Transformers 文档

GraniteMoeShared

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

GraniteMoeShared

概述

GraniteMoe 模型在 Power Scheduler:一种批大小和令牌数量不可知的学习率调度器 中提出,作者为 Yikang Shen、Matthew Stallone、Mayank Mishra、Gaoyuan Zhang、Shawn Tan、Aditya Prasad、Adriana Meza Soria、David D. Cox 和 Rameswar Panda。

此外,此类 GraniteMoeSharedModel 为 Moe 添加了共享专家。

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "ibm-research/moe-7b-1b-active-shared-experts"
tokenizer = AutoTokenizer.from_pretrained(model_path)

# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
model.eval()

# change input text as desired
prompt = "Write a code to find the maximum value in a list of numbers."

# tokenize the text
input_tokens = tokenizer(prompt, return_tensors="pt")
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
    print(i)

此 HF 实现由 Mayank MishraShawn TanSukriti Sharma 贡献。

GraniteMoeSharedConfig

class transformers.GraniteMoeSharedConfig

< >

( vocab_size = 32000 hidden_size = 4096 intermediate_size = 11008 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = None hidden_act = 'silu' max_position_embeddings = 2048 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = None bos_token_id = 1 eos_token_id = 2 tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None attention_bias = False attention_dropout = 0.0 embedding_multiplier = 1.0 logits_scaling = 1.0 residual_multiplier = 1.0 attention_multiplier = 1.0 num_local_experts = 8 num_experts_per_tok = 2 output_router_logits = False router_aux_loss_coef = 0.001 shared_intermediate_size = 0 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 32000) — GraniteMoeShared 模型的词汇表大小。 定义了在调用 GraniteMoeSharedModel 时传递的 inputs_ids 可以表示的不同 token 的数量。
  • hidden_size (int, 可选, 默认为 4096) — 隐藏层表示的维度。
  • intermediate_size (int, 可选, 默认为 11008) — MLP 表示的维度。
  • num_hidden_layers (int, 可选, 默认为 32) — Transformer 解码器中的隐藏层数。
  • num_attention_heads (int, 可选, 默认为 32) — Transformer 解码器中每个注意力层的注意力头的数量。
  • num_key_value_heads (int, 可选) — 这是用于实现分组查询注意力 (Grouped Query Attention) 的 key_value 头的数量。 如果 num_key_value_heads=num_attention_heads,模型将使用多头注意力 (Multi Head Attention, MHA);如果 num_key_value_heads=1,模型将使用多查询注意力 (Multi Query Attention, MQA);否则使用 GQA。 当将多头检查点转换为 GQA 检查点时,每个组 key 和 value 头应通过平均池化该组内的所有原始头来构建。 有关更多详细信息,请查看 本文。 如果未指定,则默认为 num_attention_heads
  • hidden_act (strfunction, 可选, 默认为 "silu") — 解码器中的非线性激活函数(函数或字符串)。
  • max_position_embeddings (int, 可选, 默认为 2048) — 模型可能使用的最大序列长度。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • rms_norm_eps (float, 可选, 默认为 1e-06) — RMS 归一化层使用的 epsilon 值。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回上次的键/值注意力(并非所有模型都使用)。 仅当 config.is_decoder=True 时相关。
  • pad_token_id (int, 可选) — 填充 token id。
  • bos_token_id (int, 可选, 默认为 1) — 流开始 token id。
  • eos_token_id (int, 可选, 默认为 2) — 流结束 token id。
  • tie_word_embeddings (bool, 可选, 默认为 False) — 是否绑定权重 embedding。
  • rope_theta (float, 可选, 默认为 10000.0) — RoPE embeddings 的基周期。
  • rope_scaling (Dict, 可选) — 包含 RoPE embeddings 缩放配置的字典。 目前支持两种缩放策略:linear 和 dynamic。 它们的缩放因子必须是大于 1 的浮点数。 预期格式为 {"type": 策略名称, "factor": 缩放因子}。 使用此标志时,请勿将 max_position_embeddings 更新为预期的新最大值。 有关这些缩放策略如何运作的更多信息,请参见以下帖子: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/。 这是一个实验性功能,未来版本中可能会有破坏性的 API 更改。
  • attention_bias (bool, 可选, 默认为 False) — 在自注意力期间,是否在 query、key、value 和输出投影层中使用偏置。
  • attention_dropout (float, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。
  • embedding_multiplier (float, 可选, 默认为 1.0) — embedding 乘数。
  • logits_scaling (float, 可选, 默认为 1.0) — 输出 logits 的除数。
  • residual_multiplier (float, 可选, 默认为 1.0) — residual 乘数。
  • attention_multiplier (float, 可选, 默认为 1.0) — attention 乘数。
  • num_local_experts (int, 可选, 默认为 8) — expert 的总数。
  • num_experts_per_tok (int, 可选, 默认为 2) — 每个 token 的 expert 数量。
  • output_router_logits (bool, 可选, 默认为 False) — 模型是否应返回路由器 logits。 启用此功能还将允许模型输出辅助损失。
  • router_aux_loss_coef (float, 可选, 默认为 0.001) — 路由器辅助损失系数。
  • shared_intermediate_size (int, 可选, 默认为 0) — 共享 expert 的中间层大小。 0 表示没有共享 expert。

