Transformers 文档
Gemma2
并获取增强的文档体验
开始使用
Gemma2
概述
Gemma2 模型由 Gemma2 团队在 Gemma2: Open Models Based on Gemini Technology and Research 中提出。已发布两个 Gemma2 模型,参数大小分别为 90 亿 (9B) 和 270 亿 (27B)。
以下是来自博文的摘要
现在,我们正式向全球的研究人员和开发者发布 Gemma 2。Gemma 2 提供 90 亿 (9B) 和 270 亿 (27B) 两种参数大小,比第一代性能更高,推理效率更高,并内置了重大的安全进步。事实上,270 亿参数的模型提供了可与两倍以上大小的模型相媲美的替代方案,实现了最近在 12 月仅专有模型才可能实现的性能水平。
提示
- 可以使用转换脚本
src/transformers/models/Gemma2/convert_Gemma2_weights_to_hf.py
转换原始检查点。
- Gemma2 每隔一层使用滑动窗口注意力机制,这使其不适用于使用 ~DynamicCache 或张量元组的典型 kv 缓存。要在 Gemma2 前向调用中启用缓存,您必须初始化一个 ~HybridCache 实例,并将其作为
past_key_values
传递给前向调用。请注意,如果past_key_values
已经包含先前的键和值,您还必须准备cache_position
。
此模型由 Arthur Zucker、Pedro Cuenca 和 Tom Arsen 贡献。
Gemma2Config
class transformers.Gemma2Config
< source >( vocab_size = 256000 hidden_size = 2304 intermediate_size = 9216 num_hidden_layers = 26 num_attention_heads = 8 num_key_value_heads = 4 head_dim = 256 hidden_activation = 'gelu_pytorch_tanh' max_position_embeddings = 8192 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = 0 eos_token_id = 1 bos_token_id = 2 tie_word_embeddings = True rope_theta = 10000.0 attention_bias = False attention_dropout = 0.0 query_pre_attn_scalar = 256 sliding_window = 4096 final_logit_softcapping = 30.0 attn_logit_softcapping = 50.0 cache_implementation = 'hybrid' **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 256000) — Gemma2 模型的词汇表大小。定义了调用 Gemma2Model 时传递的inputs_ids
可以表示的不同 token 的数量。 - hidden_size (
int
, 可选, 默认为 2304) — 隐藏层表示的维度。 - intermediate_size (
int
, 可选, 默认为 9216) — MLP 表示的维度。 - num_hidden_layers (
int
, 可选, 默认为 26) — Transformer 解码器中隐藏层的数量。 - num_attention_heads (
int
, 可选, 默认为 8) — Transformer 解码器中每个注意力层的注意力头数。 - num_key_value_heads (
int
, 可选, 默认为 4) — 这是应用于实现分组查询注意力机制 (Grouped Query Attention) 的 key_value 头部的数量。如果num_key_value_heads=num_attention_heads
,模型将使用多头注意力机制 (MHA);如果num_key_value_heads=1
,模型将使用多查询注意力机制 (MQA);否则,将使用 GQA。当将多头检查点转换为 GQA 检查点时,每个组的 key 和 value 头应通过平均池化该组内的所有原始头部来构建。有关更多详细信息,请查看这篇论文。如果未指定,则默认为num_attention_heads
。 - head_dim (
int
, 可选, 默认为 256) — 注意力头的维度。 - hidden_activation (
str
或function
, 可选, 默认为"gelu_pytorch_tanh"
) — 解码器中的非线性激活函数(函数或字符串)。如果未指定,则默认为"gelu_pytorch_tanh"
。"gelu_pytorch_tanh"
使用"gelu"
激活函数的近似值。 - max_position_embeddings (
int
, 可选, 默认为 8192) — 模型可能使用的最大序列长度。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - rms_norm_eps (
float
, 可选, 默认为 1e-06) — rms 归一化层使用的 epsilon 值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后的 key/values 注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - pad_token_id (
int
, 可选, 默认为 0) — Padding token id。 - eos_token_id (
int
, 可选, 默认为 1) — 流结束 token id。 - bos_token_id (
int
, 可选, 默认为 2) — 流开始 token id。 - tie_word_embeddings (
bool
, 可选, 默认为True
) — 是否绑定权重 embedding。 - rope_theta (
float
, 可选, 默认为 10000.0) — RoPE embeddings 的基期。 - attention_bias (
bool
, 默认为False
, 可选, 默认为False
) — 是否在自注意力期间在 query、key、value 和 output 投影层中使用偏置。 - attention_dropout (
float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。 - query_pre_attn_scalar (
float
, 可选, 默认为 256) — 用于注意力分数的缩放因子。 - sliding_window (
int
, 可选, 默认为 4096) — 在 Gemma2 中,每隔一层使用滑动窗口注意力。这是滑动窗口的大小。 - final_logit_softcapping (
float
, 可选, 默认为 30.0) — 在 logits 上应用 tanh 软上限时的缩放因子。 - attn_logit_softcapping (
float
, 可选, 默认为 50.0) — 在注意力分数上应用 tanh 软上限时的缩放因子。 - cache_implementation (
str
, 可选, 默认为"hybrid"
) — 与generate
一起使用的缓存类型。
这是用于存储 Gemma2Model 配置的配置类。 它用于根据指定的参数实例化 Gemma2 模型,定义模型架构。 使用默认值实例化配置将产生与 Gemma2-7B 类似的配置。 例如:google/gemma2-7b 配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 的文档。
>>> from transformers import Gemma2Model, Gemma2Config
>>> # Initializing a Gemma2 gemma2-7b style configuration
>>> configuration = Gemma2Config()
>>> # Initializing a model from the gemma2-7b style configuration
>>> model = Gemma2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Gemma2Model
class transformers.Gemma2Model
< 源代码 >( config: Gemma2Config )
参数
- config (Gemma2Config) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
- config — Gemma2Config
裸 Gemma2 模型,输出原始隐藏状态,顶部没有任何特定的 head。 此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
Transformer 解码器,由 config.num_hidden_layers 层组成。 每层都是一个 Gemma2DecoderLayer
前向传播
< 源代码 >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.HybridCache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None last_cache_position: typing.Optional[int] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。 如果您提供填充,默认情况下将忽略填充。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 掩码,用于避免对 padding token 索引执行 attention。 在[0, 1]
中选择的掩码值:- 1 表示 未被掩码 的 tokens,
- 0 表示 已被掩码 的 tokens。
索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后一个input_ids
(请参阅past_key_values
)。如果您想更改填充行为,则应阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需求进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩码,
- 0 表示 head 已被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
, 可选) — 描述输入序列 tokens 在序列中位置的索引。 与position_ids
相反,此张量不受填充的影响。 它用于在正确的位置更新缓存,并推断完整的序列长度。
Gemma2Model 前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
Gemma2ForCausalLM
前向传播
