X-MOD
概述
X-MOD 模型在 Lifting the Curse of Multilinguality by Pre-training Modular Transformers 中被提出,作者是 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, 和 Mikel Artetxe。 X-MOD 扩展了多语言掩码语言模型,如 XLM-R,使其在预训练期间包含特定于语言的模块化组件(语言适配器)。 对于微调,每个 Transformer 层中的语言适配器被冻结。
该论文的摘要如下:
众所周知,多语言预训练模型会受到多语言性的诅咒,这会导致随着它们覆盖更多语言,每种语言的性能都会下降。我们通过引入特定于语言的模块来解决这个问题,这使我们能够增加模型的总容量,同时保持每种语言可训练参数的总数不变。与先前事后学习特定于语言的组件的工作不同,我们从一开始就预训练我们的跨语言模块化 (X-MOD) 模型的模块。我们在自然语言推理、命名实体识别和问答方面的实验表明,我们的方法不仅减轻了语言之间的负面干扰,而且还实现了正向迁移,从而提高了单语和跨语言性能。此外,我们的方法能够事后添加语言,而性能没有可衡量的下降,不再将模型的使用限制在预训练语言的集合中。
此模型由 jvamvas 贡献。 原始代码可以在 这里 找到,原始文档可以在 这里 找到。
使用技巧
技巧
- X-MOD 与 XLM-R 类似,但区别在于需要指定输入语言,以便可以激活正确的语言适配器。
- 主要模型 – base 和 large – 具有 81 种语言的适配器。
适配器使用
输入语言
有两种方法可以指定输入语言
- 通过在使用模型之前设置默认语言
from transformers import XmodModel
model = XmodModel.from_pretrained("facebook/xmod-base")
model.set_default_language("en_XX")
- 通过显式传递每个样本的语言适配器的索引
import torch
input_ids = torch.tensor(
[
[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2],
[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2],
]
)
lang_ids = torch.LongTensor(
[
0, # en_XX
8, # de_DE
]
)
output = model(input_ids, lang_ids=lang_ids)
微调
该论文建议在微调期间冻结嵌入层和语言适配器。 提供了一种执行此操作的方法
model.freeze_embeddings_and_language_adapters()
# Fine-tune the model ...
跨语言迁移
微调后,可以通过激活目标语言的语言适配器来测试零样本跨语言迁移
model.set_default_language("de_DE")
# Evaluate the model on German examples ...
资源
XmodConfig
class transformers.XmodConfig
< source >( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None pre_norm = False adapter_reduction_factor = 2 adapter_layer_norm = False adapter_reuse_layer_norm = True ln_before_adapter = True languages = ('en_XX',) default_language = None **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 30522) — X-MOD 模型的词汇表大小。定义了在调用 XmodModel 时传递的inputs_ids
可以表示的不同 token 的数量。 - hidden_size (
int
, 可选, 默认为 768) — 编码器层和池化器层的维度。 - num_hidden_layers (
int
, 可选, 默认为 12) — Transformer 编码器中隐藏层的数量。 - num_attention_heads (
int
, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。 - intermediate_size (
int
, 可选, 默认为 3072) — Transformer 编码器中“中间”层(通常称为前馈层)的维度。 - hidden_act (
str
或Callable
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持"gelu"
,"relu"
,"silu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, 可选, 默认为 0.1) — embedding 层、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。 - max_position_embeddings (
int
, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - type_vocab_size (
int
, 可选, 默认为 2) — 在调用 XmodModel 时传递的token_type_ids
的词汇表大小。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, 可选, 默认为 1e-12) — layer normalization 层使用的 epsilon 值。 - position_embedding_type (
str
, 可选, 默认为"absolute"
) — 位置 embedding 的类型。从"absolute"
,"relative_key"
,"relative_key_query"
中选择一个。对于位置 embeddings,使用"absolute"
。有关"relative_key"
的更多信息,请参考 Self-Attention with Relative Position Representations (Shaw et al.)。有关"relative_key_query"
的更多信息,请参考 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的方法 4。 - is_decoder (
bool
, 可选, 默认为False
) — 模型是否用作解码器。如果为False
,则模型用作编码器。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回上次的键/值注意力 (并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - classifier_dropout (
float
, 可选) — 分类头的 dropout 比率。 - pre_norm (
bool
, 可选, 默认为False
) — 是否在每个 block 之前应用 layer normalization。 - adapter_reduction_factor (
int
或float
, 可选, 默认为 2) — adapter 的维度相对于hidden_size
缩减的因子。 - adapter_layer_norm (
bool
, 可选, 默认为False
) — 是否在 adapter 模块之前应用新的 layer normalization (在所有 adapter 之间共享)。 - adapter_reuse_layer_norm (
bool
, 可选, 默认为True
) — 是否重用第二个 layer normalization 并在 adapter 模块之前也应用它。 - ln_before_adapter (
bool
, 可选, 默认为True
) — 是否在 adapter 模块周围的残差连接之前应用 layer normalization。 - languages (
Iterable[str]
, 可选, 默认为["en_XX"]
) — 应为其初始化 adapter 模块的语言代码的可迭代对象。 - default_language (
str
, 可选) — 默认语言的语言代码。如果未显式传递语言代码到 forward 方法,则将假定输入为此语言。
这是用于存储 XmodModel 配置的配置类。它用于根据指定的参数实例化 X-MOD 模型,定义模型架构。使用默认值实例化配置将产生类似于 facebook/xmod-base 架构的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。
示例
>>> from transformers import XmodConfig, XmodModel
