Transformers 文档
Gemma2
并获得增强的文档体验
开始使用
Gemma2
Gemma 2 是一个语言模型家族,包含预训练和指令微调变体,提供 2B、9B、27B 参数版本。其架构与之前的 Gemma 相似,但增加了交错的局部注意力(4096个词元)和全局注意力(8192个词元),以及分组查询注意力(GQA),以提高推理性能。
2B和9B模型通过知识蒸馏进行训练,指令微调变体通过监督微调和强化学习进行后训练。
您可以在 Gemma 2 集合中找到所有原始的 Gemma 2 检查点。
点击右侧边栏的 Gemma 2 模型,查看更多关于如何将 Gemma 应用于不同语言任务的示例。
以下示例展示了如何使用 Pipeline 或 AutoModel 类,以及通过命令行与模型进行聊天。
import torch
from transformers import pipeline
pipe = pipeline(
task="text-generation",
model="google/gemma-2-9b",
torch_dtype=torch.bfloat16,
device="cuda",
)
pipe("Explain quantum computing simply. ", max_new_tokens=50)
量化通过以较低精度表示权重来减少大型模型的内存负担。有关更多可用量化后端,请参阅量化概述。
以下示例使用 bitsandbytes 将权重仅量化为 int4。
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-27b",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
input_text = "Explain quantum computing simply."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=32, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
使用 AttentionMaskVisualizer 可以更好地理解模型能够或不能关注的词元。
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("google/gemma-2b")
visualizer("You are an assistant. Make sure you print me")

注意事项
使用 HybridCache 实例以在 Gemma 2 中启用缓存。Gemma 2 不支持诸如 DynamicCache 或张量元组等 KV 缓存策略,因为它每隔一层使用滑动窗口注意力。
from transformers import AutoTokenizer, AutoModelForCausalLM, HybridCache model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b") tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b") inputs = tokenizer(text="My name is Gemma", return_tensors="pt") max_generated_length = inputs.input_ids.shape[1] + 10 past_key_values = HybridCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype) outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
Gemma2Config
类 transformers.Gemma2Config
< 来源 >( vocab_size = 256000 hidden_size = 2304 intermediate_size = 9216 num_hidden_layers = 26 num_attention_heads = 8 num_key_value_heads = 4 head_dim = 256 hidden_activation = 'gelu_pytorch_tanh' max_position_embeddings = 8192 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = 0 eos_token_id = 1 bos_token_id = 2 tie_word_embeddings = True rope_theta = 10000.0 attention_bias = False attention_dropout = 0.0 query_pre_attn_scalar = 256 sliding_window = 4096 layer_types = None final_logit_softcapping = 30.0 attn_logit_softcapping = 50.0 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 256000) — Gemma2 模型的词汇表大小。定义了调用 Gemma2Model 时传入的inputs_ids
可以表示的不同词元的数量。 - hidden_size (
int
, 可选, 默认为 2304) — 隐藏表示的维度。 - intermediate_size (
int
, 可选, 默认为 9216) — MLP 表示的维度。 - num_hidden_layers (
int
, 可选, 默认为 26) — Transformer 解码器中的隐藏层数量。 - num_attention_heads (
int
, 可选, 默认为 8) — Transformer 解码器中每个注意力层的注意力头数量。 - num_key_value_heads (
int
, 可选, 默认为 4) — 用于实现分组查询注意力(Grouped Query Attention)的 key_value 头数量。如果num_key_value_heads=num_attention_heads
,模型将使用多头注意力(MHA);如果num_key_value_heads=1
,模型将使用多查询注意力(MQA),否则使用 GQA。将多头检查点转换为 GQA 检查点时,每个分组的 key 和 value 头应该通过对其组内所有原始头进行均值池化来构建。有关更多详细信息,请查看 此论文。如果未指定,则默认为num_attention_heads
。 - head_dim (
int
, 可选, 默认为 256) — 注意力头维度。 - hidden_activation (
str
或function
, 可选, 默认为"gelu_pytorch_tanh"
) — 解码器中的非线性激活函数(函数或字符串)。如果未指定,则默认为"gelu_pytorch_tanh"
。"gelu_pytorch_tanh"
使用"gelu"
激活函数的近似值。 - max_position_embeddings (
int
, 可选, 默认为 8192) — 此模型可能使用的最大序列长度。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的truncated_normal_initializer
的标准差。 - rms_norm_eps (
float
, 可选, 默认为 1e-06) — rms 归一化层使用的 epsilon 值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后的 key/value 注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - pad_token_id (
int
, 可选, 默认为 0) — 填充词元 ID。 - eos_token_id (
int
, 可选, 默认为 1) — 流结束词元 ID。 - bos_token_id (
int
, 可选, 默认为 2) — 流开始词元 ID。 - tie_word_embeddings (
bool
, 可选, 默认为True
) — 是否绑定词嵌入。 - rope_theta (
float
, 可选, 默认为 10000.0) — RoPE 嵌入的基周期。 - attention_bias (
bool
, 默认为False
, 可选, 默认为False
) — 在自注意力中,是否在查询、键、值和输出投影层中使用偏置。 - attention_dropout (
float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。 - query_pre_attn_scalar (
float
, 可选, 默认为 256) — 用于注意力分数上的缩放因子。 - sliding_window (
int
, 可选, 默认为 4096) — 在 Gemma2 中,每隔一层使用滑动窗口注意力。这是滑动窗口的大小。 - layer_types (
list
, 可选) — 每层的注意力模式。 - final_logit_softcapping (
float
, 可选, 默认为 30.0) — 对 logits 应用 tanh 软上限时的缩放因子。 - attn_logit_softcapping (
float
, 可选, 默认为 50.0) — 对注意力分数应用 tanh 软上限时的缩放因子。
这是一个配置类,用于存储 Gemma2Model 的配置。它用于根据指定的参数实例化 Gemma2 模型,定义模型架构。使用默认值实例化配置将生成与 Gemma2-7B 类似的配置。例如:google/gemma2-7b。配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
>>> from transformers import Gemma2Model, Gemma2Config
>>> # Initializing a Gemma2 gemma2-7b style configuration
>>> configuration = Gemma2Config()
>>> # Initializing a model from the gemma2-7b style configuration
>>> model = Gemma2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Gemma2Model
class transformers.Gemma2Model
< source >( config: Gemma2Config )
