Transformers 文档
通义千问3
并获得增强的文档体验
开始使用
通义千问3
概述
将与官方模型发布一同推出。
模型详情
将与官方模型发布一同推出。
使用提示
将与官方模型发布一同推出。
Qwen3Config
class transformers.Qwen3Config
< 源 >( 词汇表大小 = 151936 隐藏层大小 = 4096 中间层大小 = 22016 隐藏层数量 = 32 注意力头数量 = 32 键值头数量 = 32 头维度 = 128 隐藏激活函数 = 'silu' 最大位置嵌入 = 32768 初始化范围 = 0.02 rms_norm_eps = 1e-06 使用缓存 = True 绑定词嵌入 = False rope_theta = 10000.0 rope_scaling = None attention_bias = False 使用滑动窗口 = False 滑动窗口 = 4096 最大窗口层 = 28 层类型 = None 注意力 dropout = 0.0 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为151936) — Qwen3模型的词汇表大小。定义了调用 Qwen3Model 时传入的inputs_ids
可以表示的不同token的数量。 - hidden_size (
int
, 可选, 默认为4096) — 隐藏表示的维度。 - intermediate_size (
int
, 可选, 默认为22016) — MLP表示的维度。 - num_hidden_layers (
int
, 可选, 默认为32) — Transformer编码器中的隐藏层数量。 - num_attention_heads (
int
, 可选, 默认为32) — Transformer编码器中每个注意力层的注意力头数量。 - num_key_value_heads (
int
, 可选, 默认为32) — 用于实现分组查询注意力(Grouped Query Attention)的键值头数量。如果num_key_value_heads=num_attention_heads
,模型将使用多头注意力(MHA);如果num_key_value_heads=1
,模型将使用多查询注意力(MQA),否则使用GQA。将多头检查点转换为GQA检查点时,每个组的键和值头应通过对其组内所有原始头进行均值池化来构建。更多详情请参阅 这篇论文。如果未指定,默认为32
。 - head_dim (
int
, 可选, 默认为128) — 注意力头维度。 - hidden_act (
str
或function
, 可选, 默认为"silu"
) — 解码器中的非线性激活函数(函数或字符串)。 - max_position_embeddings (
int
, 可选, 默认为32768) — 该模型可能使用的最大序列长度。 - initializer_range (
float
, 可选, 默认为0.02) — 用于初始化所有权重矩阵的截断正态分布初始化器的标准差。 - rms_norm_eps (
float
, 可选, 默认为1e-06) — RMS标准化层使用的epsilon值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。仅在config.is_decoder=True
时相关。 - tie_word_embeddings (
bool
, 可选, 默认为False
) — 模型的输入和输出词嵌入是否应绑定。 - rope_theta (
float
, 可选, 默认为10000.0) — RoPE嵌入的基周期。 - rope_scaling (
Dict
, 可选) — 包含RoPE嵌入缩放配置的字典。注意:如果您应用新的rope类型并且期望模型在更长的max_position_embeddings
上工作,我们建议您相应地更新此值。预期内容:rope_type
(str
): 要使用的RoPE子变体。可以是['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3']中的一个,其中'default'是原始RoPE实现。factor
(float
, 可选): 除'default'外的所有rope类型都使用。应用于RoPE嵌入的缩放因子。在大多数缩放类型中,x 的factor
将使模型能够处理长度为 x * 原始最大预训练长度的序列。original_max_position_embeddings
(int
, 可选): 与'dynamic'、'longrope'和'llama3'一起使用。预训练期间使用的原始最大位置嵌入。attention_factor
(float
, 可选): 与'yarn'和'longrope'一起使用。应用于注意力计算的缩放因子。如果未指定,则默认为实现推荐的值,使用factor
字段推断建议值。beta_fast
(float
, 可选): 仅与'yarn'一起使用。设置线性斜坡函数(仅外推)边界的参数。如果未指定,默认为32。beta_slow
(float
, 可选): 仅与'yarn'一起使用。设置线性斜坡函数(仅内插)边界的参数。如果未指定,默认为1。short_factor
(list[float]
, 可选): 仅与'longrope'一起使用。应用于短上下文(<original_max_position_embeddings
)的缩放因子。必须是长度与隐藏层大小除以注意力头数量再除以2相同的数字列表。long_factor
(list[float]
, 可选): 仅与'longrope'一起使用。应用于长上下文(<original_max_position_embeddings
)的缩放因子。必须是长度与隐藏层大小除以注意力头数量再除以2相同的数字列表。low_freq_factor
(float
, 可选): 仅与'llama3'一起使用。应用于RoPE低频分量的缩放因子。high_freq_factor
(float
, 可选): 仅与'llama3'一起使用。应用于RoPE高频分量的缩放因子。 - attention_bias (
bool
, 默认为False
, 可选, 默认为False
) — 在自注意力过程中是否在查询、键、值和输出投影层中使用偏置。 - use_sliding_window (
bool
, 可选, 默认为False
) — 是否使用滑动窗口注意力。 - sliding_window (
int
, 可选, 默认为4096) — 滑动窗口注意力 (SWA) 的窗口大小。如果未指定,默认为4096
。 - max_window_layers (
int
, 可选, 默认为28) — 使用完全注意力的层数。前max_window_layers
层将使用完全注意力,之后的任何附加层将使用SWA(滑动窗口注意力)。 - layer_types (
list
, 可选) — 每层的注意力模式。 - attention_dropout (
float
, 可选, 默认为0.0) — 注意力概率的dropout比例。
这是用于存储 Qwen3Model 配置的配置类。它用于根据指定的参数实例化一个Qwen3模型,定义模型架构。使用默认值实例化配置将生成与Qwen3-8B Qwen/Qwen3-8B 类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请参阅 PretrainedConfig 的文档。
>>> from transformers import Qwen3Model, Qwen3Config
>>> # Initializing a Qwen3 style configuration
>>> configuration = Qwen3Config()
>>> # Initializing a model from the Qwen3-8B style configuration
>>> model = Qwen3Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Qwen3Model