>>> # Initializing an X-MOD facebook/xmod-base style configuration
>>> configuration = XmodConfig()
>>> # Initializing a model (with random weights) from the facebook/xmod-base style configuration
>>> model = XmodModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
XmodModel
class transformers.XmodModel
< source >( config add_pooling_layer = True )
参数
- config (XmodConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸 X-MOD 模型 Transformer 输出原始隐藏状态,顶部没有任何特定的 head。
此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并查阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
该模型可以充当编码器(仅具有自注意力),也可以充当解码器,在后一种情况下,自注意力层之间会添加一个交叉注意力层,遵循 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Łukasz Kaiser 和 Illia Polosukhin 在Attention is all you need_ 中描述的架构。
要充当解码器,模型需要在配置中将 is_decoder
参数设置为 True
进行初始化。要在 Seq2Seq 模型中使用,模型需要使用 is_decoder
参数和 add_cross_attention
设置为 True
进行初始化;然后,encoder_hidden_states
将作为前向传递的输入。
.. _Attention is all you need: https://arxiv.org/abs/1706.03762
forward
< source >( input_ids: Optional = None lang_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- lang_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 分别应该为每个样本激活的语言适配器的索引。 默认值:与self.config.default_language
对应的索引。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 避免在 padding token 索引上执行 attention 的掩码。Mask 值在[0, 1]
中选择:- 1 表示 未被掩盖 的 token,
- 0 表示 被掩盖 的 token。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于 nullify 自注意力模块的选定 head 的掩码。 Mask 值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - encoder_hidden_states (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 编码器最后一层输出的隐藏状态序列。 如果模型配置为解码器,则在交叉 attention 中使用。 - encoder_attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对编码器输入的 padding token 索引执行 attention 的掩码。 如果模型配置为解码器,则此掩码在交叉 attention 中使用。 Mask 值在[0, 1]
中选择:- 1 表示 未被掩盖 的 token,
- 0 表示 被掩盖 的 token。
- past_key_values (
tuple(tuple(torch.FloatTensor))
,长度为config.n_layers
,每个元组有 4 个张量 — - of 形状为
(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — 包含 attention 块的预计算的 key 和 value 隐藏状态。 可用于加速解码。如果使用
past_key_values
,则用户可以选择仅输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去的 key value 状态提供给此模型的),而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。
XmodModel 前向方法覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在该函数中定义,但应该在此之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
XmodForCausalLM
class transformers.XmodForCausalLM
< source >( config )
参数
- config (XmodConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
X-MOD 模型,顶部带有用于 CLM 微调的 language modeling
head。
此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并查阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None lang_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None past_key_values: Tuple = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- lang_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 分别对应于每个样本应激活的语言适配器的索引。 默认值:对应于self.config.default_language
的索引。 - attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免对 padding token 索引执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 未被 mask 的 tokens,
- 0 表示 已被 mask 的 tokens。
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 段 token 索引,用于指示输入的第一个和第二个部分。 索引在[0, 1]
中选择:- 0 对应于 *句子 A* token,
- 1 对应于 *句子 B* token。
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 位置 embeddings 中每个输入序列 tokens 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于 nullify self-attention 模块的选定 heads 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 head 未被 mask,
- 0 表示 head 已被 mask。
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递 embedded representation,而不是传递input_ids
。 如果您想比模型的内部 embedding lookup matrix 更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
, optional) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是 plain tuple。 - encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — encoder 的最后一层输出端的 hidden-states 序列。 如果模型配置为 decoder,则在 cross-attention 中使用。 - encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免对 encoder 输入的 padding token 索引执行 attention 的 Mask。 如果模型配置为 decoder,则此 mask 在 cross-attention 中使用。 Mask 值在[0, 1]
