Transformers 文档
Open-Llama
并获得增强的文档体验
开始使用
Open-Llama
该模型仅处于维护模式,我们不接受任何更改其代码的新 PR。
如果您在运行此模型时遇到任何问题,请重新安装支持此模型的最后一个版本:v4.31.0。您可以通过运行以下命令来执行此操作:pip install -U transformers==4.31.0
。
该模型不同于 Hugging Face Hub 上的 OpenLLaMA 模型,后者主要使用 LLaMA 架构。
概述
Open-Llama 模型是由社区开发者 s-JoL 在开源项目 Open-Llama 中提出的。
该模型主要基于 LLaMA 并进行了一些修改,融合了 Xformers 的内存高效注意力机制、Bloom 的稳定嵌入以及 PaLM 的共享输入输出嵌入。并且该模型在中英文语料上进行了预训练,使其在中文语言任务上表现更佳。
此模型由 s-JoL 贡献。原始代码由 s-JoL 发布于 GitHub,但现已移除。
OpenLlamaConfig
class transformers.OpenLlamaConfig
< source >( vocab_size = 100000 hidden_size = 4096 intermediate_size = 11008 num_hidden_layers = 32 num_attention_heads = 32 hidden_act = 'silu' max_position_embeddings = 2048 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = 0 bos_token_id = 1 eos_token_id = 2 tie_word_embeddings = False use_memory_efficient_attention = True hidden_dropout_prob = 0.1 attention_dropout_prob = 0.1 use_stable_embedding = True shared_input_output_embedding = True rope_theta = 10000.0 rope_scaling = None **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 32000) — Open-Llama 模型的词汇表大小。定义了在调用 OpenLlamaModel 时,可以通过inputs_ids
表示的不同标记(token)的数量。 - hidden_size (
int
, 可选, 默认为 4096) — 隐藏表示的维度。 - intermediate_size (
int
, 可选, 默认为 11008) — MLP 表示的维度。 - num_hidden_layers (
int
, 可选, 默认为 32) — Transformer 编码器中的隐藏层数量。 - num_attention_heads (
int
, 可选, 默认为 32) — Transformer 编码器中每个注意力层的注意力头数量。 - hidden_act (
str
或function
, 可选, 默认为"silu"
) — 解码器中的非线性激活函数(函数或字符串)。 - max_position_embeddings (
int
, 可选, 默认为 2048) — 该模型可能使用的最大序列长度。通常将其设置为一个较大的值以备不时之需(例如 512、1024 或 2048)。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - rms_norm_eps (
float
, 可选, 默认为 1e-12) — rms 归一化层使用的 epsilon 值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - tie_word_embeddings(
bool
, 可选, 默认为False
) — 是否绑定词嵌入权重 - rope_theta (
float
, 可选, 默认为 10000.0) — RoPE 嵌入的基础周期。 - rope_scaling (
Dict
, 可选) — 包含 RoPE 嵌入缩放配置的字典。目前支持两种缩放策略:线性和动态。它们的缩放因子必须是大于 1 的浮点数。预期格式为{"type": 策略名称, "factor": 缩放因子}
。使用此标志时,不要将max_position_embeddings
更新为预期的新最大值。有关这些缩放策略行为的更多信息,请参阅以下帖子:https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/。这是一个实验性功能,未来版本中可能会有破坏性的 API 变更。 - 示例 —
这是一个用于存储 OpenLlamaModel 配置的配置类。它用于根据指定的参数实例化一个 Open-Llama 模型,定义模型架构。使用默认值实例化配置将产生与 s-JoL/Open-Llama-V1 类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
>>> from transformers import OpenLlamaModel, OpenLlamaConfig
>>> # Initializing a Open-Llama open_llama-7b style configuration
>>> configuration = OpenLlamaConfig()
>>> # Initializing a model from the open_llama-7b style configuration
>>> model = OpenLlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
OpenLlamaModel
class transformers.OpenLlamaModel
< source >( config: OpenLlamaConfig )
参数
- config (OpenLlamaConfig) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- config — OpenLlamaConfig
基础的 Open-Llama 模型,输出原始的隐藏状态,没有任何特定的头部。此模型继承自 PreTrainedModel。请查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
由 config.num_hidden_layers 层组成的 Transformer 解码器。每一层都是一个 OpenLlamaDecoderLayer
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。如果提供,填充部分将默认被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用了
past_key_values
,可以选择只输入最后一个decoder_input_ids
(参见past_key_values
)。如果您想更改填充行为,应阅读
modeling_opt._prepare_decoder_attention_mask
并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图 1。- 1 表示头未被掩码,
- 0 表示头被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围[0, config.n_positions - 1]
。 - past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选,在传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预计算的隐藏状态(自注意块和交叉注意块中的键和值),可用于(参见
past_key_values
输入)加速序列解码。如果使用
past_key_values