class transformers.Qwen3Model
< 源 >( 配置: Qwen3Config )
参数
- config (Qwen3Config) — 包含模型所有参数的模型配置类。用配置文件初始化并不会加载与模型相关的权重,只加载配置。请查阅 from_pretrained() 方法来加载模型权重。
裸 Qwen3 模型,输出原始隐藏状态,顶部没有任何特定头部。
该模型继承自 PreTrainedModel。请查阅超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档了解所有与通用使用和行为相关的事项。
前向传播
< 源 >( 输入 ID: typing.Optional[torch.LongTensor] = None 注意力掩码: typing.Optional[torch.Tensor] = None 位置 ID: typing.Optional[torch.LongTensor] = None 过去的键值: typing.Optional[transformers.cache_utils.Cache] = None 嵌入输入: typing.Optional[torch.FloatTensor] = None 使用缓存: typing.Optional[bool] = None 输出注意力: typing.Optional[bool] = None 输出隐藏状态: typing.Optional[bool] = None 缓存位置: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) → transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选择在[0, 1]
之间:- 1 表示**未被掩码**的标记,
- 0 表示**被掩码**的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也被称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,将返回传统缓存格式。如果使用
past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有将其过去键值状态提供给此模型的输入),而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以直接传递嵌入表示而不是传递input_ids
。如果您希望对input_ids
索引如何转换为关联向量拥有比模型内部嵌入查找矩阵更多的控制,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。更多详细信息请参阅返回张量中的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。更多详细信息请参阅返回张量中的hidden_states
。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 指示输入序列标记在序列中的位置的索引。与position_ids
不同,此张量不受填充影响。它用于在正确位置更新缓存并推断完整的序列长度。
返回
transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPast 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置(Qwen3Config)和输入的不同元素。
-
last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。如果使用了
past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
Cache
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 Cache 实例。更多详细信息,请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(自注意力块中的键和值,如果
config.is_encoder_decoder=True
,则还包含交叉注意力块中的键和值),可用于(参阅past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入层的输出(如果模型有嵌入层),加上每个层的一个输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
元组(每个层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
Qwen3Model 的 forward 方法,重写了 __call__
特殊方法。
虽然前向传播的配方需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
Qwen3ForCausalLM
类 transformers.Qwen3ForCausalLM
< 源 >( config )
参数
- config (Qwen3ForCausalLM) — 模型配置类,包含模型的所有参数。使用配置文件初始化不加载与模型关联的权重,只加载配置。请查看 from_pretrained() 方法加载模型权重。
用于因果语言建模的 Qwen3 模型。
该模型继承自 PreTrainedModel。请查阅超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档了解所有与通用使用和行为相关的事项。
前向传播
< 源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.qwen3.modeling_qwen3.KwargsForCausalLM] ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选择在[0, 1]
之间:- 1 表示**未被掩码**的标记,
- 0 表示**被掩码**的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也被称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,将返回传统缓存格式。如果使用
past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有将其过去键值状态提供给此模型的输入),而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以直接传递嵌入表示而不是传递input_ids
。如果您希望对input_ids
索引如何转换为关联向量拥有比模型内部嵌入查找矩阵更多的控制,这将非常有用。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。索引应在[0, ..., config.vocab_size]
或 -100 之间(请参阅input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的标记计算。 - use_cache (
bool
,可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。更多详细信息请参阅返回张量中的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。更多详细信息请参阅返回张量中的hidden_states
。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 指示输入序列标记在序列中的位置的索引。与position_ids
