Transformers 文档

DeBERTa

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

DeBERTa

概述

DeBERTa 模型在 DeBERTa: Decoding-enhanced BERT with Disentangled Attention 中被提出,作者是 Pengcheng He、Xiaodong Liu、Jianfeng Gao、Weizhu Chen。它基于 Google 于 2018 年发布的 BERT 模型和 Facebook 于 2019 年发布的 RoBERTa 模型。

它基于 RoBERTa 构建,采用了分离注意力机制和增强的掩码解码器训练,使用了 RoBERTa 一半的数据。

论文的摘要如下:

预训练神经语言模型的最新进展显着提高了许多自然语言处理 (NLP) 任务的性能。在本文中,我们提出了一种新的模型架构 DeBERTa(具有分离注意力的解码增强 BERT),它使用两种新技术改进了 BERT 和 RoBERTa 模型。第一种是分离注意力机制,其中每个词使用两个向量表示,分别编码其内容和位置,并且词之间的注意力权重是使用内容和相对位置上的分离矩阵计算的。第二,使用增强的掩码解码器来替换输出 softmax 层,以预测模型预训练的掩码标记。我们表明,这两种技术显着提高了模型预训练的效率和下游任务的性能。与 RoBERTa-Large 相比,在训练数据的一半上训练的 DeBERTa 模型在各种 NLP 任务上表现始终更好,在 MNLI 上提高了 +0.9%(90.2% vs. 91.1%),在 SQuAD v2.0 上提高了 +2.3%(88.4% vs. 90.7%),在 RACE 上提高了 +3.6%(83.2% vs. 86.8%)。DeBERTa 代码和预训练模型将在 https://github.com/microsoft/DeBERTa 上公开提供。

此模型由 DeBERTa 贡献。此模型的 TF 2.0 实现由 kamalkraj 贡献。原始代码可以在这里找到。

资源

以下是官方 Hugging Face 和社区(🌎 表示)资源的列表,可帮助您开始使用 DeBERTa。如果您有兴趣提交资源并将其包含在此处,请随时打开 Pull Request,我们将对其进行审核!资源最好能展示一些新的东西,而不是重复现有资源。

文本分类
Token 分类
填充掩码
问题解答

DebertaConfig

class transformers.DebertaConfig

< >

( vocab_size = 50265 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 0 initializer_range = 0.02 layer_norm_eps = 1e-07 relative_attention = False max_relative_positions = -1 pad_token_id = 0 position_biased_input = True pos_att_type = None pooler_dropout = 0 pooler_hidden_act = 'gelu' **kwargs )

参数

  • vocab_size (int, 可选, 默认为 30522) — DeBERTa 模型的词汇表大小。 定义了在调用 DebertaModelTFDebertaModel 时,由传入的 inputs_ids 表示的不同标记的数量。
  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化器层的维度。
  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中隐藏层的数量。
  • num_attention_heads (int, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。
  • intermediate_size (int, 可选, 默认为 3072) — Transformer 编码器中“中间”层(通常称为前馈层)的维度。
  • hidden_act (strCallable, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持 "gelu", "relu", "silu", "gelu", "tanh", "gelu_fast", "mish", "linear", "sigmoid""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。
  • max_position_embeddings (int, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 2) — 在调用 DebertaModelTFDebertaModel 时,传入的 token_type_ids 的词汇表大小。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。
  • relative_attention (bool, 可选, 默认为 False) — 是否使用相对位置编码。
  • max_relative_positions (int, 可选, 默认为 1) — 相对位置的范围 [-max_position_embeddings, max_position_embeddings]。 使用与 max_position_embeddings 相同的值。
  • pad_token_id (int, 可选, 默认为 0) — 用于填充 input_ids 的值。
  • position_biased_input (bool, 可选, 默认为 True) — 是否将绝对位置嵌入添加到内容嵌入中。
  • pos_att_type (List[str], 可选) — 相对位置注意力的类型,可以是 ["p2c", "c2p"] 的组合,例如 ["p2c"], ["p2c", "c2p"]
  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。

这是用于存储 DebertaModelTFDebertaModel 配置的配置类。 它用于根据指定的参数实例化 DeBERTa 模型,定义模型架构。 使用默认值实例化配置将产生与 DeBERTa microsoft/deberta-base 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import DebertaConfig, DebertaModel

>>> # Initializing a DeBERTa microsoft/deberta-base style configuration
>>> configuration = DebertaConfig()

>>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration
>>> model = DebertaModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