,用户可以选择只输入最后一个decoder_input_ids
(那些没有为其提供过去键值状态的输入)形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
OpenLlamaModel 的 forward 方法重写了 __call__
特殊方法。
尽管前向传播的流程需要在此函数中定义,但之后应该调用 Module
实例而不是这个函数,因为前者会负责运行前处理和后处理步骤,而后者会静默地忽略它们。
OpenLlamaForCausalLM
forward
< 源码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。如果提供填充,默认情况下将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选自[0, 1]
:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择只输入最后一个decoder_input_ids
(参见past_key_values
)。如果你想更改填充行为,应阅读
modeling_opt._prepare_decoder_attention_mask
并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图 1。- 1 表示注意力头未被掩码,
- 0 表示注意力头被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个输入序列标记的位置索引。选定范围为[0, config.n_positions - 1]
。 - past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加张量。包含预计算的隐藏状态(自注意力和交叉注意力块中的键和值),可用于加速顺序解码(参见
past_key_values
输入)。如果使用
past_key_values
,用户可以选择只输入最后一个decoder_input_ids
(那些没有为其提供过去键值状态的标记),其形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你希望比模型内部的嵌入查找矩阵有更多控制权来将input_ids
索引转换为关联向量,这会很有用。 - use_cache (
bool
, 可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于计算掩码语言建模损失的标签。索引应在[0, ..., config.vocab_size]
或 -100 之间(参见input_ids
文档)。索引设置为-100
的标记将被忽略(掩码),损失仅对标签在[0, ..., config.vocab_size]
内的标记计算。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(OpenLlamaConfig)和输入,包含各种元素。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
past_key_values (
Cache
, 可选,当传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 Cache 实例。更多详情请参阅我们的 KV 缓存指南。包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,一个是嵌入层的输出,另一个是每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
OpenLlamaForCausalLM 的 forward 方法重写了 __call__
特殊方法。
尽管前向传播的流程需要在此函数中定义,但之后应该调用 Module
实例而不是这个函数,因为前者会负责运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, OpenLlamaForCausalLM
>>> model = OpenLlamaForCausalLM.from_pretrained("openlm-research/open_llama_7b")
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
OpenLlamaForSequenceClassification
class transformers.OpenLlamaForSequenceClassification
< 源码 >( config )
参数
- config (OpenLlamaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
在 LLaMa 模型 Transformer 的顶部添加了一个序列分类头(线性层)。
OpenLlamaForSequenceClassification 使用最后一个标记进行分类,就像其他因果模型(例如 GPT-2)一样。
由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果配置中定义了 pad_token_id
,它会找到每行中不是填充标记的最后一个标记。如果没有定义 pad_token_id
,它会简单地取每行批次中的最后一个值。由于在传递 inputs_embeds
而不是 input_ids
时无法猜测填充标记,它会做同样的操作(取每行批次中的最后一个值)。
该模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
此模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。如果提供填充,默认情况下将被忽略。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选自[0, 1]
:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择只输入最后一个decoder_input_ids
(参见past_key_values
)。如果你想更改填充行为,应阅读
modeling_opt._prepare_decoder_attention_mask
并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图 1。- 1 表示注意力头未被掩码,
- 0 表示注意力头被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个输入序列标记的位置索引。选定范围为[0, config.n_positions - 1]
。 - past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加张量。包含预计算的隐藏状态(自注意力和交叉注意力块中的键和值),可用于加速顺序解码(参见
past_key_values
输入)。如果使用
past_key_values
,用户可以选择只输入最后一个decoder_input_ids
(那些没有为其提供过去键值状态的标记),其形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你希望比模型内部的嵌入查找矩阵有更多控制权来将input_ids
索引转换为关联向量,这会很有用。 - use_cache (
bool
, 可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - labels (
torch.LongTensor
,形状为(batch_size,)
, 可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
OpenLlamaForSequenceClassification 的 forward 方法重写了 __call__
特殊方法。
尽管前向传播的流程需要在此函数中定义,但之后应该调用 Module
实例而不是这个函数,因为前者会负责运行前处理和后处理步骤,而后者会静默地忽略它们。