MPNet mpnet-base style configuration
>>> configuration = MPNetConfig()

>>> # Initializing a model from the mpnet-base style configuration
>>> model = MPNetModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

MPNetTokenizer

transformers.MPNetTokenizer

< >

( vocab_file do_lower_case = True do_basic_tokenize = True never_split = None bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '[UNK]' pad_token = '<pad>' mask_token = '<mask>' tokenize_chinese_chars = True strip_accents = None clean_up_tokenization_spaces = True **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • do_lower_case (bool, 可选, 默认为 True) — 是否在分词时将输入转换为小写。
  • do_basic_tokenize (bool, 可选, 默认为 True) — 是否在 WordPiece 分词之前进行基本分词。
  • never_split (Iterable, 可选) — 在分词期间永远不会被分割的 token 集合。仅在 do_basic_tokenize=True 时有效
  • bos_token (str, 可选, 默认为 "<s>") — 预训练期间使用的序列开始 token。可以用作序列分类器 token。

    当使用特殊 token 构建序列时,这不是用于序列开始的 token。使用的 token 是 cls_token

  • eos_token (str, 可选, 默认为 "</s>") — 序列结束 token。

    当使用特殊 token 构建序列时,这不是用于序列结束的 token。使用的 token 是 sep_token

  • sep_token (str, 可选, 默认为 "</s>") — 分隔符 token,用于从多个序列构建序列时,例如用于序列分类的两个序列,或者用于问答的文本和问题。它也用作使用特殊 token 构建的序列的最后一个 token。
  • cls_token (str, 可选, 默认为 "<s>") — 用于序列分类(对整个序列进行分类,而不是对每个 token 进行分类)的分类器 token。当使用特殊 token 构建时,它是序列的第一个 token。
  • unk_token (str, 可选, 默认为 "[UNK]") — 未知 token。词汇表中不存在的 token 无法转换为 ID,并将设置为此 token。
  • pad_token (str, 可选, 默认为 "<pad>") — 用于填充的 token,例如在对不同长度的序列进行批处理时。
  • mask_token (str, 可选, 默认为 "<mask>") — 用于掩码值的 token。这是在使用掩码语言建模训练此模型时使用的 token。这是模型将尝试预测的 token。
  • tokenize_chinese_chars (bool, 可选, 默认为 True) — 是否对中文字符进行 token 化。

    对于日语,这可能应该停用(参见此问题)。

  • strip_accents (bool, 可选) — 是否去除所有重音符号。如果未指定此选项,则将由 lowercase 的值确定(与原始 BERT 中一样)。
  • clean_up_tokenization_spaces (bool, 可选, 默认为 True) — 是否在解码后清理空格,清理包括删除潜在的伪像,如多余的空格。

此 tokenizer 继承自 BertTokenizer,其中包含大多数方法。用户应参考超类以获取有关方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — 将向其添加特殊 token 的 ID 列表
  • token_ids_1 (List[int], 可选) — 用于序列对的可选的第二个 ID 列表。

返回值

List[int]

带有适当特殊 token 的 输入 ID 列表。

通过连接并添加特殊 token,从序列或序列对构建模型输入,用于序列分类任务。 MPNet 序列具有以下格式

  • 单序列: <s> X </s>
  • 序列对: <s> A </s></s> B </s>

get_special_tokens_mask

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 用于序列对的可选的第二个 ID 列表。
  • already_has_special_tokens (bool, 可选, 默认为 False) — 如果 token 列表已使用模型的特殊 token 格式化,则设置为 True

返回值

List[int]

一个整数列表,范围为 [0, 1]:1 代表特殊 token,0 代表序列 token。

从没有添加特殊 token 的 token 列表中检索序列 ID。当使用 tokenizer prepare_for_model 方法添加特殊 token 时,会调用此方法。

create_token_type_ids_from_sequences

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 用于序列对的可选的第二个 ID 列表。

返回值

List[int]

