Transformers 文档

BigBirdPegasus

Hugging Face's logo
加入 Hugging Face 社区

并获取增强的文档体验

开始使用

BigBirdPegasus

PyTorch

概述

BigBird 模型在 Big Bird: Transformers for Longer Sequences 中被提出,作者是 Zaheer, Manzil、Guruganesh, Guru、Dubey, Kumar Avinava、Ainslie, Joshua、Alberti, Chris、Ontanon, Santiago、Pham, Philip、Ravula, Anirudh、Wang, Qifan、Yang, Li 以及其他作者。BigBird 是一种基于稀疏注意力机制的 Transformer,它将基于 Transformer 的模型(如 BERT)扩展到更长的序列。除了稀疏注意力机制,BigBird 还对输入序列应用全局注意力和随机注意力。理论上已经证明,应用稀疏、全局和随机注意力机制可以近似于完全注意力机制,同时对于更长的序列来说,计算效率更高。由于 BigBird 具备处理更长上下文的能力,因此在各种长文档 NLP 任务(如问答和摘要)上,与 BERT 或 RoBERTa 相比,BigBird 展现出更优异的性能。

该论文的摘要如下:

基于 Transformer 的模型,例如 BERT,一直是 NLP 最成功的深度学习模型之一。不幸的是,它们的核心限制之一是二次依赖性(主要在内存方面),这是由于其完全注意力机制造成的,这种依赖性与序列长度有关。为了解决这个问题,我们提出了 BigBird,一种稀疏注意力机制,可以将这种二次依赖性降低为线性依赖性。我们证明 BigBird 是序列函数的通用逼近器,并且是图灵完备的,从而保留了二次完全注意力模型的这些特性。在此过程中,我们的理论分析揭示了拥有 O(1) 全局令牌(例如 CLS)的一些好处,这些令牌作为稀疏注意力机制的一部分,可以关注整个序列。所提出的稀疏注意力机制可以处理长度高达之前使用类似硬件可能处理的 8 倍的序列。由于 BigBird 具备处理更长上下文的能力,因此在各种 NLP 任务(如问答和摘要)上,BigBird 性能得到显著提升。我们还提出了在基因组数据中的新应用。

原始代码可以在这里找到。

使用技巧

  • 有关 BigBird 的注意力机制如何工作的详细解释,请参阅这篇博客文章
  • BigBird 带有 2 个实现:original_fullblock_sparse。对于序列长度 < 1024,建议使用 original_full,因为使用 block_sparse 注意力没有任何好处。
  • 当前代码使用 3 个块的窗口大小和 2 个全局块。
  • 序列长度必须可被块大小整除。
  • 当前实现仅支持 ITC
  • 当前实现不支持 num_random_blocks = 0
  • BigBirdPegasus 使用 PegasusTokenizer
  • BigBird 是一个带有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。

资源

BigBirdPegasusConfig

class transformers.BigBirdPegasusConfig

< >

( vocab_size = 96103 max_position_embeddings = 4096 encoder_layers = 16 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 16 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 use_cache = True is_encoder_decoder = True activation_function = 'gelu_new' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 decoder_start_token_id = 2 classifier_dropout = 0.0 scale_embedding = True pad_token_id = 0 bos_token_id = 2 eos_token_id = 1 attention_type = 'block_sparse' block_size = 64 num_random_blocks = 3 use_bias = False **kwargs )

