Transformers 文档
GraniteMoeShared
并获得增强的文档体验
开始使用
GraniteMoeShared
概述
GraniteMoe 模型在 Power Scheduler:一种批大小和令牌数量不可知的学习率调度器 中提出,作者为 Yikang Shen、Matthew Stallone、Mayank Mishra、Gaoyuan Zhang、Shawn Tan、Aditya Prasad、Adriana Meza Soria、David D. Cox 和 Rameswar Panda。
此外,此类 GraniteMoeSharedModel 为 Moe 添加了共享专家。
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "ibm-research/moe-7b-1b-active-shared-experts"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
model.eval()
# change input text as desired
prompt = "Write a code to find the maximum value in a list of numbers."
# tokenize the text
input_tokens = tokenizer(prompt, return_tensors="pt")
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i)
此 HF 实现由 Mayank Mishra、Shawn Tan 和 Sukriti Sharma 贡献。
GraniteMoeSharedConfig
( vocab_size = 32000 hidden_size = 4096 intermediate_size = 11008 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = None hidden_act = 'silu' max_position_embeddings = 2048 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = None bos_token_id = 1 eos_token_id = 2 tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None attention_bias = False attention_dropout = 0.0 embedding_multiplier = 1.0 logits_scaling = 1.0 residual_multiplier = 1.0 attention_multiplier = 1.0 num_local_experts = 8 num_experts_per_tok = 2 output_router_logits = False router_aux_loss_coef = 0.001 shared_intermediate_size = 0 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 32000) — GraniteMoeShared 模型的词汇表大小。 定义了在调用 GraniteMoeSharedModel 时传递的inputs_ids
可以表示的不同 token 的数量。 - hidden_size (
int
, 可选, 默认为 4096) — 隐藏层表示的维度。 - intermediate_size (
int
, 可选, 默认为 11008) — MLP 表示的维度。 - num_hidden_layers (
int
, 可选, 默认为 32) — Transformer 解码器中的隐藏层数。 - num_attention_heads (
int
, 可选, 默认为 32) — Transformer 解码器中每个注意力层的注意力头的数量。 - num_key_value_heads (
int
, 可选) — 这是用于实现分组查询注意力 (Grouped Query Attention) 的 key_value 头的数量。 如果num_key_value_heads=num_attention_heads
,模型将使用多头注意力 (Multi Head Attention, MHA);如果num_key_value_heads=1
,模型将使用多查询注意力 (Multi Query Attention, MQA);否则使用 GQA。 当将多头检查点转换为 GQA 检查点时,每个组 key 和 value 头应通过平均池化该组内的所有原始头来构建。 有关更多详细信息,请查看 本文。 如果未指定,则默认为num_attention_heads
。 - hidden_act (
str
或function
, 可选, 默认为"silu"
) — 解码器中的非线性激活函数(函数或字符串)。 - max_position_embeddings (
int
, 可选, 默认为 2048) — 模型可能使用的最大序列长度。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - rms_norm_eps (
float
, 可选, 默认为 1e-06) — RMS 归一化层使用的 epsilon 值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回上次的键/值注意力(并非所有模型都使用)。 仅当config.is_decoder=True
时相关。 - pad_token_id (
int
, 可选) — 填充 token id。 - bos_token_id (
int
, 可选, 默认为 1) — 流开始 token id。 - eos_token_id (
int
, 可选, 默认为 2) — 流结束 token id。 - tie_word_embeddings (
bool
, 可选, 默认为False
) — 是否绑定权重 embedding。 - rope_theta (
float
, 可选, 默认为 10000.0) — RoPE embeddings 的基周期。 - rope_scaling (
Dict
, 可选) — 包含 RoPE embeddings 缩放配置的字典。 目前支持两种缩放策略:linear 和 dynamic。 它们的缩放因子必须是大于 1 的浮点数。 预期格式为{"type": 策略名称, "factor": 缩放因子}
。 使用此标志时,请勿将max_position_embeddings
更新为预期的新最大值。 有关这些缩放策略如何运作的更多信息,请参见以下帖子: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/。 这是一个实验性功能,未来版本中可能会有破坏性的 API 更改。 - attention_bias (
bool
, 可选, 默认为False
) — 在自注意力期间,是否在 query、key、value 和输出投影层中使用偏置。 - attention_dropout (
float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。 - embedding_multiplier (
float
, 可选, 默认为 1.0) — embedding 乘数。 - logits_scaling (
float
, 可选, 默认为 1.0) — 输出 logits 的除数。 - residual_multiplier (
float
, 可选, 默认为 1.0) — residual 乘数。 - attention_multiplier (
float
, 可选, 默认为 1.0) — attention 乘数。 - num_local_experts (
int
, 可选, 默认为 8) — expert 的总数。 - num_experts_per_tok (
int
, 可选, 默认为 2) — 每个 token 的 expert 数量。 - output_router_logits (
bool
, 可选, 默认为False
) — 模型是否应返回路由器 logits。 启用此功能还将允许模型输出辅助损失。 - router_aux_loss_coef (
float
, 可选, 默认为 0.001) — 路由器辅助损失系数。 - shared_intermediate_size (
int
, 可选, 默认为 0) — 共享 expert 的中间层大小。 0 表示没有共享 expert。
