Transformers 文档

Open-Llama

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

Open-Llama

PyTorch

该模型仅处于维护模式,我们不接受任何更改其代码的新 PR。

如果您在运行此模型时遇到任何问题,请重新安装支持此模型的最后一个版本:v4.31.0。您可以通过运行以下命令来执行此操作:pip install -U transformers==4.31.0

该模型不同于 Hugging Face Hub 上的 OpenLLaMA 模型,后者主要使用 LLaMA 架构。

概述

Open-Llama 模型是由社区开发者 s-JoL 在开源项目 Open-Llama 中提出的。

该模型主要基于 LLaMA 并进行了一些修改,融合了 Xformers 的内存高效注意力机制、Bloom 的稳定嵌入以及 PaLM 的共享输入输出嵌入。并且该模型在中英文语料上进行了预训练,使其在中文语言任务上表现更佳。

此模型由 s-JoL 贡献。原始代码由 s-JoL 发布于 GitHub,但现已移除。

OpenLlamaConfig

class transformers.OpenLlamaConfig

< >

( vocab_size = 100000 hidden_size = 4096 intermediate_size = 11008 num_hidden_layers = 32 num_attention_heads = 32 hidden_act = 'silu' max_position_embeddings = 2048 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = 0 bos_token_id = 1 eos_token_id = 2 tie_word_embeddings = False use_memory_efficient_attention = True hidden_dropout_prob = 0.1 attention_dropout_prob = 0.1 use_stable_embedding = True shared_input_output_embedding = True rope_theta = 10000.0 rope_scaling = None **kwargs )

参数

  • vocab_size (int, 可选, 默认为 32000) — Open-Llama 模型的词汇表大小。定义了在调用 OpenLlamaModel 时,可以通过 inputs_ids 表示的不同标记(token)的数量。
  • hidden_size (int, 可选, 默认为 4096) — 隐藏表示的维度。
  • intermediate_size (int, 可选, 默认为 11008) — MLP 表示的维度。
  • num_hidden_layers (int, 可选, 默认为 32) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, 可选, 默认为 32) — Transformer 编码器中每个注意力层的注意力头数量。
  • hidden_act (strfunction, 可选, 默认为 "silu") — 解码器中的非线性激活函数(函数或字符串)。
  • max_position_embeddings (int, 可选, 默认为 2048) — 该模型可能使用的最大序列长度。通常将其设置为一个较大的值以备不时之需(例如 512、1024 或 2048)。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • rms_norm_eps (float, 可选, 默认为 1e-12) — rms 归一化层使用的 epsilon 值。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。仅当 config.is_decoder=True 时相关。
  • tie_word_embeddings(bool, 可选, 默认为 False) — 是否绑定词嵌入权重
  • rope_theta (float, 可选, 默认为 10000.0) — RoPE 嵌入的基础周期。
  • rope_scaling (Dict, 可选) — 包含 RoPE 嵌入缩放配置的字典。目前支持两种缩放策略:线性和动态。它们的缩放因子必须是大于 1 的浮点数。预期格式为 {"type": 策略名称, "factor": 缩放因子}。使用此标志时,不要将 max_position_embeddings 更新为预期的新最大值。有关这些缩放策略行为的更多信息,请参阅以下帖子:https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/。这是一个实验性功能,未来版本中可能会有破坏性的 API 变更。
  • 示例

这是一个用于存储 OpenLlamaModel 配置的配置类。它用于根据指定的参数实例化一个 Open-Llama 模型,定义模型架构。使用默认值实例化配置将产生与 s-JoL/Open-Llama-V1 类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

>>> from transformers import OpenLlamaModel, OpenLlamaConfig

>>> # Initializing a Open-Llama open_llama-7b style configuration
>>> configuration = OpenLlamaConfig()

>>> # Initializing a model from the open_llama-7b style configuration
>>> model = OpenLlamaModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

OpenLlamaModel

class transformers.OpenLlamaModel

< >

( config: OpenLlamaConfig )

参数

  • config (OpenLlamaConfig) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • config — OpenLlamaConfig

基础的 Open-Llama 模型,输出原始的隐藏状态,没有任何特定的头部。此模型继承自 PreTrainedModel。请查看超类文档以了解库为所有模型实现的通用方法(如​​下载或保存、调整输入嵌入大小、修剪头部等)。

此模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

config.num_hidden_layers 层组成的 Transformer 解码器。每一层都是一个 OpenLlamaDecoderLayer

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。如果提供,填充部分将默认被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是 input IDs?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码,
    • 0 表示标记被掩码

    什么是注意力掩码?

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了 past_key_values,可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    如果您想更改填充行为,应阅读 modeling_opt._prepare_decoder_attention_mask 并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图 1。

    • 1 表示头未被掩码,
    • 0 表示头被掩码
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围 [0, config.n_positions - 1]

    什么是位置 ID?

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选,在传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,以及 2 个额外的形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。

    包含预计算的隐藏状态(自注意块和交叉注意块中的键和值),可用于(参见 past_key_values 输入)加速序列解码。

    如果使用 past_key_values,用户可以选择只输入最后一个 decoder_input_ids(那些没有为其提供过去键值状态的输入)形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

OpenLlamaModel 的 forward 方法重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数中定义,但之后应该调用 Module 实例而不是这个函数,因为前者会负责运行前处理和后处理步骤,而后者会静默地忽略它们。

OpenLlamaForCausalLM

class transformers.OpenLlamaForCausalLM

< >

( config )

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。如果提供填充,默认情况下将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    如果你想更改填充行为,应阅读 modeling_opt._prepare_decoder_attention_mask 并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图 1。

    • 1 表示注意力头未被掩码
    • 0 表示注意力头被掩码
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列标记的位置索引。选定范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选,当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预计算的隐藏状态(自注意力和交叉注意力块中的键和值),可用于加速顺序解码(参见 past_key_values 输入)。

    如果使用 past_key_values,用户可以选择只输入最后一个 decoder_input_ids(那些没有为其提供过去键值状态的标记),其形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 input_ids。如果你希望比模型内部的嵌入查找矩阵有更多控制权来将 input_ids 索引转换为关联向量,这会很有用。
  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档)。索引设置为 -100 的标记将被忽略(掩码),损失仅对标签在 [0, ..., config.vocab_size] 内的标记计算。

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),根据配置(OpenLlamaConfig)和输入,包含各种元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个 token 预测)。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • past_key_values (Cache, 可选,当传递 use_cache=Trueconfig.use_cache=True 时返回) — 这是一个 Cache 实例。更多详情请参阅我们的 KV 缓存指南

    包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,一个是嵌入层的输出,另一个是每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每个层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

OpenLlamaForCausalLM 的 forward 方法重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数中定义,但之后应该调用 Module 实例而不是这个函数,因为前者会负责运行前处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, OpenLlamaForCausalLM

>>> model = OpenLlamaForCausalLM.from_pretrained("openlm-research/open_llama_7b")
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."

OpenLlamaForSequenceClassification

class transformers.OpenLlamaForSequenceClassification

< >

( config )

参数

  • config (OpenLlamaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

在 LLaMa 模型 Transformer 的顶部添加了一个序列分类头(线性层)。

OpenLlamaForSequenceClassification 使用最后一个标记进行分类,就像其他因果模型(例如 GPT-2)一样。

由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果配置中定义了 pad_token_id,它会找到每行中不是填充标记的最后一个标记。如果没有定义 pad_token_id,它会简单地取每行批次中的最后一个值。由于在传递 inputs_embeds 而不是 input_ids 时无法猜测填充标记,它会做同样的操作(取每行批次中的最后一个值)。

该模型继承自 PreTrainedModel。请查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。

此模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[list[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。如果提供填充,默认情况下将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length), 可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值选自 [0, 1]

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    如果你想更改填充行为,应阅读 modeling_opt._prepare_decoder_attention_mask 并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图 1。

    • 1 表示注意力头未被掩码
    • 0 表示注意力头被掩码
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列标记的位置索引。选定范围为 [0, config.n_positions - 1]

    什么是位置 ID?

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选,当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预计算的隐藏状态(自注意力和交叉注意力块中的键和值),可用于加速顺序解码(参见 past_key_values 输入)。

    如果使用 past_key_values,用户可以选择只输入最后一个 decoder_input_ids(那些没有为其提供过去键值状态的标记),其形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递 input_ids。如果你希望比模型内部的嵌入查找矩阵有更多控制权来将 input_ids 索引转换为关联向量,这会很有用。
  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor,形状为 (batch_size,), 可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

OpenLlamaForSequenceClassification 的 forward 方法重写了 __call__ 特殊方法。

尽管前向传播的流程需要在此函数中定义,但之后应该调用 Module 实例而不是这个函数,因为前者会负责运行前处理和后处理步骤,而后者会静默地忽略它们。

< > 在 GitHub 上更新