零列表。

从传递的两个序列创建掩码,用于序列对分类任务。 MPNet 不使用 token 类型 ID,因此返回零列表。

save_vocabulary

< >

( save_directory: str filename_prefix: typing.Optional[str] = None )

MPNetTokenizerFast

class transformers.MPNetTokenizerFast

< >

( vocab_file = None tokenizer_file = None do_lower_case = True bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '[UNK]' pad_token = '<pad>' mask_token = '<mask>' tokenize_chinese_chars = True strip_accents = None **kwargs )

参数

  • vocab_file (str) — 包含词汇表的文件。
  • do_lower_case (bool, 可选, 默认为 True) — 是否在 token 化时将输入转换为小写。
  • bos_token (str, 可选, 默认为 "<s>") — 预训练期间使用的序列开始 token。可以用作序列分类器 token。

    当使用特殊 token 构建序列时,这不是用于序列开始的 token。使用的 token 是 cls_token

  • eos_token (str, optional, defaults to "</s>") — 序列结束符 (end of sequence token)。

    当使用特殊 token 构建序列时,此 token 不是用于序列结束的 token。 用于序列结束的 token 是 sep_token

  • sep_token (str, optional, defaults to "</s>") — 分隔符 token (separator token),用于从多个序列构建一个序列时,例如,用于序列分类的两个序列,或者用于问答的文本和问题。 它也用作使用特殊 token 构建的序列的最后一个 token。
  • cls_token (str, optional, defaults to "<s>") — 分类符 token (classifier token),用于进行序列分类(对整个序列而不是每个 token 进行分类)。 当使用特殊 token 构建时,它是序列的第一个 token。
  • unk_token (str, optional, defaults to "[UNK]") — 未知 token (unknown token)。 词汇表中不存在的 token 无法转换为 ID,而是设置为此 token。
  • pad_token (str, optional, defaults to "<pad>") — 填充 token (padding token),例如在对不同长度的序列进行批处理时使用。
  • mask_token (str, optional, defaults to "<mask>") — 掩码 token (mask token),用于掩盖值。 这是在使用掩码语言建模训练此模型时使用的 token。 这是模型将尝试预测的 token。
  • tokenize_chinese_chars (bool, optional, defaults to True) — 是否对中文汉字进行 tokenize。 对于日语,这可能应该停用(参见 此 issue)。
  • strip_accents (bool, optional) — 是否去除所有重音符号。 如果未指定此选项,则将由 lowercase 的值确定(与原始 BERT 中一样)。

构建一个 “快速” MPNet tokenizer(由 HuggingFace 的 tokenizers 库支持)。 基于 WordPiece 算法。

此 tokenizer 继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。 用户应参考此超类以获取有关这些方法的更多信息。

create_token_type_ids_from_sequences

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表

返回值

List[int]

零列表。

从传递的两个序列创建掩码,用于序列对分类任务。 MPNet 不使用 token 类型 ID,因此返回零列表

Pytorch
隐藏 Pytorch 内容

MPNetModel

class transformers.MPNetModel

< >

( config add_pooling_layer = True )

参数

  • config (MPNetConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

裸 MPNet 模型 transformer,输出原始隐藏状态,顶部没有任何特定的 head。

此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length), optional) — 掩码,以避免在 padding token 索引上执行 attention。 掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩盖 的 token,
    • 0 表示 已被掩盖 的 token。

    什么是 attention 掩码?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length), optional) — 位置嵌入中每个输入序列 token 的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads), optional) — 掩码,用于使自注意力模块的选定 head 失效。 掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩盖
    • 0 表示 head 已被掩盖
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size), optional) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回值

transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingtorch.FloatTensor 元组(如果传递了 return_dict=False 或者当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (MPNetConfig) 和输入。

  • last_hidden_state (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层的输出处的隐藏状态序列。