DebertaTokenizer

class transformers.DebertaTokenizer

< >

( vocab_file merges_file errors = 'replace' bos_token = '[CLS]' eos_token = '[SEP]' sep_token = '[SEP]' cls_token = '[CLS]' unk_token = '[UNK]' pad_token = '[PAD]' mask_token = '[MASK]' add_prefix_space = False add_bos_token = False **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • merges_file (str) — merges 文件的路径。
  • errors (str, 可选, 默认为 "replace") — 将字节解码为 UTF-8 时要遵循的范例。 有关更多信息,请参阅 bytes.decode
  • bos_token (str, 可选, 默认为 "[CLS]") — 序列开始标记。
  • eos_token (str, 可选, 默认为 "[SEP]") — 序列结束标记。
  • sep_token (str, 可选, 默认为 "[SEP]") — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。 它也用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, 可选, 默认为 "[CLS]") — 分类器标记,用于进行序列分类(对整个序列而不是每个标记进行分类)。 当使用特殊标记构建时,它是序列的第一个标记。
  • unk_token (str, optional, defaults to "[UNK]") — 未知 token。词汇表中不存在的 token 无法转换为 ID,并将被设置为此 token。
  • pad_token (str, optional, defaults to "[PAD]") — 用于填充的 token,例如在对不同长度的序列进行批处理时。
  • mask_token (str, optional, defaults to "[MASK]") — 用于遮盖值的 token。这是使用掩码语言建模训练此模型时使用的 token。这是模型将尝试预测的 token。
  • add_prefix_space (bool, optional, defaults to False) — 是否在输入中添加初始空格。这允许像对待任何其他单词一样对待前导词。(Deberta 分词器通过前面的空格检测单词的开头)。
  • add_bos_token (bool, optional, defaults to False) — 是否在输入中添加初始 <|endoftext|>。这允许像对待任何其他单词一样对待前导词。

构建 DeBERTa 分词器。基于字节级字节对编码 (Byte-Pair-Encoding)。

此分词器经过训练,可将空格视为 token 的一部分(有点像 sentencepiece),因此一个单词将

在句子开头(没有空格)或不在句子开头时,编码会有所不同

>>> from transformers import DebertaTokenizer

>>> tokenizer = DebertaTokenizer.from_pretrained("microsoft/deberta-base")
>>> tokenizer("Hello world")["input_ids"]
[1, 31414, 232, 2]

>>> tokenizer(" Hello world")["input_ids"]
[1, 20920, 232, 2]

您可以通过在实例化此分词器或在某些文本上调用它时传递 add_prefix_space=True 来解决此行为,但由于模型不是以这种方式预训练的,因此可能会导致性能下降。

当与 is_split_into_words=True 一起使用时,此分词器将在每个单词(甚至第一个单词)之前添加一个空格。

此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

参数

  • token_ids_0 (List[int]) — 将向其添加特殊 token 的 ID 列表。
  • token_ids_1 (List[int], optional) — 用于序列对的可选的第二个 ID 列表。

返回

List[int]

带有适当特殊 token 的 输入 ID 列表。

通过连接和添加特殊 token,从序列或序列对构建模型输入,以用于序列分类任务。 DeBERTa 序列具有以下格式

  • 单序列:[CLS] X [SEP]
  • 序列对:[CLS] A [SEP] B [SEP]

get_special_tokens_mask

< >

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 用于序列对的可选的第二个 ID 列表。
  • already_has_special_tokens (bool, optional, defaults to False) — token 列表是否已使用模型的特殊 token 格式化。

返回

List[int]

一个整数列表,范围为 [0, 1]:1 表示特殊 token,0 表示序列 token。

从没有添加特殊 token 的 token 列表中检索序列 ID。当使用分词器的 prepare_for_modelencode_plus 方法添加特殊 token 时,将调用此方法。

create_token_type_ids_from_sequences

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 用于序列对的可选的第二个 ID 列表。

返回

List[int]

根据给定的序列,token 类型 ID 列表。

从传递的两个序列创建一个掩码,用于序列对分类任务。 DeBERTa

序列对掩码具有以下格式

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1None,则此方法仅返回掩码的第一部分(0)。

save_vocabulary

< >

( save_directory: str filename_prefix: Optional = None )

DebertaTokenizerFast

class transformers.DebertaTokenizerFast

< >

( vocab_file = None merges_file = None tokenizer_file = None errors = 'replace' bos_token = '[CLS]' eos_token = '[SEP]' sep_token = '[SEP]' cls_token = '[CLS]' unk_token = '[UNK]' pad_token = '[PAD]' mask_token = '[MASK]' add_prefix_space = False **kwargs )

参数

  • vocab_file (str, optional) — 词汇表文件的路径。
  • merges_file (str, optional) — merges 文件的路径。
  • tokenizer_file (str, optional) — 要使用的 tokenizer 文件路径,而不是词汇表文件。
  • errors (str, optional, defaults to "replace") — 将字节解码为 UTF-8 时要遵循的范例。 有关更多信息,请参见 bytes.decode
  • bos_token (str, optional, defaults to "[CLS]") — 序列开始 token。
  • eos_token (str, optional, defaults to "[SEP]") — 序列结束 token。
  • sep_token (str, optional, defaults to "[SEP]") — 分隔符 token,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。 它也用作使用特殊 token 构建的序列的最后一个 token。
  • cls_token (str, optional, defaults to "[CLS]") — 分类器 token,用于进行序列分类(对整个序列而不是每个 token 分类)。 当使用特殊 token 构建时,它是序列的第一个 token。
  • unk_token (str, optional, defaults to "[UNK]") — 未知 token。词汇表中不存在的 token 无法转换为 ID,而是会被设置为此 token。
  • pad_token (str, optional, defaults to "[PAD]") — 用于 padding 的 token,例如在对不同长度的序列进行批处理时使用。
  • mask_token (str, optional, defaults to "[MASK]") — 用于掩盖值的 token。这是使用掩码语言建模训练此模型时使用的 token。模型将尝试预测此 token。
  • add_prefix_space (bool, optional, defaults to False) — 是否在输入前添加一个空格。这允许像处理任何其他单词一样处理前导词。(Deberta 分词器通过前导空格检测单词的开头)。

构建一个 “快速” DeBERTa 分词器(由 HuggingFace 的 tokenizers 库支持)。基于字节级 Byte-Pair-Encoding。

此分词器经过训练,可将空格视为 token 的一部分(有点像 sentencepiece),因此一个单词将

在句子开头(没有空格)或不在句子开头时,编码会有所不同

>>> from transformers import DebertaTokenizerFast

>>> tokenizer = DebertaTokenizerFast.from_pretrained("microsoft/deberta-base")
>>> tokenizer("Hello world")["input_ids"]
[1, 31414, 232, 2]

>>> tokenizer(" Hello world")["input_ids"]
[1, 20920, 232, 2]

您可以通过在实例化此分词器时传递 add_prefix_space=True 来绕过该行为,但由于模型并非以这种方式预训练,因此可能会导致性能下降。

当与 is_split_into_words=True 一起使用时,此分词器需要使用 add_prefix_space=True 进行实例化。

此分词器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

参数

  • token_ids_0 (List[int]) — 将在其中添加特殊 token 的 ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选的第二个 ID 列表。

返回

List[int]

带有适当特殊 token 的 输入 ID 列表。

通过连接和添加特殊 token,从序列或序列对构建模型输入,以用于序列分类任务。 DeBERTa 序列具有以下格式

  • 单序列:[CLS] X [SEP]
  • 序列对:[CLS] A [SEP] B [SEP]

create_token_type_ids_from_sequences

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选的第二个 ID 列表。

返回

List[int]

根据给定的序列,token 类型 ID 列表。

从传递的两个序列创建一个掩码,用于序列对分类任务。 DeBERTa

序列对掩码具有以下格式

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1None,则此方法仅返回掩码的第一部分(0)。

Pytorch
隐藏 Pytorch 内容

DebertaModel

class transformers.DebertaModel

< >

( config )

参数

  • config (DebertaConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

裸机 DeBERTa 模型 Transformer,输出原始隐藏状态,顶部没有任何特定的 head。DeBERTa 模型在 DeBERTa: Decoding-enhanced BERT with Disentangled Attention 中提出,作者是 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen。它构建于 BERT/RoBERTa 之上,并进行了两项改进,即解耦注意力(disentangled attention)和增强的掩码解码器(enhanced mask decoder)。通过这两项改进,它在大多数任务上的性能都优于 BERT/RoBERTa,且使用了 80GB 的预训练数据。

此模型也是 PyTorch torch.nn.Module 子类。可将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.BaseModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩盖 的 token,
    • 0 表示 已被掩盖 的 token。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_outputs.BaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (DebertaConfig) 和输入。

  • last_hidden_state (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出,每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