不同,此张量不受填充影响。它用于在正确位置更新缓存并推断完整的序列长度。 - logits_to_keep (
Union[int, torch.Tensor]
,默认为0
) — 如果是int
,则计算最后logits_to_keep
个标记的 logits。如果为0
,则计算所有input_ids
的 logits(特殊情况)。生成时只需要最后一个标记的 logits,并且仅计算该标记的 logits 可以节省内存,这对于长序列或大词汇量来说非常重要。如果是torch.Tensor
,则必须是 1D,对应于在序列长度维度中要保留的索引。这在使用打包张量格式(批量和序列长度的单维度)时很有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置(Qwen3Config)和输入的不同元素。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
past_key_values (
Cache
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 Cache 实例。更多详细信息,请参阅我们的 kv 缓存指南。包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入层的输出(如果模型有嵌入层),加上每个层的一个输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
元组(每个层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
Qwen3ForCausalLM 的 forward 方法,重写了 __call__
特殊方法。
虽然前向传播的配方需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, Qwen3ForCausalLM
>>> model = Qwen3ForCausalLM.from_pretrained("Qwen/Qwen3-8B")
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
Qwen3ForSequenceClassification
类 transformers.Qwen3ForSequenceClassification
< 源 >( config )
参数
- config (Qwen3ForSequenceClassification) — 模型配置类,包含模型的所有参数。使用配置文件初始化不加载与模型关联的权重,只加载配置。请查看 from_pretrained() 方法加载模型权重。
带有序列分类头部(线性层)的 Qwen3 模型。
Qwen3ForSequenceClassification 与其他因果模型(例如 GPT-2)一样,使用最后一个标记进行分类。
由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了 pad_token_id
,它会在每一行中找到不是填充标记的最后一个标记。如果未定义 pad_token_id
,它将直接获取批量中每一行的最后一个值。由于在传递 inputs_embeds
而不是 input_ids
时无法猜测填充标记,它会执行相同的操作(获取批量中每一行的最后一个值)。
该模型继承自 PreTrainedModel。请查阅超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档了解所有与通用使用和行为相关的事项。
前向传播
< 源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。索引可以使用 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选择在[0, 1]
之间:- 1 表示**未被掩码**的标记,
- 0 表示**被掩码**的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也被称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,将返回传统缓存格式。如果使用
past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有将其过去键值状态提供给此模型的输入),而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以直接传递嵌入表示而不是传递input_ids
。如果您希望对input_ids
索引如何转换为关联向量拥有比模型内部嵌入查找矩阵更多的控制,这将非常有用。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
之间。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。 - use_cache (
bool
,可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。更多详细信息请参阅返回张量中的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。更多详细信息请参阅返回张量中的hidden_states
。
返回
transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutputWithPast
或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置(Qwen3Config)和输入的不同元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。 -
logits (形状为
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。 -
past_key_values (
Cache
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 Cache 实例。更多详细信息,请参阅我们的 kv 缓存指南。包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入层的输出(如果模型有嵌入层),加上每个层的一个输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
元组(每个层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
Qwen3ForSequenceClassification 的 forward 方法,重写了 __call__
特殊方法。
虽然前向传播的配方需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, Qwen3ForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
>>> model = Qwen3ForSequenceClassification.from_pretrained("Qwen/Qwen3-8B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = Qwen3ForSequenceClassification.from_pretrained("Qwen/Qwen3-8B", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, Qwen3ForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