中选择:- 1 表示 未被 mask 的 tokens,
- 0 表示 已被 mask 的 tokens。
- labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算从左到右的语言建模损失(下一个词预测)的 labels。 索引应为[-100, 0, ..., config.vocab_size]
(参见input_ids
的文档字符串) 索引设置为-100
的 tokens 将被忽略(masked),损失仅针对 labels 在[0, ..., config.vocab_size]
中的 tokens 计算 - past_key_values (
tuple(tuple(torch.FloatTensor))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — 包含 attention blocks 的预计算 key 和 value hidden states。 可用于加速 decoding。如果使用
past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去的 key value states 提供给此模型的 decoder_input_ids),而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 - use_cache (
bool
, optional) — 如果设置为True
,则返回past_key_values
key value states,并且可以用于加速 decoding(请参阅past_key_values
)。返回 —
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions
或tuple(torch.FloatTensor)
示例 —
XmodForCausalLM
的 forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在该函数中定义,但应该在此之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
XmodForMaskedLM
class transformers.XmodForMaskedLM
< source >( config )
参数
- config (XmodConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
带有 language modeling
head 的 X-MOD 模型。
此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并查阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None lang_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- lang_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 分别对应于每个样本应激活的语言适配器的索引。 默认值:对应于self.config.default_language
的索引。 - attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免对 padding token 索引执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 未被 mask 的 tokens,
- 0 表示 已被 mask 的 tokens。
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 段 token 索引,用于指示输入的第一个和第二个部分。 索引在[0, 1]
中选择:- 0 对应于 *句子 A* token,
- 1 对应于 *句子 B* token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列令牌的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定头的掩码。 在[0, 1]
中选择掩码值:- 1 表示头未被掩蔽,
- 0 表示头被掩蔽。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。 索引应在[-100, 0, ..., config.vocab_size]
中(请参阅input_ids
文档字符串)。索引设置为-100
的令牌将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的令牌计算。 - kwargs (
Dict[str, any]
,可选,默认为 {}) — 用于隐藏已弃用的旧版参数。
XmodForMaskedLM 的 forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在该函数中定义,但应该在此之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
XmodForSequenceClassification
class transformers.XmodForSequenceClassification
< source >( config )
参数
- config (XmodConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
X-MOD 模型转换器,顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。
此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并查阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None lang_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列令牌的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- lang_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 应分别激活每个样本的语言适配器的索引。 默认值:与self.config.default_language
相对应的索引。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,以避免对填充令牌索引执行注意力机制。 在[0, 1]
中选择掩码值:- 1 表示令牌未被掩蔽,
- 0 表示令牌被掩蔽。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 分段令牌索引,用于指示输入的第一个和第二个部分。 索引在[0, 1]
中选择:- 0 对应于句子 A 令牌,
- 1 对应于句子 B 令牌。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列令牌的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定头的掩码。 在[0, 1]
中选择掩码值:- 1 表示头未被掩蔽,
- 0 表示头被掩蔽。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方误差损失);如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
XmodForSequenceClassification 的 forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在该函数中定义,但应该在此之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
XmodForMultipleChoice
class transformers.XmodForMultipleChoice
< source >( config )
参数
- config (XmodConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
X-MOD 模型,顶部带有一个多项选择分类头(池化输出顶部的一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并查阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None lang_ids: Optional = None token_type_ids: Optional = None attention_mask: Optional = None labels: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- lang_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 分别应该为每个样本激活的语言适配器的索引。 默认值:与self.config.default_language