DebertaModel forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, DebertaModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-base")
>>> model = DebertaModel.from_pretrained("microsoft/deberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

DebertaPreTrainedModel

class transformers.DebertaPreTrainedModel

< >

( config: PretrainedConfig *inputs **kwargs )

一个抽象类,用于处理权重初始化以及下载和加载预训练模型的简单接口。

DebertaForMaskedLM

class transformers.DebertaForMaskedLM

< >

( config )

参数

  • config (DebertaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

具有语言建模头的 DeBERTa 模型。DeBERTa 模型在 DeBERTa: Decoding-enhanced BERT with Disentangled Attention 中提出,作者为 Pengcheng He、Xiaodong Liu、Jianfeng Gao、Weizhu Chen。它构建于 BERT/RoBERTa 之上,并进行了两项改进,即解耦注意力机制和增强的掩码解码器。通过这两项改进,它在大多数任务上的性能优于 BERT/RoBERTa,且仅使用 80GB 的预训练数据。

此模型也是 PyTorch torch.nn.Module 子类。可将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩码 的 tokens,
    • 0 表示 被掩码 的 tokens。

    什么是 attention 掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 分段 token 索引,用于指示输入的第一个和第二个部分。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids索引转换为关联向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。 索引应在 [-100, 0, ..., config.vocab_size] 中(参见 input_ids 文档字符串) 索引设置为 -100 的 tokens 将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的 tokens 计算

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutputtorch.FloatTensor 的元组(如果传递了 return_dict=False 或者当 config.return_dict=False 时),包括取决于配置 (DebertaConfig) 和输入的各种元素。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 掩码语言建模 (MLM) 损失。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇表 token 的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出,每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

DebertaForMaskedLM 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, DebertaForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("lsanochkin/deberta-large-feedback")
>>> model = DebertaForMaskedLM.from_pretrained("lsanochkin/deberta-large-feedback")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.54

DebertaForSequenceClassification

class transformers.DebertaForSequenceClassification

< >

( config )

参数

  • config (DebertaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

DeBERTa 模型 Transformer,顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。

DeBERTa 模型在 DeBERTa: Decoding-enhanced BERT with Disentangled Attention 中提出,作者为 Pengcheng He、Xiaodong Liu、Jianfeng Gao、Weizhu Chen。它构建于 BERT/RoBERTa 之上,并进行了两项改进,即解耦注意力机制和增强的掩码解码器。通过这两项改进,它在大多数任务上的性能优于 BERT/RoBERTa,且仅使用 80GB 的预训练数据。

此模型也是 PyTorch torch.nn.Module 子类。可将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩码 的 tokens,
    • 0 表示 被掩码 的 tokens。

    什么是 attention 掩码?

  • token_type_ids (torch.LongTensor, 形状为 (batch_size, sequence_length)可选) — 分段 token 索引,用于指示输入的第一个和第二个部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A token,
    • 1 对应于句子 B token。

    什么是 token 类型 IDs?

  • position_ids (torch.LongTensor, 形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • inputs_embeds (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor, 形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方误差损失);如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (DebertaConfig) 和输入。

  • loss (torch.FloatTensor, 形状为 (1,)可选,当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (torch.FloatTensor, 形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出,每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

DebertaForSequenceClassification 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, DebertaForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-base")
>>> model = DebertaForSequenceClassification.from_pretrained("microsoft/deberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = DebertaForSequenceClassification.from_pretrained("microsoft/deberta-base", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, DebertaForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-base")
>>> model = DebertaForSequenceClassification.from_pretrained("microsoft/deberta-base", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = DebertaForSequenceClassification.from_pretrained(
...     "microsoft/deberta-base", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

DebertaForTokenClassification

class transformers.DebertaForTokenClassification

< >

( config )

参数

  • config (DebertaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

DeBERTa 模型,顶部带有一个 token 分类头(隐藏状态输出顶部的线性层),例如,用于命名实体识别 (NER) 任务。

DeBERTa 模型在 DeBERTa: Decoding-enhanced BERT with Disentangled Attention 中提出,作者为 Pengcheng He、Xiaodong Liu、Jianfeng Gao、Weizhu Chen。它构建于 BERT/RoBERTa 之上,并进行了两项改进,即解耦注意力机制和增强的掩码解码器。通过这两项改进,它在大多数任务上的性能优于 BERT/RoBERTa,且仅使用 80GB 的预训练数据。

此模型也是 PyTorch torch.nn.Module 子类。可将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor, 形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor, 形状为 (batch_size, sequence_length)可选) — 掩码,以避免在 padding token 索引上执行注意力机制。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩盖 的 token,
    • 0 表示 被掩盖 的 token。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor, 形状为 (batch_size, sequence_length)可选) — 分段 token 索引,用于指示输入的第一个和第二个部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A token,
    • 1 对应于句子 B token。

    什么是 token 类型 IDs?