参数
- config (Gemma2Config) — 模型的配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法以加载模型权重。
裸 Gemma2 模型输出原始隐藏状态,顶部没有任何特定头部。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档以获取所有与通用用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) → transformers.modeling_outputs.BaseModelOutputWithPast or tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 避免对填充标记索引执行注意力的掩码。掩码值选择在[0, 1]
之间:- 1 表示未遮盖的标记,
- 0 表示遮盖的标记。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也被称为旧版缓存格式。
模型将输出与作为输入提供的相同缓存格式。如果没有传入
past_key_values
,将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一个input_ids
(那些未将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
,而不是所有input_ids
形状为(batch_size, sequence_length)
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — (可选)您可以选择直接传入嵌入表示,而不是传入input_ids
。如果您想更好地控制如何将input_ids
索引转换为关联向量,而不是模型内部的嵌入查找矩阵,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
,可选) — 描述输入序列标记在序列中位置的索引。与position_ids
不同,此张量不受填充影响。它用于在正确位置更新缓存并推断完整的序列长度。
返回
transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.BaseModelOutputWithPast 或 torch.FloatTensor
元组(如果传入 return_dict=False
或当 config.return_dict=False
时),包含根据配置 (Gemma2Config) 和输入的不同元素。
-
last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。如果使用了
past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
Cache
,可选,当传入use_cache=True
或当config.use_cache=True
时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(自注意力块中的键和值,如果
config.is_encoder_decoder=True
,则可选地包含交叉注意力块中的键和值),可用于(请参阅past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传入output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型有嵌入层,则一个用于嵌入输出,加上每个层的一个输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传入output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每个层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
Gemma2Model 的 forward 方法,重写了 __call__
特殊方法。
虽然前向传播的配方需要在该函数中定义,但之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
Gemma2ForCausalLM
class transformers.Gemma2ForCausalLM
< source >( config )
参数
- config (Gemma2ForCausalLM) — 模型的配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法以加载模型权重。
用于因果语言建模的 Gemma2 模型。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档以获取所有与通用用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **loss_kwargs ) → transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 避免对填充标记索引执行注意力的掩码。掩码值选择在[0, 1]
之间:- 1 表示未遮盖的标记,
- 0 表示遮盖的标记。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也被称为旧版缓存格式。
模型将输出与作为输入提供的相同缓存格式。如果没有传入
past_key_values
,将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一个input_ids
(那些未将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
,而不是所有input_ids
形状为(batch_size, sequence_length)
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — (可选)您可以选择直接传入嵌入表示,而不是传入input_ids
。如果您想更好地控制如何将input_ids
索引转换为关联向量,而不是模型内部的嵌入查找矩阵,这将非常有用。 - labels (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 用于计算掩码语言建模损失的标签。索引应在[0, ..., config.vocab_size]
或 -100 之间(请参阅input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的标记计算。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
,可选) — 描述输入序列标记在序列中位置的索引。与position_ids
不同,此张量不受填充影响。它用于在正确位置更新缓存并推断完整的序列长度。 - logits_to_keep (
Union[int, torch.Tensor]
,默认为0
) — 如果是int
,则计算最后logits_to_keep
个标记的 logits。如果是0
,则计算所有input_ids
的 logits(特殊情况)。生成时只需要最后一个标记的 logits,并且仅计算该标记的 logits 可以节省内存,这对于长序列或大词汇量来说非常重要。如果是torch.Tensor
,则必须是与序列长度维度中要保留的索引相对应的 1D 张量。当使用打包张量格式(批次和序列长度的单维度)时,这很有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.CausalLMOutputWithPast 或 torch.FloatTensor
元组(如果传入 return_dict=False
或当 config.return_dict=False
时),包含根据配置 (Gemma2Config) 和输入的不同元素。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
past_key_values (
Cache
,可选,当传入use_cache=True
或当config.use_cache=True
时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南。包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传入output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型有嵌入层,则一个用于嵌入输出,加上每个层的一个输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传入output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每个层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
Gemma2ForCausalLM 的 forward 方法,重写了 __call__
特殊方法。
虽然前向传播的配方需要在该函数中定义,但之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, Gemma2ForCausalLM
>>> model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-9b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
Gemma2ForSequenceClassification
class transformers.Gemma2ForSequenceClassification
< source >( config )
参数
- config (Gemma2ForSequenceClassification) — 模型的配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法以加载模型权重。
Gemma2 模型 transformer,顶部带有一个序列分类头(线性层)。
Gemma2ForSequenceClassification 与其他因果模型(例如 GPT-2)一样,使用最后一个标记进行分类。
由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果配置中定义了 pad_token_id
,它会找到每行中不是填充标记的最后一个标记。如果未定义 pad_token_id
,它只会取批处理中每行的最后一个值。由于当传入 inputs_embeds
而不是 input_ids
时它无法猜测填充标记,因此它会执行相同的操作(取批处理中每行的最后一个值)。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档以获取所有与通用用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
or tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 避免对填充标记索引执行注意力的掩码。掩码值选择在[0, 1]
之间:- 1 表示未遮盖的标记,
- 0 表示遮盖的标记。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也被称为旧版缓存格式。
模型将输出与作为输入提供的相同缓存格式。如果没有传入
past_key_values
,将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一个input_ids
(那些未将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
,而不是所有input_ids
形状为(batch_size, sequence_length)
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — (可选)您可以选择直接传入嵌入表示,而不是传入input_ids
。如果您想更好地控制如何将input_ids
索引转换为关联向量,而不是模型内部的嵌入查找矩阵,这将非常有用。 - labels (形状为
(batch_size,)
的torch.LongTensor
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
之间。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。更多详细信息请参阅返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。更多详细信息请参阅返回张量中的hidden_states
。
返回
transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutputWithPast
或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),包含根据配置(Gemma2Config)和输入而变化的各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。 -
logits (形状为
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。 -
past_key_values (
Cache
,可选,当传入use_cache=True
或当config.use_cache=True
时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南。包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传入output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型有嵌入层,则一个用于嵌入输出,加上每个层的一个输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传入output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每个层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
Gemma2ForSequenceClassification 的 forward 方法,重写了 __call__
特殊方法。
虽然前向传播的配方需要在该函数中定义,但之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, Gemma2ForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma2-7b")
>>> model = Gemma2ForSequenceClassification.from_pretrained("google/gemma2-7b")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = Gemma2ForSequenceClassification.from_pretrained("google/gemma2-7b", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, Gemma2ForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma2-7b")
>>> model = Gemma2ForSequenceClassification.from_pretrained("google/gemma2-7b", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = Gemma2ForSequenceClassification.from_pretrained(
... "google/gemma2-7b", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
Gemma2ForTokenClassification
class transformers.Gemma2ForTokenClassification
< source >( config )
参数
- config (Gemma2ForTokenClassification) — 模型配置类,包含模型的所有参数。用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法来加载模型权重。
Gemma2 transformer,顶部带有一个 token 分类头(隐藏状态输出上方的线性层),例如用于命名实体识别(NER)任务。
此模型继承自 PreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档以获取所有与通用用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 词汇表中输入序列 token 的索引。默认情况下会忽略填充。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 掩码,用于避免对填充 token 索引执行注意力。掩码值选择范围在[0, 1]
:- 1 表示未被掩码的 token,
- 0 表示被掩码的 token。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。选择范围在[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
, 可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也被称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果没有传入
past_key_values
,将返回传统缓存格式。如果使用了
past_key_values
,用户可以选择只输入最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的 token),形状为(batch_size, 1)
,而不是所有input_ids
,形状为(batch_size, sequence_length)
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 可选地,除了传递input_ids
,您也可以选择直接传递嵌入表示。如果您想对如何将input_ids
索引转换为相关向量有比模型内部嵌入查找矩阵更多的控制,这将很有用。 - labels (形状为
(batch_size,)
的torch.LongTensor
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方误差损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。更多详细信息请参阅返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。更多详细信息请参阅返回张量中的hidden_states
。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),包含根据配置(Gemma2Config)和输入而变化的各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分类分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传入output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型有嵌入层,则一个用于嵌入输出,加上每个层的一个输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传入output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每个层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
Gemma2ForTokenClassification 的 forward 方法,重写了 __call__
特殊方法。
虽然前向传播的配方需要在该函数中定义,但之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, Gemma2ForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma2-7b")
>>> model = Gemma2ForTokenClassification.from_pretrained("google/gemma2-7b")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...