这是用于存储 GraniteMoeSharedModel 配置的配置类。 它用于根据指定的参数实例化 GraniteMoeShared 模型,定义模型架构。 使用默认值实例化配置将产生与 ibm-research/moe-7b-1b-active-shared-experts 相似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 的文档。

>>> from transformers import GraniteMoeSharedModel, GraniteMoeSharedConfig

>>> # Initializing a GraniteMoeShared granitemoe-3b style configuration
>>> configuration = GraniteMoeSharedConfig()

>>> # Initializing a model from the granitemoe-7b style configuration
>>> model = GraniteMoeSharedModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

GraniteMoeSharedModel

class transformers.GraniteMoeSharedModel

< >

( config: GraniteMoeSharedConfig )

参数

  • config (GraniteMoeSharedConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
  • config — GraniteMoeSharedConfig

裸 GraniteMoeShared 模型输出原始隐藏状态,顶部没有任何特定的 head。此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

Transformer 解码器,由 config.num_hidden_layers 层组成。每一层都是一个 GraniteMoeDecoderLayer

forward

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None )

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。Mask 值在 [0, 1] 中选择:

    • 1 表示 token 未被 Mask
    • 0 表示 token 被 Mask

    什么是 attention masks?

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用 past_key_values,则可以选择仅输入最后一个 input_ids(请参阅 past_key_values)。

    如果您想更改 padding 行为,您应该阅读 modeling_opt._prepare_decoder_attention_mask 并根据您的需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。

    • 1 表示 head 未被 Mask
    • 0 表示 head 被 Mask
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列 tokens 的位置索引。在范围 [0, config.n_positions - 1] 中选择。

    什么是位置 IDs?

  • past_key_values (Cachetuple(tuple(torch.FloatTensor))可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常由模型在先前解码阶段返回的 past_key_values 组成,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例;
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也称为旧版缓存格式。

    模型将输出与输入相同的缓存格式。如果未传递 past_key_values,将返回旧版缓存格式。

    如果使用 past_key_values,用户可以选择仅输入最后一个 input_ids(那些没有将其过去键值状态提供给此模型的输入 ID),形状为 (batch_size, 1),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并且可以用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions 张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 描述输入序列 tokens 在序列中位置的索引。与 position_ids 相反,此张量不受 padding 的影响。它用于在正确的位置更新缓存并推断完整序列长度。

GraniteMoeSharedModel 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

GraniteMoeSharedForCausalLM

class transformers.GraniteMoeSharedForCausalLM

< >

( config: GraniteMoeSharedConfig )

forward

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **kwargs ) transformers.modeling_outputs.MoeCausalLMOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 token 未被掩码
    • 0 表示 token 已被掩码

    什么是 attention 掩码?

    索引可以使用 AutoTokenizer 获取。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用 past_key_values,则可以选择仅输入最后的 input_ids (请参阅 past_key_values)。

    如果您想更改 padding 行为,您应该阅读 modeling_opt._prepare_decoder_attention_mask 并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。

    • 1 表示 head 未被掩码
    • 0 表示 head 已被掩码
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列 token 的位置索引。 在范围 [0, config.n_positions - 1] 中选择。

    什么是位置 ID?

  • past_key_values (Cachetuple(tuple(torch.FloatTensor))可选) — 预先计算的 hidden-states(自注意力模块和交叉注意力模块中的 key 和 values),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例;
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量。 这也称为旧版缓存格式。

    模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,则用户可以选择仅输入最后的 input_ids (那些没有将其过去的 key value 状态提供给此模型的 input_ids),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,可用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回的张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 描述输入序列 token 在序列中位置的索引。 与 position_ids 相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算 masked language modeling loss 的标签。 索引应在 [0, ..., config.vocab_size] 或 -100 中(请参阅 input_ids 文档字符串)。 索引设置为 -100 的 token 将被忽略(掩码),loss 仅针对标签在 [0, ..., config.vocab_size] 中的 token 计算。

返回

transformers.modeling_outputs.MoeCausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MoeCausalLMOutputWithPasttorch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (GraniteMoeSharedConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个 token 预测)。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模 head 的预测分数(SoftMax 之前每个词汇 token 的分数)。

  • aux_loss (torch.FloatTensor可选,当提供 labels 时返回) — 稀疏模块的 aux_loss。

  • router_logits (tuple(torch.FloatTensor)可选,当传递了 output_router_probs=Trueconfig.add_router_probs=True 或当 config.output_router_probs=True 时返回) — 形状为 (batch_size, sequence_length, num_experts)torch.FloatTensor 元组(每层一个)。

    MoE 路由器计算的原始路由器 logits(后 softmax),这些术语用于计算 Mixture of Experts 模型的辅助损失。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)

    包含预先计算的 hidden-states(自注意力模块中的 key 和 values),可用于加速顺序解码(请参阅 past_key_values 输入)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(对于嵌入的输出,如果模型具有嵌入层,则为一个;对于每层的输出,则为一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的 hidden-states,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每层一个)。

    attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。

GraniteMoeSharedForCausalLM forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, GraniteMoeSharedForCausalLM

>>> model = GraniteMoeSharedForCausalLM.from_pretrained("ibm/PowerMoE-3b")
>>> tokenizer = AutoTokenizer.from_pretrained("ibm/PowerMoE-3b")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
< > 在 GitHub 上更新