  • position_ids (torch.LongTensor, 形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • inputs_embeds (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor, 形状为 (batch_size, sequence_length)可选) — 用于计算 token 分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (DebertaConfig) 和输入。

  • loss (torch.FloatTensor, 形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor, 形状为 (batch_size, sequence_length, config.num_labels)) — 分类分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出,每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

DebertaForTokenClassification 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, DebertaForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-base")
>>> model = DebertaForTokenClassification.from_pretrained("microsoft/deberta-base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

DebertaForQuestionAnswering

class transformers.DebertaForQuestionAnswering

< >

( config )

参数

  • config (DebertaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

DeBERTa 模型,顶部带有一个跨度分类头,用于抽取式问答任务,如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logitsspan end logits)。

DeBERTa 模型在 DeBERTa: Decoding-enhanced BERT with Disentangled Attention 中提出,作者为 Pengcheng He、Xiaodong Liu、Jianfeng Gao、Weizhu Chen。它构建于 BERT/RoBERTa 之上,并进行了两项改进,即解耦注意力机制和增强的掩码解码器。通过这两项改进,它在大多数任务上的性能优于 BERT/RoBERTa,且仅使用 80GB 的预训练数据。

此模型也是 PyTorch torch.nn.Module 子类。可将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列令牌的索引。

    可以使用 AutoTokenizer 获取索引。 请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详细信息。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充令牌索引上执行注意力的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示未被掩盖的令牌,
    • 0 表示被掩盖的令牌。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 段令牌索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于句子 A 令牌,
    • 1 对应于句子 B 令牌。

    什么是令牌类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列令牌的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您想要比模型的内部嵌入查找矩阵更精确地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • start_positions (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算令牌分类损失的标记跨度开始位置(索引)的标签。 位置被钳制到序列的长度 (sequence_length)。 序列之外的位置不计入损失计算。
  • end_positions (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算令牌分类损失的标记跨度结束位置(索引)的标签。 位置被钳制到序列的长度 (sequence_length)。 序列之外的位置不计入损失计算。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutputtorch.FloatTensor 的元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (DebertaConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 总跨度提取损失是开始和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 跨度开始得分(在 SoftMax 之前)。

  • end_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 跨度结束得分(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出,每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

DebertaForQuestionAnswering 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, DebertaForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("Palak/microsoft_deberta-large_squad")
>>> model = DebertaForQuestionAnswering.from_pretrained("Palak/microsoft_deberta-large_squad")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
' a nice puppet'

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([12])
>>> target_end_index = torch.tensor([14])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
0.14
TensorFlow
Hide TensorFlow content

TFDebertaModel

class transformers.TFDebertaModel

< >

( config: DebertaConfig *inputs **kwargs )

参数

  • config (DebertaConfig) — 具有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

裸机 DeBERTa 模型 Transformer,输出原始隐藏状态,顶部没有任何特定的 head。DeBERTa 模型在 DeBERTa: Decoding-enhanced BERT with Disentangled Attention 中提出,作者是 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen。它构建于 BERT/RoBERTa 之上,并进行了两项改进,即解耦注意力(disentangled attention)和增强的掩码解码器(enhanced mask decoder)。通过这两项改进,它在大多数任务上的性能都优于 BERT/RoBERTa,且使用了 80GB 的预训练数据。

此模型也是 keras.Model 子类。 将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与常规用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于此支持,当使用 model.fit() 等方法时,对于您来说,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以选择以下三种可能性来收集第一个位置参数中的所有输入张量

  • 仅使用 input_ids 且不包含任何其他内容的单个张量:model(input_ids)
  • 具有一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 具有一个或多个输入张量的字典,这些张量与文档字符串中给定的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心任何这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFBaseModelOutputtuple(tf.Tensor)

参数

  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] `Dict[str, tf.Tensor]Dict[str, np.ndarray],并且每个示例都必须具有形状 (batch_size, sequence_length)) — 词汇表中输入序列令牌的索引。

    可以使用 AutoTokenizer 获取索引。 请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详细信息。

    什么是输入 ID?

  • attention_mask (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充令牌索引上执行注意力的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示未被掩盖的令牌,
    • 0 表示被掩盖的令牌。

    什么是注意力掩码?

  • token_type_ids (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 段令牌索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于句子 A 令牌,
    • 1 对应于句子 B 令牌。

    什么是令牌类型 ID?

  • position_ids (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列令牌的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • inputs_embeds (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您想要比模型的内部嵌入查找矩阵更精确地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。 详见返回张量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。 详见返回张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 [`~utils.ModelOutput`] 而不是纯元组。

返回

transformers.modeling_tf_outputs.TFBaseModelOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutput 或一个 tf.Tensor 元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (DebertaConfig) 和输入。

  • last_hidden_state (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层的输出处的隐藏状态序列。

  • hidden_states (tuple(tf.FloatTensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的元组 (每个层的输出对应一个,加上嵌入层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组 (每层对应一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFDebertaModel 的前向传播方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFDebertaModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("kamalkraj/deberta-base")
>>> model = TFDebertaModel.from_pretrained("kamalkraj/deberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFDebertaPreTrainedModel

class transformers.TFDebertaPreTrainedModel

< >

( *args **kwargs )

一个抽象类,用于处理权重初始化以及下载和加载预训练模型的简单接口。

call

< >

( inputs training = None mask = None )

在新输入上调用模型,并将输出作为张量返回。

在这种情况下, call() 只是将图中的所有操作重新应用于新输入(例如,从提供的输入构建新的计算图)。

注意:此方法不应直接调用。 它仅用于在子类化 tf.keras.Model 时被重写。 要在输入上调用模型,请始终使用 __call__() 方法,即 model(inputs),它依赖于底层的 call() 方法。

TFDebertaForMaskedLM

class transformers.TFDebertaForMaskedLM

< >

( config: DebertaConfig *inputs **kwargs )

参数

  • config (DebertaConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,只会加载配置。 查看 from_pretrained() 方法以加载模型权重。

具有语言建模头的 DeBERTa 模型。DeBERTa 模型在 DeBERTa: Decoding-enhanced BERT with Disentangled Attention 中提出,作者为 Pengcheng He、Xiaodong Liu、Jianfeng Gao、Weizhu Chen。它构建于 BERT/RoBERTa 之上,并进行了两项改进,即解耦注意力机制和增强的掩码解码器。通过这两项改进,它在大多数任务上的性能优于 BERT/RoBERTa,且仅使用 80GB 的预训练数据。

此模型也是 keras.Model 子类。 将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与常规用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于此支持,当使用 model.fit() 等方法时,对于您来说,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以选择以下三种可能性来收集第一个位置参数中的所有输入张量

  • 仅使用 input_ids 且不包含任何其他内容的单个张量:model(input_ids)
  • 具有一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 具有一个或多个输入张量的字典,这些张量与文档字符串中给定的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心任何这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFMaskedLMOutputtuple(tf.Tensor)

参数

  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] `Dict[str, tf.Tensor]Dict[str, np.ndarray],并且每个示例必须具有形状 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    索引可以使用 AutoTokenizer 获取。 请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以获取详细信息。

    什么是输入 ID?

  • attention_mask (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length), optional) — 用于避免在 padding 标记索引上执行注意力的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示未被掩码的标记,
    • 0 表示被掩码的标记。

    什么是注意力掩码?

  • token_type_ids (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length), optional) — Segment 标记索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 sentence A 标记,
    • 1 对应于 sentence B 标记。

    什么是标记类型 ID?

  • position_ids (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。 在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • inputs_embeds (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length, hidden_size), optional) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。 详见返回张量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。 详见返回张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 [`~utils.ModelOutput`] 而不是纯元组。
  • labels (tf.Tensornp.ndarray,形状为 (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。 索引应在 [-100, 0, ..., config.vocab_size] 中(请参阅 input_ids 文档字符串)。 索引设置为 -100 的标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的标记计算。

返回

transformers.modeling_tf_outputs.TFMaskedLMOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个 tf.Tensor 元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (DebertaConfig) 和输入。

  • loss (tf.Tensor,形状为 (n,), optional, 当提供 labels 时返回) — 掩码语言建模 (MLM) 损失。

  • logits (tf.Tensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇表标记的分数)。

  • hidden_states (tuple(tf.Tensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的元组 (每个层的输出对应一个,加上嵌入层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组 (每层对应一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFDebertaForMaskedLM 的前向传播方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFDebertaForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("kamalkraj/deberta-base")
>>> model = TFDebertaForMaskedLM.from_pretrained("kamalkraj/deberta-base")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

TFDebertaForSequenceClassification

class transformers.TFDebertaForSequenceClassification

< >

( config: DebertaConfig *inputs **kwargs )

参数

  • config (DebertaConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,只会加载配置。 查看 from_pretrained() 方法以加载模型权重。

DeBERTa 模型 Transformer,顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。

DeBERTa 模型在 DeBERTa: Decoding-enhanced BERT with Disentangled Attention 中提出,作者为 Pengcheng He、Xiaodong Liu、Jianfeng Gao、Weizhu Chen。它构建于 BERT/RoBERTa 之上,并进行了两项改进,即解耦注意力机制和增强的掩码解码器。通过这两项改进,它在大多数任务上的性能优于 BERT/RoBERTa,且仅使用 80GB 的预训练数据。

此模型也是 keras.Model 子类。 将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与常规用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于此支持,当使用 model.fit() 等方法时,对于您来说,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以选择以下三种可能性来收集第一个位置参数中的所有输入张量

  • 仅使用 input_ids 且不包含任何其他内容的单个张量:model(input_ids)
  • 具有一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 具有一个或多个输入张量的字典,这些张量与文档字符串中给定的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心任何这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFSequenceClassifierOutputtuple(tf.Tensor)

参数

  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] `Dict[str, tf.Tensor]Dict[str, np.ndarray] 并且每个示例必须具有形状 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 IDs?

  • attention_mask (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 Mask 值在 [0, 1] 中选择:

    • 1 代表 未被掩码 的 tokens,
    • 0 代表 已被掩码 的 tokens。

    什么是 attention masks?

  • token_type_ids (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token type IDs?

  • position_ids (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在 position embeddings 中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • inputs_embeds (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention tensors。 有关更多详细信息,请参见返回的 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的 tensors 下的 hidden_states
  • return_dict (bool可选) — 是否返回 [`~utils.ModelOutput`] 而不是纯 tuple。
  • labels (tf.Tensornp.ndarray,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。 索引应在 [0, ..., config.num_labels - 1] 中。 如果 config.num_labels == 1,则计算回归损失(均方误差损失)。 如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回

transformers.modeling_tf_outputs.TFSequenceClassifierOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个 tf.Tensor 的 tuple(如果传递 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (DebertaConfig) 和输入。

  • loss (tf.Tensor,形状为 (batch_size, )可选,当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (tf.Tensor,形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的元组 (每个层的输出对应一个,加上嵌入层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组 (每层对应一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFDebertaForSequenceClassification 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFDebertaForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("kamalkraj/deberta-base")
>>> model = TFDebertaForSequenceClassification.from_pretrained("kamalkraj/deberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFDebertaForSequenceClassification.from_pretrained("kamalkraj/deberta-base", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss

TFDebertaForTokenClassification

class transformers.TFDebertaForTokenClassification

< >

( config: DebertaConfig *inputs **kwargs )

参数

  • config (DebertaConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

DeBERTa 模型,顶部带有一个 token 分类头(隐藏状态输出顶部的线性层),例如,用于命名实体识别 (NER) 任务。

DeBERTa 模型在 DeBERTa: Decoding-enhanced BERT with Disentangled Attention 中提出,作者为 Pengcheng He、Xiaodong Liu、Jianfeng Gao、Weizhu Chen。它构建于 BERT/RoBERTa 之上,并进行了两项改进,即解耦注意力机制和增强的掩码解码器。通过这两项改进,它在大多数任务上的性能优于 BERT/RoBERTa,且仅使用 80GB 的预训练数据。

此模型也是 keras.Model 子类。 将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与常规用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于此支持,当使用 model.fit() 等方法时,对于您来说,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以选择以下三种可能性来收集第一个位置参数中的所有输入张量

  • 仅使用 input_ids 且不包含任何其他内容的单个张量:model(input_ids)
  • 具有一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 具有一个或多个输入张量的字典,这些张量与文档字符串中给定的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心任何这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFTokenClassifierOutputtuple(tf.Tensor)

参数

  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] `Dict[str, tf.Tensor]Dict[str, np.ndarray] 并且每个示例必须具有形状 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 IDs?

  • attention_mask (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 Mask 值在 [0, 1] 中选择:

    • 1 代表 未被掩码 的 tokens,
    • 0 代表 已被掩码 的 tokens。

    什么是 attention masks?

  • token_type_ids (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token type IDs?

  • position_ids (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在 position embeddings 中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • inputs_embeds (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention tensors。 有关更多详细信息,请参见返回的 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的 tensors 下的 hidden_states
  • return_dict (bool可选) — 是否返回 [`~utils.ModelOutput`] 而不是纯 tuple。
  • labels (tf.Tensornp.ndarray,形状为 (batch_size, sequence_length)可选) — 用于计算 token 分类损失的标签。 索引应在 [0, ..., config.num_labels - 1] 中。

返回

transformers.modeling_tf_outputs.TFTokenClassifierOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个 tf.Tensor 的 tuple(如果传递 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (DebertaConfig) 和输入。

  • loss (tf.Tensor,形状为 (n,)可选,其中 n 是未被掩码标签的数量,当提供 labels 时返回) — 分类损失。

  • logits (tf.Tensor,形状为 (batch_size, sequence_length, config.num_labels)) — 分类得分(在 SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的元组 (每个层的输出对应一个,加上嵌入层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组 (每层对应一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFDebertaForTokenClassification 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFDebertaForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("kamalkraj/deberta-base")
>>> model = TFDebertaForTokenClassification.from_pretrained("kamalkraj/deberta-base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )

>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)

TFDebertaForQuestionAnswering

class transformers.TFDebertaForQuestionAnswering

< >

( config: DebertaConfig *inputs **kwargs )

参数

  • config (DebertaConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

DeBERTa 模型,顶部带有一个跨度分类头,用于抽取式问答任务,如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logitsspan end logits)。

DeBERTa 模型在 DeBERTa: Decoding-enhanced BERT with Disentangled Attention 中提出,作者为 Pengcheng He、Xiaodong Liu、Jianfeng Gao、Weizhu Chen。它构建于 BERT/RoBERTa 之上,并进行了两项改进,即解耦注意力机制和增强的掩码解码器。通过这两项改进,它在大多数任务上的性能优于 BERT/RoBERTa,且仅使用 80GB 的预训练数据。

此模型也是 keras.Model 子类。 将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与常规用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于此支持,当使用 model.fit() 等方法时,对于您来说,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以选择以下三种可能性来收集第一个位置参数中的所有输入张量

  • 仅使用 input_ids 且不包含任何其他内容的单个张量:model(input_ids)
  • 具有一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 具有一个或多个输入张量的字典,这些张量与文档字符串中给定的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心任何这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutputtuple(tf.Tensor)

参数

  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor]Dict[str, tf.Tensor]Dict[str, np.ndarray],并且每个示例必须具有形状 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是 input IDs?

  • attention_mask (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充 token 索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩盖 的 tokens,
    • 0 表示 被掩盖 的 tokens。

    什么是 attention masks?

  • token_type_ids (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 段 token 索引,用于指示输入的第一个和第二个部分。索引在 [0, 1] 中选择:

    • 0 对应于 sentence A token,
    • 1 对应于 sentence B token。

    什么是 token type IDs?

  • position_ids (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列 tokens 的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • inputs_embeds (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的 attentions 张量。 有关更多详细信息,请参阅返回的张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回的张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 [`~utils.ModelOutput`] 而不是普通的元组。
  • start_positions (tf.Tensornp.ndarray,形状为 (batch_size,)可选) — 用于计算 token 分类损失的标签跨度的起始位置(索引)的标签。 位置被限制在序列的长度 (sequence_length) 内。 序列之外的位置不计入损失计算。
  • end_positions (tf.Tensornp.ndarray,形状为 (batch_size,)可选) — 用于计算 token 分类损失的标签跨度的结束位置(索引)的标签。 位置被限制在序列的长度 (sequence_length) 内。 序列之外的位置不计入损失计算。

返回

transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含取决于配置 (DebertaConfig) 和输入的各种元素。

  • loss (tf.Tensor,形状为 (batch_size, )可选,当提供 start_positionsend_positions 时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵之和。

  • start_logits (tf.Tensor,形状为 (batch_size, sequence_length)) — 跨度起始得分(在 SoftMax 之前)。

  • end_logits (tf.Tensor,形状为 (batch_size, sequence_length)) — 跨度结束得分(在 SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的元组 (每个层的输出对应一个,加上嵌入层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的元组 (每层对应一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFDebertaForQuestionAnswering 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应在之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFDebertaForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("kamalkraj/deberta-base")
>>> model = TFDebertaForQuestionAnswering.from_pretrained("kamalkraj/deberta-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)
< > Update on GitHub