这是用于存储 GraniteMoeSharedModel 配置的配置类。 它用于根据指定的参数实例化 GraniteMoeShared 模型,定义模型架构。 使用默认值实例化配置将产生与 ibm-research/moe-7b-1b-active-shared-experts 相似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 的文档。
>>> from transformers import GraniteMoeSharedModel, GraniteMoeSharedConfig
>>> # Initializing a GraniteMoeShared granitemoe-3b style configuration
>>> configuration = GraniteMoeSharedConfig()
>>> # Initializing a model from the granitemoe-7b style configuration
>>> model = GraniteMoeSharedModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
GraniteMoeSharedModel
( config: GraniteMoeSharedConfig )
参数
- config (GraniteMoeSharedConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
- config — GraniteMoeSharedConfig
裸 GraniteMoeShared 模型输出原始隐藏状态,顶部没有任何特定的 head。此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
Transformer 解码器,由 config.num_hidden_layers 层组成。每一层都是一个 GraniteMoeDecoderLayer
( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 token 未被 Mask,
- 0 表示 token 被 Mask。
索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后一个input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示 head 未被 Mask,
- 0 表示 head 被 Mask。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 tokens 的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常由模型在先前解码阶段返回的past_key_values
组成,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一个input_ids
(那些没有将其过去键值状态提供给此模型的输入 ID),形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描述输入序列 tokens 在序列中位置的索引。与position_ids
相反,此张量不受 padding 的影响。它用于在正确的位置更新缓存并推断完整序列长度。
GraniteMoeSharedModel 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
GraniteMoeSharedForCausalLM
( config: GraniteMoeSharedConfig )
( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **kwargs ) → transformers.modeling_outputs.MoeCausalLMOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩码,
- 0 表示 token 已被掩码。
索引可以使用 AutoTokenizer 获取。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 token 的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的 hidden-states(自注意力模块和交叉注意力模块中的 key 和 values),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后的input_ids
(那些没有将其过去的 key value 状态提供给此模型的input_ids
),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 或者,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回的张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描述输入序列 token 在序列中位置的索引。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算 masked language modeling loss 的标签。 索引应在[0, ..., config.vocab_size]
或 -100 中(请参阅input_ids
文档字符串)。 索引设置为-100
的 token 将被忽略(掩码),loss 仅针对标签在[0, ..., config.vocab_size]
中的 token 计算。
一个 transformers.modeling_outputs.MoeCausalLMOutputWithPast
或 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (GraniteMoeSharedConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测分数(SoftMax 之前每个词汇 token 的分数)。 -
aux_loss (
torch.FloatTensor
,可选,当提供labels
时返回) — 稀疏模块的 aux_loss。 -
router_logits (
tuple(torch.FloatTensor)
,可选,当传递了output_router_probs=True
和config.add_router_probs=True
或当config.output_router_probs=True
时返回) — 形状为(batch_size, sequence_length, num_experts)
的torch.FloatTensor
元组(每层一个)。MoE 路由器计算的原始路由器 logits(后 softmax),这些术语用于计算 Mixture of Experts 模型的辅助损失。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递了use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的 hidden-states(自注意力模块中的 key 和 values),可用于加速顺序解码(请参阅
past_key_values
输入)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(对于嵌入的输出,如果模型具有嵌入层,则为一个;对于每层的输出,则为一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的 hidden-states,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
GraniteMoeSharedForCausalLM forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但应该在之后调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, GraniteMoeSharedForCausalLM
>>> model = GraniteMoeSharedForCausalLM.from_pretrained("ibm/PowerMoE-3b")
>>> tokenizer = AutoTokenizer.from_pretrained("ibm/PowerMoE-3b")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."