< 源代码 >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.HybridCache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **loss_kwargs ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩码,
- 0 表示 tokens 被掩码。
索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择只输入最后的input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩码,
- 0 表示 head 被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的 hidden-states(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其过去键值状态提供给此模型的),形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参阅返回的张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描述输入序列 tokens 在序列中位置的索引。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算 masked language modeling 损失的标签。 索引应为[0, ..., config.vocab_size]
或 -100(请参阅input_ids
文档字符串)。 索引设置为-100
的 tokens 将被忽略(masked),损失仅针对标签在[0, ..., config.vocab_size]
中的 tokens 计算。 - logits_to_keep (
int
或torch.Tensor
,可选) — 如果是int
,则计算最后logits_to_keep
个 tokens 的 logits。 如果为0
,则计算所有input_ids
的 logits(特殊情况)。 仅生成最后一个 token logits 是必需的,并且仅针对该 token 计算它们可以节省内存,这对于长序列或大词汇量大小而言变得非常重要。 如果是torch.Tensor
,则必须是 1D,对应于要在序列长度维度中保留的索引。 当使用 packed tensor 格式(批次和序列长度的单个维度)时,这非常有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (Gemma2Config) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的 hidden-states(自注意力模块中的键和值),可以用于(请参阅
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则一个用于嵌入的输出,+ 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的 Hidden-states,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。Attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
Gemma2ForCausalLM forward 方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, Gemma2ForCausalLM
>>> model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-9b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
Gemma2ForSequenceClassification
class transformers.Gemma2ForSequenceClassification
< source >( config )
参数
- config (Gemma2Config) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
Gemma2 模型 transformer,顶部带有序列分类 head(线性层)。
Gemma2ForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型(例如 GPT-2)一样。
由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。 如果在配置中定义了 pad_token_id
,它会在每行中找到不是 padding token 的最后一个 token。 如果未定义 pad_token_id
,它只会获取批次中每行的最后一个值。 由于当传递 inputs_embeds
而不是 input_ids
时,它无法猜测 padding tokens,因此它会执行相同的操作(获取批次中每行的最后一个值)。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、pruning heads 等)
此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
前向传播
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩码,
- 0 表示 tokens 被掩码。
索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择只输入最后的input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩码,
- 0 表示 head 被掩码。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果没有传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一次的input_ids
(那些没有将其过去的键值状态提供给此模型的input_ids
),形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
, 可选) — 索引,描述输入序列标记在序列中的位置。与position_ids
相反,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (形状为
(batch_size,)
的torch.LongTensor
, 可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方误差损失)。如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
Gemma2ForSequenceClassification 的 forward
方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
Gemma2ForTokenClassification
class transformers.Gemma2ForTokenClassification
< source >( config )
参数
- config (Gemma2Config) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有 token 分类头的 Gemma2 模型 Transformer(位于隐藏状态输出之上的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、pruning heads 等)
此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
前向传播
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。默认情况下,如果您提供填充,则会忽略填充。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
, 可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示未被掩盖的标记,
- 0 表示被掩盖的标记。
可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后一次的input_ids
(请参阅past_key_values
)。如果您想更改填充行为,则应阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需求进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示头未被掩盖,
- 0 表示头被掩盖。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果没有传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一次的input_ids
(那些没有将其过去的键值状态提供给此模型的input_ids
),形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
, 可选) — 索引,描述输入序列标记在序列中的位置。与position_ids
相反,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (形状为
(batch_size,)
的torch.LongTensor
, 可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方误差损失)。如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (Gemma2Config) 和输入。
-
loss (形状为
(1,)
的torch.FloatTensor
, 可选, 当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分类分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则一个用于嵌入的输出,+ 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的 Hidden-states,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。Attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
Gemma2ForTokenClassification 的 forward
方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, Gemma2ForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma2-7b")
>>> model = Gemma2ForTokenClassification.from_pretrained("google/gemma2-7b")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss