Transformers 文档
DBRX
并获得增强的文档体验
开始使用
DBRX
概述
DBRX 是一款基于 Transformer 的仅解码器大型语言模型(LLM),通过下一个词元预测进行训练。它采用细粒度的混合专家(MoE)架构,总参数量为 1320 亿,其中任意输入上激活的参数为 360 亿。它在 12 万亿词元的文本和代码数据上进行了预训练。与其他开放的 MoE 模型如 Mixtral-8x7B 和 Grok-1 相比,DBRX 是细粒度的,意味着它使用更多数量的较小专家。DBRX 有 16 个专家并选择 4 个,而 Mixtral-8x7B 和 Grok-1 有 8 个专家并选择 2 个。这提供了 65 倍更多的专家组合可能性,我们发现这提高了模型质量。DBRX 使用旋转位置编码(RoPE)、门控线性单元(GLU)和分组查询注意力(GQA)。它是一个基于 BPE 的模型,并使用 tiktoken 仓库中描述的 GPT-4 分词器。我们基于详尽的评估和扩展实验做出了这些选择。
DBRX 在 12 万亿词元的精心策划数据上进行了预训练,最大上下文长度为 32K 词元。我们估计,这些数据在单位词元上的质量比我们用于预训练 MPT 系列模型的数据至少好 2 倍。这个新数据集是使用全套 Databricks 工具开发的,包括用于数据处理的 Apache Spark™ 和 Databricks notebooks,以及用于数据管理和治理的 Unity Catalog。我们使用课程学习进行预训练,在训练过程中改变数据混合方式,我们发现这种方式能显著提高模型质量。
关于 DBRX Instruct 和 DBRX Base 的更详细信息可以在我们的技术博客文章中找到。
此模型由 eitan-turok 和 abhi-db 贡献。原始代码可以在这里找到,但这可能不是最新的。
用法示例
generate()
方法可用于使用 DBRX 生成文本。您可以使用标准注意力实现、flash-attention 和 PyTorch 缩放点积注意力进行生成。后两种注意力实现可以提速。
from transformers import DbrxForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", token="YOUR_HF_TOKEN")
model = DbrxForCausalLM.from_pretrained(
"databricks/dbrx-instruct",
device_map="auto",
torch_dtype=torch.bfloat16,
token="YOUR_HF_TOKEN",
)
input_text = "What does it take to build a great LLM?"
messages = [{"role": "user", "content": input_text}]
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))
如果您已安装 flash-attention (pip install flash-attn
),则可以更快地生成。(HuggingFace 关于 flash-attention 的文档可以在这里找到。)
from transformers import DbrxForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", token="YOUR_HF_TOKEN")
model = DbrxForCausalLM.from_pretrained(
"databricks/dbrx-instruct",
device_map="auto",
torch_dtype=torch.bfloat16,
token="YOUR_HF_TOKEN",
attn_implementation="flash_attention_2",
)
input_text = "What does it take to build a great LLM?"
messages = [{"role": "user", "content": input_text}]
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))
您还可以使用 PyTorch 缩放点积注意力来更快地生成。(HuggingFace 关于缩放点积注意力的文档可以在这里找到。)
from transformers import DbrxForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", token="YOUR_HF_TOKEN")
model = DbrxForCausalLM.from_pretrained(
"databricks/dbrx-instruct",
device_map="auto",
torch_dtype=torch.bfloat16,
token="YOUR_HF_TOKEN",
attn_implementation="sdpa",
)
input_text = "What does it take to build a great LLM?"
messages = [{"role": "user", "content": input_text}]
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))
DbrxConfig
class transformers.DbrxConfig
< 源 >( d_model: int = 2048 n_heads: int = 16 n_layers: int = 24 max_seq_len: int = 2048 vocab_size: int = 32000 resid_pdrop: float = 0.0 emb_pdrop: float = 0.0 attn_config: typing.Optional[transformers.models.dbrx.configuration_dbrx.DbrxAttentionConfig] = None ffn_config: typing.Optional[transformers.models.dbrx.configuration_dbrx.DbrxFFNConfig] = None use_cache: bool = True initializer_range: float = 0.02 output_router_logits: bool = False **kwargs: typing.Any )
参数
- d_model (
int
, 可选, 默认为 2048) — 嵌入和隐藏状态的维度。 - n_heads (
int
, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。 - n_layers (
int
, 可选, 默认为 24) — Transformer 编码器中的隐藏层数。 - max_seq_len (
int
, 可选, 默认为 2048) — 模型的最大序列长度。 - vocab_size (
int
, 可选, 默认为 32000) — Dbrx 模型的词汇表大小。定义了调用 DbrxModel 时传入的inputs_ids
可以表示的最大不同词元数量。 - resid_pdrop (
float
, 可选, 默认为 0.0) — 应用于注意力输出(在与残差结合之前)的 dropout 概率。 - emb_pdrop (
float
, 可选, 默认为 0.0) — 嵌入层的 dropout 概率。 - attn_config (
dict
, 可选) — 用于配置模型注意力模块的字典。 - ffn_config (
dict
, 可选) — 用于配置模型 FFN 模块的字典。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - output_router_logits (
bool
, 可选, 默认为False
) — 是否由模型返回路由器 logits。启用此选项还将允许模型输出辅助损失。有关更多详细信息,请参见此处。
这是用于存储 DbrxModel 配置的配置类。它用于根据指定的参数实例化 Dbrx 模型,定义模型架构。使用默认值实例化配置将产生与 databricks/dbrx-instruct 架构不同的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import DbrxConfig, DbrxModel
>>> # Initializing a Dbrx configuration
>>> configuration = DbrxConfig(n_layers=2, d_model=256, n_heads=8, vocab_size=128)
>>> # Initializing a model (with random weights) from the configuration
>>> model = DbrxModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
DbrxModel
class transformers.DbrxModel
< 源 >( config: DbrxConfig )
参数
- config (DbrxConfig) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
原始的 Dbrx 模型,输出原始的隐藏状态,没有任何特定的头部。
该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **kwargs ) → transformers.modeling_outputs.MoeModelOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 输入序列词元在词汇表中的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充词元索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示未被掩码的词元,
- 0 表示被掩码的词元。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列词元的位置索引。选定范围为[0, config.n_positions - 1]
。 - past_key_values (
~cache_utils.Cache
, 可选) — 预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常包括在解码的前一阶段由模型返回的 `past_key_values`,当 `use_cache=True` 或 `config.use_cache=True` 时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为 `config.n_layers` 的 `tuple(torch.FloatTensor)` 元组,每个元组有两个形状为 `(batch_size, num_heads, sequence_length, embed_size_per_head)` 的张量。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果未传递 `past_key_values`,将返回旧版缓存格式。
如果使用 `past_key_values`,用户可以选择只输入最后一个 `input_ids`(那些没有为其提供过去键值状态的 `input_ids`),形状为 `(batch_size, 1)`,而不是所有形状为 `(batch_size, sequence_length)` 的 `input_ids`。
- inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 `input_ids`。如果您想比模型的内部嵌入查找矩阵更多地控制如何将 `input_ids` 索引转换为关联向量,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为 `True`,将返回 `past_key_values` 键值状态,并可用于加速解码(请参阅 `past_key_values`)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 `attentions`。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 `hidden_states`。 - output_router_logits (
bool
, 可选) — 是否返回所有路由器的 logits。它们对于计算路由器损失很有用,在推理期间不应返回。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
, 可选) — 表示输入序列中词元位置的索引。与position_ids
不同,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整的序列长度。
返回
transformers.modeling_outputs.MoeModelOutputWithPast
或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MoeModelOutputWithPast
或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或 config.return_dict=False
),根据配置(DbrxConfig)和输入,包含不同的元素。
-
last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
past_key_values (
Cache
, 可选, 在传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 Cache 实例。更多详情,请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(自注意力块中的键和值,如果