  • pooler_output (torch.FloatTensor,形状为 (batch_size, hidden_size)) — 序列的第一个 token(分类 token)的最后一层隐藏状态,在通过用于辅助预训练任务的层进一步处理之后。 例如,对于 BERT 系列模型,这会在通过线性层和 tanh 激活函数处理后返回分类 token。 线性层权重通过预训练期间的下一句预测(分类)目标进行训练。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出一个,加上每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

MPNetModel forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MPNetModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = MPNetModel.from_pretrained("microsoft/mpnet-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

MPNetForMaskedLM

class transformers.MPNetForMaskedLM

< >

( config )

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 获取详细信息。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,用于避免在 padding token 索引上执行 attention。掩码值在 [0, 1] 中选择:

    • 1 表示 token 未被掩盖
    • 0 表示 token 被掩盖

    什么是 attention masks?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在位置 embeddings 中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify self-attention 模块中选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩盖
    • 0 表示 head 被掩盖
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部 embedding lookup 矩阵更精细地控制如何将 *input_ids* 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通 tuple。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算 masked language modeling loss 的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(参见 input_ids 文档字符串)。索引设置为 -100 的 tokens 将被忽略(masked),loss 仅针对标签在 [0, ..., config.vocab_size] 中的 tokens 计算

返回值

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutputtorch.FloatTensor 的 tuple (如果传递 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MPNetConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — Masked language modeling (MLM) loss。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模 head 的预测分数(SoftMax 之前每个词汇 token 的分数)。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出一个,加上每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

MPNetForMaskedLM forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MPNetForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = MPNetForMaskedLM.from_pretrained("microsoft/mpnet-base")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

MPNetForSequenceClassification

class transformers.MPNetForSequenceClassification

< >

( config )

参数

  • config (MPNetConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

MPNet 模型 transformer,顶部带有序列分类/回归 head(pooled output 顶部的线性层),例如用于 GLUE 任务。

此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 获取详细信息。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,用于避免在 padding token 索引上执行 attention。掩码值在 [0, 1] 中选择:

    • 1 表示 token 未被掩盖
    • 0 表示 token 被掩盖

    什么是 attention masks?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在位置 embeddings 中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify self-attention 模块中选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩盖
    • 0 表示 head 被掩盖
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部 embedding lookup 矩阵更精细地控制如何将 *input_ids* 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通 tuple。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归 loss 的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归 loss(均方 loss)。如果 config.num_labels > 1,则计算分类 loss(交叉熵)。

返回值

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutputtorch.FloatTensor 的 tuple (如果传递 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MPNetConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类 loss(如果 config.num_labels==1 则为回归 loss)。

  • logits (torch.FloatTensor,形状为 (batch_size, config.num_labels)) — 分类分数(如果 config.num_labels==1 则为回归分数)(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出一个,加上每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

MPNetForSequenceClassification forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, MPNetForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = MPNetForSequenceClassification.from_pretrained("microsoft/mpnet-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MPNetForSequenceClassification.from_pretrained("microsoft/mpnet-base", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, MPNetForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = MPNetForSequenceClassification.from_pretrained("microsoft/mpnet-base", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MPNetForSequenceClassification.from_pretrained(
...     "microsoft/mpnet-base", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

MPNetForMultipleChoice

class transformers.MPNetForMultipleChoice

< >

( config )

参数

  • config (MPNetConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

MPNet 模型,顶部带有多项选择分类头(池化输出顶部的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 获取详细信息。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,用于避免在 padding token 索引上执行 attention。Mask values selected in [0, 1]:

    • 1 表示 tokens 未被掩码
    • 0 表示 tokens 已被掩码

    什么是 attention masks?

  • position_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 掩码,用于 nullify self-attention 模块的选定头。Mask values selected in [0, 1]:

    • 1 表示头 未被掩码
    • 0 表示头 已被掩码
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, num_choices, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想比模型的内部嵌入查找矩阵更灵活地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通 tuple。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices-1] 中,其中 num_choices 是输入 tensors 的第二个维度的大小。(请参阅上面的 input_ids

返回值

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutputtorch.FloatTensor 的 tuple(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MPNetConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor,形状为 (batch_size, num_choices)) — num_choices 是输入 tensors 的第二个维度。(请参阅上面的 input_ids)。

    分类得分(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出一个,加上每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

MPNetForMultipleChoice forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MPNetForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = MPNetForMultipleChoice.from_pretrained("microsoft/mpnet-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

MPNetForTokenClassification

class transformers.MPNetForTokenClassification

< >

( config )

参数

  • config (MPNetConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

MPNet 模型,顶部带有 token 分类头(hidden-states 输出顶部的线性层),例如用于命名实体识别 (NER) 任务。

此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 获取详细信息。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,用于避免在 padding token 索引上执行 attention。Mask values selected in [0, 1]:

    • 1 表示 tokens 未被掩码
    • 0 表示 tokens 已被掩码

    什么是 attention masks?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 掩码,用于 nullify self-attention 模块的选定头。Mask values selected in [0, 1]:

    • 1 表示头 未被掩码
    • 0 表示头 已被掩码
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想比模型的内部嵌入查找矩阵更灵活地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通 tuple。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算 token 分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。

返回值

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MPNetConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.num_labels)) — 分类得分(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出一个,加上每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

MPNetForTokenClassification 的 forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MPNetForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = MPNetForTokenClassification.from_pretrained("microsoft/mpnet-base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

MPNetForQuestionAnswering

class transformers.MPNetForQuestionAnswering

< >

( config )

参数

  • config (MPNetConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

带有跨度分类头的 MPNet 模型,用于抽取式问答任务,如 SQuAD(在隐藏状态输出之上添加线性层,以计算 span start logitsspan end logits)。

此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。

    可以使用 AutoTokenizer 获取索引。请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,以避免在 padding token 索引上执行 attention。掩码值在 [0, 1] 中选择:

    • 1 表示 token 未被掩码
    • 0 表示 token 已被掩码

    什么是 attention 掩码?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使 self-attention 模块的选定 head 失效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩码
    • 0 表示 head 已被掩码
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention 张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • start_positions (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算 token 分类损失的已标记跨度开始位置(索引)的标签。位置被限制为序列的长度 (sequence_length)。序列之外的位置不计入损失计算。
  • end_positions (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算 token 分类损失的已标记跨度结束位置(索引)的标签。位置被限制为序列的长度 (sequence_length)。序列之外的位置不计入损失计算。

返回值

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MPNetConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 总跨度提取损失是开始和结束位置的交叉熵损失之和。

  • start_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 跨度开始得分(在 SoftMax 之前)。

  • end_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 跨度结束得分(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出一个,加上每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

MPNetForQuestionAnswering 的 forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MPNetForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = MPNetForQuestionAnswering.from_pretrained("microsoft/mpnet-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
TensorFlow
隐藏 TensorFlow 内容

TFMPNetModel

class transformers.TFMPNetModel

< >

( config *inputs **kwargs )

参数

  • config (MPNetConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

裸 MPNet 模型 transformer,输出原始隐藏状态,顶部没有任何特定的 head。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入都作为关键字参数(如 PyTorch 模型),或
  • 所有输入都作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量

  • 仅具有 input_ids 的单个张量,没有其他内容:model(input_ids)
  • 具有一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中一个或多个输入张量与文档字符串中给出的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: Optional[Union[np.array, tf.Tensor]] = None position_ids: Optional[Union[np.array, tf.Tensor]] = None head_mask: Optional[Union[np.array, tf.Tensor]] = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) transformers.modeling_tf_outputs.TFBaseModelOutputtuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 详细信息请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 IDs?

  • attention_mask (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 tokens 未被掩码
    • 0 表示 tokens 已被掩码

    什么是 attention masks?

  • position_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify self-attention 模块中选定 head 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩码
    • 0 表示 head 已被掩码
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是 plain tuple。 此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。

返回值

transformers.modeling_tf_outputs.TFBaseModelOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (MPNetConfig) 和输入。

  • last_hidden_state (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的 hidden-states 序列。

  • hidden_states (tuple(tf.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

TFMPNetModel forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFMPNetModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = TFMPNetModel.from_pretrained("microsoft/mpnet-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFMPNetForMaskedLM

class transformers.TFMPNetForMaskedLM

< >

( config *inputs **kwargs )

参数

  • config (MPNetConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

MPNet 模型,顶部带有 language modeling head。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入都作为关键字参数(如 PyTorch 模型),或
  • 所有输入都作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量

  • 仅具有 input_ids 的单个张量,没有其他内容:model(input_ids)
  • 具有一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中一个或多个输入张量与文档字符串中给出的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: bool = False ) transformers.modeling_tf_outputs.TFMaskedLMOutputtuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 详细信息请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 IDs?

  • attention_mask (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 tokens 未被掩码
    • 0 表示 tokens 已被掩码

    什么是 attention masks?

  • position_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify self-attention 模块中选定 head 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩码
    • 0 表示 head 已被掩码
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是 plain tuple。 此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。
  • labels (tf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于计算 masked language modeling loss 的标签。 索引应在 [-100, 0, ..., config.vocab_size] 中(请参阅 input_ids docstring) 索引设置为 -100 的 tokens 将被忽略(masked),loss 仅针对标签在 [0, ..., config.vocab_size] 中的 tokens 计算

返回值

transformers.modeling_tf_outputs.TFMaskedLMOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (MPNetConfig) 和输入。

  • loss (tf.Tensor,形状为 (n,), 可选,其中 n 是非 masked 标签的数量,当提供 labels 时返回) — Masked language modeling (MLM) loss。

  • logits (tf.Tensor,形状为 (batch_size, sequence_length, config.vocab_size)) — language modeling head 的预测分数(SoftMax 之前每个词汇表 token 的分数)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

TFMPNetForMaskedLM forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFMPNetForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = TFMPNetForMaskedLM.from_pretrained("microsoft/mpnet-base")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

TFMPNetForSequenceClassification

class transformers.TFMPNetForSequenceClassification

< >

( config *inputs **kwargs )

参数

  • config (MPNetConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

MPNet 模型 transformer,顶部带有序列分类/回归 head(pooled output 顶部的线性层),例如用于 GLUE 任务。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入都作为关键字参数(如 PyTorch 模型),或
  • 所有输入都作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量

  • 仅具有 input_ids 的单个张量,没有其他内容:model(input_ids)
  • 具有一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中一个或多个输入张量与文档字符串中给出的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: Optional[Union[np.array, tf.Tensor]] = None position_ids: Optional[Union[np.array, tf.Tensor]] = None head_mask: Optional[Union[np.array, tf.Tensor]] = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: bool = False ) transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 参见 PreTrainedTokenizer.call()PreTrainedTokenizer.encode() 以了解详情。

    什么是输入 IDs?

  • attention_mask (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 token 未被 Mask
    • 0 表示 token 被 Mask

    什么是 attention masks?

  • position_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length), 可选) — 每个输入序列 tokens 在位置 embeddings 中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于置空 self-attention 模块的选定 head 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 未被 Mask
    • 0 表示 head 被 Mask
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回的 tensors 下的 attentions。 此参数只能在即时模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的 tensors 下的 hidden_states。 此参数只能在即时模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通 tuple。 此参数可以在即时模式下使用,在图模式下该值将始终设置为 True。
  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。
  • labels (tf.Tensor,形状为 (batch_size,), 可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。 如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回值

transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个 tf.Tensor 的 tuple (如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MPNetConfig) 和输入。

  • loss (tf.Tensor,形状为 (batch_size, ), 可选, 当提供了 labels 时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。

  • logits (tf.Tensor,形状为 (batch_size, config.num_labels)) — 分类得分(如果 config.num_labels==1,则为回归得分)(在 SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

TFMPNetForSequenceClassification forward 方法,覆盖了 __call__ 特殊方法。

虽然 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFMPNetForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = TFMPNetForSequenceClassification.from_pretrained("microsoft/mpnet-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFMPNetForSequenceClassification.from_pretrained("microsoft/mpnet-base", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss

TFMPNetForMultipleChoice

class transformers.TFMPNetForMultipleChoice

< >

( config *inputs **kwargs )

参数

  • config (MPNetConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

MPNet 模型,顶部带有多项选择分类头(池化输出顶部的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入都作为关键字参数(如 PyTorch 模型),或
  • 所有输入都作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量

  • 仅具有 input_ids 的单个张量,没有其他内容:model(input_ids)
  • 具有一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中一个或多个输入张量与文档字符串中给出的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: bool = False ) transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, num_choices, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 参见 PreTrainedTokenizer.call()PreTrainedTokenizer.encode() 以了解详情。

    什么是输入 IDs?

  • attention_mask (Numpy arraytf.Tensor,形状为 (batch_size, num_choices, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 token 未被 Mask
    • 0 表示 token 被 Mask

    什么是 attention masks?

  • position_ids (Numpy arraytf.Tensor,形状为 (batch_size, num_choices, sequence_length), 可选) — 每个输入序列 tokens 在位置 embeddings 中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于置空 self-attention 模块的选定 head 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 未被 Mask
    • 0 表示 head 被 Mask
  • inputs_embeds (tf.Tensor,形状为 (batch_size, num_choices, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的 attentions。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。 此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。
  • labels (tf.Tensor,形状为 (batch_size,)可选) — 用于计算多项选择分类损失的标签。 索引应为 [0, ..., num_choices],其中 num_choices 是输入张量的第二个维度的大小。(请参阅上面的 input_ids

返回值

transformers.modeling_tf_outputs.TFMultipleChoiceModelOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutputtf.Tensor 元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含取决于配置 (MPNetConfig) 和输入的各种元素。

  • loss (tf.Tensor,形状为 (batch_size, )可选,当提供 labels 时返回) — 分类损失。

  • logits (tf.Tensor,形状为 (batch_size, num_choices)) — num_choices 是输入张量的第二个维度。(请参阅上面的 input_ids )。

    分类得分(在 SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

TFMPNetForMultipleChoice 前向方法,覆盖了 __call__ 特殊方法。

虽然 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFMPNetForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = TFMPNetForMultipleChoice.from_pretrained("microsoft/mpnet-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFMPNetForTokenClassification

class transformers.TFMPNetForTokenClassification

< >

( config *inputs **kwargs )

参数

  • config (MPNetConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

MPNet 模型,顶部带有 token 分类头(hidden-states 输出顶部的线性层),例如用于命名实体识别 (NER) 任务。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入都作为关键字参数(如 PyTorch 模型),或
  • 所有输入都作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量

  • 仅具有 input_ids 的单个张量,没有其他内容:model(input_ids)
  • 具有一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中一个或多个输入张量与文档字符串中给出的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: bool = False ) transformers.modeling_tf_outputs.TFTokenClassifierOutputtuple(tf.Tensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)Numpy arraytf.Tensor) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 ID?

  • attention_mask (形状为 (batch_size, sequence_length)Numpy arraytf.Tensor可选) — 掩码,以避免在填充令牌索引上执行注意力机制。 在 [0, 1] 中选择的掩码值:

    • 1 表示未被掩盖的令牌,
    • 0 表示被掩盖的令牌。

    什么是注意力掩码?

  • position_ids (形状为 (batch_size, sequence_length)Numpy arraytf.Tensor可选) — 每个输入序列令牌在位置嵌入中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (形状为 (num_heads,)(num_layers, num_heads)Numpy arraytf.Tensor可选) — 用于使自注意力模块的选定头无效的掩码。 在 [0, 1] 中选择的掩码值:

    • 1 表示头未被掩盖
    • 0 表示头被掩盖
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的 attentions。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。 此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。
  • labels (tf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于计算令牌分类损失的标签。 索引应为 [0, ..., config.num_labels - 1]

返回值

transformers.modeling_tf_outputs.TFTokenClassifierOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFTokenClassifierOutputtf.Tensor 元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含取决于配置 (MPNetConfig) 和输入的各种元素。

  • loss (tf.Tensor,形状为 (n,)可选,其中 n 是未掩盖标签的数量,当提供 labels 时返回) — 分类损失。

  • logits (tf.Tensor,形状为 (batch_size, sequence_length, config.num_labels)) — 分类得分(在 SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

TFMPNetForTokenClassification 前向方法,覆盖了 __call__ 特殊方法。

虽然 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFMPNetForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = TFMPNetForTokenClassification.from_pretrained("microsoft/mpnet-base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )

>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)

TFMPNetForQuestionAnswering

class transformers.TFMPNetForQuestionAnswering

< >

( config *inputs **kwargs )

参数

  • config (MPNetConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

带有跨度分类头的 MPNet 模型,用于抽取式问答任务,如 SQuAD(在隐藏状态输出之上添加线性层,以计算 span start logitsspan end logits)。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档,了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入都作为关键字参数(如 PyTorch 模型),或
  • 所有输入都作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用以下三种可能性来收集第一个位置参数中的所有输入张量

  • 仅具有 input_ids 的单个张量,没有其他内容:model(input_ids)
  • 具有一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中一个或多个输入张量与文档字符串中给出的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: Optional[Union[np.array, tf.Tensor]] = None position_ids: Optional[Union[np.array, tf.Tensor]] = None head_mask: Optional[Union[np.array, tf.Tensor]] = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: tf.Tensor | None = None end_positions: tf.Tensor | None = None training: bool = False **kwargs ) transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 详见 PreTrainedTokenizer.call()PreTrainedTokenizer.encode() 以了解详情。

    什么是输入 IDs?

  • attention_mask (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 tokens 未被掩盖
    • 0 表示 tokens 被掩盖

    什么是 attention 掩码?

  • position_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于 nullify self-attention 模块中选定 head 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩盖
    • 0 表示 head 被掩盖
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是纯 tuple。 此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。
  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(某些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。
  • start_positions (tf.Tensor,形状为 (batch_size,), 可选) — 用于计算 token 分类损失的带标签跨度开始位置(索引)的标签。 位置被限制在序列的长度(sequence_length)之内。 序列之外的位置不计入损失计算。
  • end_positions (tf.Tensor,形状为 (batch_size,), 可选) — 用于计算 token 分类损失的带标签跨度结束位置(索引)的标签。 位置被限制在序列的长度(sequence_length)之内。 序列之外的位置不计入损失计算。

返回值

transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个 tf.Tensor 的 tuple (如果传递了 return_dict=False 或者当 config.return_dict=False 时) ,包含各种元素,具体取决于配置 (MPNetConfig) 和输入。

  • loss (tf.Tensor,形状为 (batch_size, ), 可选, 当提供 start_positionsend_positions 时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵损失之和。

  • start_logits (tf.Tensor,形状为 (batch_size, sequence_length)) — 跨度起始得分(SoftMax 之前)。

  • end_logits (tf.Tensor,形状为 (batch_size, sequence_length)) — 跨度结束得分(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

TFMPNetForQuestionAnswering 前向方法,覆盖了 __call__ 特殊方法。

虽然 forward 传递的配方需要在该函数内定义,但之后应调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFMPNetForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base")
>>> model = TFMPNetForQuestionAnswering.from_pretrained("microsoft/mpnet-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)
< > Update on GitHub