>>> model = Qwen3ForSequenceClassification.from_pretrained("Qwen/Qwen3-8B", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = Qwen3ForSequenceClassification.from_pretrained(
... "Qwen/Qwen3-8B", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
Qwen3ForTokenClassification
类 transformers.Qwen3ForTokenClassification
< 源 >( config )
参数
- config (Qwen3ForTokenClassification) — 模型配置类,包含模型的所有参数。使用配置文件初始化不加载与模型关联的权重,只加载配置。请查看 from_pretrained() 方法加载模型权重。
带有标记分类头部(位于隐藏状态输出之上的线性层)的 Qwen3 转换器,例如用于命名实体识别 (NER) 任务。
该模型继承自 PreTrainedModel。请查阅超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档了解所有与通用使用和行为相关的事项。
前向传播
< 源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 避免对填充标记索引执行注意力操作的掩码。掩码值在[0, 1]
中选择:- 对于未被掩盖的标记为 1,
- 对于被掩盖的标记为 0。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也被称为传统缓存格式。
模型将输出与作为输入提供的缓存格式相同的缓存格式。如果没有传递
past_key_values
,则将返回传统缓存格式。如果使用
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想对如何将input_ids
索引转换为关联向量有比模型内部嵌入查找矩阵更多的控制,这会很有用。 - labels (形状为
(batch_size,)
的torch.LongTensor
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),其中包含根据配置 (Qwen3Config) 和输入而定的各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分类分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入层的输出(如果模型有嵌入层),加上每个层的一个输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
元组(每个层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
Qwen3ForTokenClassification 的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传播的配方需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, Qwen3ForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
>>> model = Qwen3ForTokenClassification.from_pretrained("Qwen/Qwen3-8B")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
Qwen3ForQuestionAnswering
class transformers.Qwen3ForQuestionAnswering
< 来源 >( config )
参数
- config (Qwen3ForQuestionAnswering) — 包含模型所有参数的模型配置类。使用配置文件初始化并不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法以加载模型权重。
Qwen3 变换器,其顶部带有一个跨度分类头,用于 SQuAD 等抽取式问答任务(在隐藏状态输出之上有一个线性层,用于计算 span start logits
和 span end logits
)。
该模型继承自 PreTrainedModel。请查阅超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 的子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档了解所有与通用使用和行为相关的事项。
前向传播
< 来源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 避免对填充标记索引执行注意力操作的掩码。掩码值在[0, 1]
中选择:- 对于未被掩盖的标记为 1,
- 对于被掩盖的标记为 0。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也被称为传统缓存格式。
模型将输出与作为输入提供的缓存格式相同的缓存格式。如果没有传递
past_key_values
,则将返回传统缓存格式。如果使用
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想对如何将input_ids
索引转换为关联向量有比模型内部嵌入查找矩阵更多的控制,这会很有用。 - start_positions (形状为
(batch_size,)
的torch.LongTensor
,可选) — 用于计算标记分类损失的标注跨度起始位置(索引)的标签。位置被限制在序列的长度(sequence_length
)范围内。序列以外的位置不计入损失计算。 - end_positions (形状为
(batch_size,)
的torch.LongTensor
,可选) — 用于计算标记分类损失的标注跨度结束位置(索引)的标签。位置被限制在序列的长度(sequence_length
)范围内。序列以外的位置不计入损失计算。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),其中包含根据配置 (Qwen3Config) 和输入而定的各种元素。
-
loss (
torch.FloatTensor
of shape(1,)
, 可选, 当提供labels
时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 范围起始分数(SoftMax 之前)。 -
end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 范围结束分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入层的输出(如果模型有嵌入层),加上每个层的一个输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
元组(每个层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
Qwen3ForQuestionAnswering 的 forward 方法,覆盖了 __call__
特殊方法。
虽然前向传播的配方需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, Qwen3ForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
>>> model = Qwen3ForQuestionAnswering.from_pretrained("Qwen/Qwen3-8B")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...