对应的索引。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 掩码,用于避免在 padding token 索引上执行 attention。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 已被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 分段 token 索引,用于指示输入的第一个和第二个部分。 索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码,用于置空 self-attention 模块的选定 head。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 已被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回的 tensors 下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的 tensors 下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算多项选择分类损失的标签。 索引应在[0, ..., num_choices-1]
中,其中num_choices
是输入张量的第二个维度的大小。 (请参阅上面的input_ids
)
XmodForMultipleChoice 的 forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在该函数中定义,但应该在此之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
XmodForTokenClassification
class transformers.XmodForTokenClassification
< source >( config )
参数
- config (XmodConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
X-MOD 模型,顶部带有一个 token 分类头(隐藏状态输出顶部的一个线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并查阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None lang_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- lang_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 分别应该为每个样本激活的语言适配器的索引。 默认值:与self.config.default_language
对应的索引。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,用于避免在 padding token 索引上执行 attention。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 已被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 分段 token 索引,用于指示输入的第一个和第二个部分。 索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码,用于置空 self-attention 模块的选定 head。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 已被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回的 tensors 下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的 tensors 下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
, 形状为(batch_size, sequence_length)
, 可选) — 用于计算 token 分类损失的标签。索引应在[0, ..., config.num_labels - 1]
中。
的 XmodForTokenClassification forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在该函数中定义,但应该在此之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
XmodForQuestionAnswering
class transformers.XmodForQuestionAnswering
< source >( config )
参数
- config (XmodConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
X-MOD 模型,顶部带有跨度分类头,用于抽取式问答任务,如 SQuAD (在 hidden-states 输出之上添加线性层来计算 span start logits
和 span end logits
)。
此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并查阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None lang_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
参数
- input_ids (
torch.LongTensor
, 形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- lang_ids (
torch.LongTensor
, 形状为(batch_size, sequence_length)
, 可选) — 分别应该为每个样本激活的语言适配器的索引。默认值:与self.config.default_language
对应的索引。 - attention_mask (
torch.FloatTensor
, 形状为(batch_size, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
- token_type_ids (
torch.LongTensor
, 形状为(batch_size, sequence_length)
, 可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
, 形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个输入序列 tokens 的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
, 形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于 nullify self-attention 模块的选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回的 tensors 下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的 tensors 下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通的 tuple。 - start_positions (
torch.LongTensor
, 形状为(batch_size,)
, 可选) — 用于计算 token 分类损失的带标签跨度的起始位置(索引)的标签。 位置被限制在序列的长度 (sequence_length
) 内。 序列之外的位置不计入损失计算。 - end_positions (
torch.LongTensor
, 形状为(batch_size,)
, 可选) — 用于计算 token 分类损失的带标签跨度的结束位置(索引)的标签。 位置被限制在序列的长度 (sequence_length
) 内。 序列之外的位置不计入损失计算。
的 XmodForQuestionAnswering forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的配方需要在该函数中定义,但应该在此之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。