config.is_encoder_decoder=True
,则还包括交叉注意力块中的键和值),可用于(参见past_key_values
输入)加速序列解码。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
router_logits (
tuple(torch.FloatTensor)
, 可选, 在传递output_router_probs=True
和config.add_router_probs=True
或config.output_router_probs=True
时返回) — 形状为(batch_size, sequence_length, num_experts)
的torch.FloatTensor
元组(每层一个)。由 MoE 路由器计算的原始路由器对数(softmax 后),这些术语用于计算专家混合模型的辅助损失。
DbrxModel 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的流程需要在此函数内定义,但之后应该调用 Module
实例而不是此函数,因为前者会处理运行前后处理步骤,而后者会静默地忽略它们。
DbrxForCausalLM
class transformers.DbrxForCausalLM
< source >( config: DbrxConfig )
参数
- config (DbrxConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。
用于因果语言建模的 DBRX 模型转换器。
该模型继承自 PreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
该模型也是 PyTorch torch.nn.Module 的子类。可以像常规的 PyTorch Module 一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs ) → transformers.modeling_outputs.MoeCausalLMOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 词汇表中输入序列词元的索引。默认情况下会忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
, 可选) — 用于避免在填充词元索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示未被屏蔽的词元,
- 0 表示被屏蔽的词元。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 位置嵌入中每个输入序列词元的位置索引。在[0, config.n_positions - 1]
范围内选择。 - past_key_values (
~cache_utils.Cache
, 可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速序列解码。这通常是模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有两个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也被称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,将返回传统缓存格式。如果使用
past_key_values
,用户可以选择只输入最后一个input_ids
(那些没有提供过去键值状态的词元),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.Tensor
, 可选) — 可选地,你可以选择直接传递嵌入表示而不是input_ids
。如果你希望比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为相关向量,这将非常有用。 - labels (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 用于计算掩码语言建模损失的标签。索引应在[0, ..., config.vocab_size]
或 -100 之间(参见input_ids
文档字符串)。索引设置为-100
的词元将被忽略(屏蔽),损失仅对标签在[0, ..., config.vocab_size]
范围内的词元计算。 - use_cache (
bool
, 可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - output_router_logits (
bool
, 可选) — 是否返回所有路由器的 logits。它们对于计算路由器损失很有用,在推理期间不应返回。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
, 可选) — 表示输入序列中词元位置的索引。与position_ids
不同,此张量不受填充的影响。它用于在正确的位置更新缓存并推断完整的序列长度。 - logits_to_keep (
Union[int, torch.Tensor]
, 默认为0
) — 如果是int
,则为最后logits_to_keep
个词元计算 logits。如果是0
,则为所有input_ids
计算 logits(特殊情况)。生成时只需要最后一个词元的 logits,仅为此词元计算可以节省内存,这对于长序列或大词汇表大小非常重要。如果是一个torch.Tensor
,则必须是一维的,对应于序列长度维度中要保留的索引。这在使用打包张量格式(批处理和序列长度的单个维度)时很有用。
返回
transformers.modeling_outputs.MoeCausalLMOutputWithPast
或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MoeCausalLMOutputWithPast
或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或 config.return_dict=False
),根据配置(DbrxConfig)和输入,包含不同的元素。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
aux_loss (
torch.FloatTensor
,可选,当提供labels
时返回) — 稀疏模块的辅助损失。 -
router_logits (
tuple(torch.FloatTensor)
, 可选, 在传递output_router_probs=True
和config.add_router_probs=True
或config.output_router_probs=True
时返回) — 形状为(batch_size, sequence_length, num_experts)
的torch.FloatTensor
元组(每层一个)。由 MoE 路由器计算的原始路由器对数(softmax 后),这些术语用于计算专家混合模型的辅助损失。
-
past_key_values (
Cache
, 可选, 在传递use_cache=True
或config.use_cache=True
时返回) — 这是一个 Cache 实例。更多详情,请参阅我们的 kv 缓存指南。包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 在传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 在传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
DbrxForCausalLM 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的流程需要在此函数内定义,但之后应该调用 Module
实例而不是此函数,因为前者会处理运行前后处理步骤,而后者会静默地忽略它们。
示例
>> from transformers import AutoTokenizer, DbrxForCausalLM
>> model = DbrxForCausalLM.from_pretrained("databricks/dbrx-instruct")
>> tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct")
>> prompt = "Hey, are you conscious? Can you talk to me?"
>> inputs = tokenizer(prompt, return_tensors="pt")
>> # Generate
>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."