参数

  • vocab_size (int, 可选, 默认为 96103) — BigBirdPegasus 模型的词汇表大小。定义了在调用 BigBirdPegasusModel 时传递的 inputs_ids 可以表示的不同标记的数量。
  • d_model (int, 可选, 默认为 1024) — 层和池化器层的维度。
  • encoder_layers (int, 可选, 默认为 16) — 编码器层数。
  • decoder_layers (int, 可选, 默认为 16) — 解码器层数。
  • encoder_attention_heads (int, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。
  • decoder_attention_heads (int, 可选, 默认为 16) — Transformer 解码器中每个注意力层的注意力头数。
  • decoder_ffn_dim (int, 可选, 默认为 4096) — 解码器中 “中间” 层(通常称为前馈层)的维度。
  • encoder_ffn_dim (int, 可选, 默认为 4096) — 解码器中 “中间” 层(通常称为前馈层)的维度。
  • activation_function (strfunction, 可选, 默认为 "gelu_new") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,则支持 "gelu""relu""silu""gelu_new"
  • dropout (float, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_dropout (float, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。
  • activation_dropout (float, 可选, 默认为 0.0) — 全连接层内部激活的 dropout 比率。
  • classifier_dropout (float, 可选, 默认为 0.0) — 分类器的 dropout 比率。
  • max_position_embeddings (int, 可选, 默认为 4096) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,1024 或 2048 或 4096)。
  • init_std (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • encoder_layerdrop (float, 可选, 默认为 0.0) — 编码器的 LayerDrop 概率。有关更多详细信息,请参阅 [LayerDrop 论文](请参阅 https://arxiv.org/abs/1909.11556)。
  • decoder_layerdrop (float, 可选, 默认为 0.0) — 解码器的 LayerDrop 概率。有关更多详细信息,请参阅 [LayerDrop 论文](请参阅 https://arxiv.org/abs/1909.11556)。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。
  • attention_type (str, 可选, 默认为 "block_sparse") — 是否在编码器中使用论文中介绍的块稀疏注意力(复杂度为 n)或原始注意力层(复杂度为 n^2)。 可能的值为 "original_full""block_sparse"
  • use_bias (bool, 可选, 默认为 False) — 是否在 query、key、value 中使用 bias。
  • block_size (int, 可选, 默认为 64) — 每个块的大小。 仅当 attention_type == "block_sparse" 时有用。
  • num_random_blocks (int, 可选, 默认为 3) — 每个 query 将会关注这些数量的随机块。 仅当 attention_type == "block_sparse" 时有用。
  • scale_embeddings (bool, 可选, 默认为 True) — 是否使用 (hidden_size ** 0.5) 重新缩放 embeddings。

这是用于存储 BigBirdPegasusModel 配置的配置类。 它用于根据指定的参数实例化 BigBirdPegasus 模型,定义模型架构。 使用默认值实例化配置将产生与 BigBirdPegasus google/bigbird-pegasus-large-arxiv 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 中的文档。

示例

>>> from transformers import BigBirdPegasusConfig, BigBirdPegasusModel

>>> # Initializing a BigBirdPegasus bigbird-pegasus-base style configuration
>>> configuration = BigBirdPegasusConfig()

>>> # Initializing a model (with random weights) from the bigbird-pegasus-base style configuration
>>> model = BigBirdPegasusModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

BigBirdPegasusModel

class transformers.BigBirdPegasusModel

< >

( config: BigBirdPegasusConfig )

参数

  • config (BigBirdPegasusConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

裸机 BigBirdPegasus 模型输出原始隐藏状态,顶部没有任何特定的 head。 此模型继承自 PreTrainedModel。 查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小等)。

此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列 tokens 的索引。 如果您提供 padding,默认情况下将被忽略。

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (形状为 (batch_size, sequence_length)torch.Tensor, 可选) — 避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 未被 mask
    • 0 表示 tokens 已被 mask

    什么是 attention masks?

  • decoder_input_ids (形状为 (batch_size, target_sequence_length)torch.LongTensor, 可选) — 为翻译和摘要训练提供。 默认情况下,模型将通过将 input_ids 向右移动来创建此张量,遵循论文中的做法。
  • decoder_attention_mask (形状为 (batch_size, target_sequence_length)torch.LongTensor, 可选) — 默认行为:生成一个张量,该张量忽略 decoder_input_ids 中的 pad tokens。 默认情况下也将使用因果 mask。

    如果您想更改 padding 行为,您应该阅读 modeling_bigbird_pegasus._prepare_decoder_attention_mask 并根据您的需要进行修改。 有关默认策略的更多信息,请参阅 论文 中的图 1。

  • decoder_head_mask (形状为 (num_layers, num_heads)torch.Tensor, 可选) — 用于使 decoder 中 attention 模块的选定 head 无效的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 未被 mask
    • 0 表示 head 已被 mask
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选) — Tuple 由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层输出处的隐藏状态序列。 在 decoder 的 cross-attention 中使用。
  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) Tuple,其中每个 tuple 有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(self-attention 块和 cross-attention 块中的 key 和 values),可以用于(请参阅 past_key_values 输入)加速顺序解码。

    如果使用 past_key_values,用户可以选择仅输入最后形状为 (batch_size, 1)decoder_input_ids (那些没有将其过去 key value 状态提供给此模型的),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids

  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部 embedding 查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • decoder_inputs_embeds (形状为 (batch_size, target_sequence_length, hidden_size)torch.FloatTensor, 可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 decoder_input_ids。 如果使用 past_key_values,则可以选择仅输入最后一个 decoder_inputs_embeds (请参阅 past_key_values)。 如果您希望比模型的内部 embedding 查找矩阵更精细地控制如何将 decoder_input_ids 索引转换为关联的向量,这将非常有用。

    如果 decoder_input_idsdecoder_inputs_embeds 均未设置,则 decoder_inputs_embeds 采用 inputs_embeds 的值。

  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values key value 状态,并且可以用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通 tuple。

返回值

transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

transformers.modeling_outputs.Seq2SeqModelOutputtorch.FloatTensor 的 tuple (如果传递 return_dict=False 或当 config.return_dict=False 时) ,包含各种元素,具体取决于配置 (BigBirdPegasusConfig) 和输入。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor) — 模型 decoder 最后一层输出处的隐藏状态序列。

    如果使用 past_key_values,则仅输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) Tuple,其中每个 tuple 有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(self-attention 块和 cross-attention 块中的 key 和 values),可以用于(请参阅 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 Tuple(embeddings 的输出一个,如果模型有 embedding 层,+ 每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    decoder 在每层输出处的隐藏状态以及可选的初始 embedding 输出。

  • decoder_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — 模型编码器最后一层的输出端的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组 (对于嵌入层的输出,如果模型有嵌入层,则有一个;对于每一层的输出,则各有一个)。

    编码器在每一层输出端的隐藏状态,加上可选的初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

BigBirdPegasusModel forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应该在此之后调用 Module 实例,而不是调用此函数,因为前者会处理预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, BigBirdPegasusModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> model = BigBirdPegasusModel.from_pretrained("google/bigbird-pegasus-large-arxiv")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

BigBirdPegasusForConditionalGeneration

class transformers.BigBirdPegasusForConditionalGeneration

< >

( config: BigBirdPegasusConfig )

参数

  • config (BigBirdPegasusConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

带有语言建模头的 BigBirdPegasus 模型。可用于摘要。此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法 (例如,下载或保存、调整输入嵌入大小等)。

此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列 tokens 的索引。如果您提供填充,默认情况下将忽略填充。

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (形状为 (batch_size, sequence_length)torch.Tensor, 可选) — 用于避免在 padding token 索引上执行注意力的掩码。在 [0, 1] 中选择的掩码值:

    • 1 表示 tokens 未被掩盖
    • 0 表示 tokens 被掩盖

    什么是注意力掩码?

  • decoder_input_ids (形状为 (batch_size, target_sequence_length)torch.LongTensor, 可选) — 为翻译和摘要训练提供。默认情况下,模型将通过将 input_ids 向右移动来创建此张量,遵循论文中的做法。
  • decoder_attention_mask (形状为 (batch_size, target_sequence_length)torch.LongTensor, 可选) — 默认行为:生成一个张量,该张量忽略 decoder_input_ids 中的 pad tokens。因果掩码也将默认使用。

    如果您想更改 padding 行为,您应该阅读 modeling_bigbird_pegasus._prepare_decoder_attention_mask 并根据您的需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。

  • decoder_head_mask (形状为 (num_layers, num_heads)torch.Tensor, 可选) — 用于置空解码器中注意力模块的选定头的掩码。在 [0, 1] 中选择的掩码值:

    • 1 表示头 未被掩盖
    • 0 表示头 被掩盖
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成,last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层输出端的隐藏状态序列。用于解码器的交叉注意力中。
  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态 (自注意力块和交叉注意力块中的键和值),这些状态可以用于 (请参阅 past_key_values 输入) 加速顺序解码。

    如果使用 past_key_values,则用户可以选择仅输入最后一次的 decoder_input_ids (那些没有将其过去的键值状态提供给此模型的) ,形状为 (batch_size, 1),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids

  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • decoder_inputs_embeds (形状为 (batch_size, target_sequence_length, hidden_size)torch.FloatTensor, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 decoder_input_ids。如果使用 past_key_values,则可以选择仅输入最后一次的 decoder_inputs_embeds (请参阅 past_key_values)。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 decoder_input_ids 索引转换为关联的向量,这将非常有用。

    如果 decoder_input_idsdecoder_inputs_embeds 均未设置,则 decoder_inputs_embedsinputs_embeds 的值。

  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values 键值状态,并且可以用于加速解码 (请参阅 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是纯元组。
  • labels (形状为 (batch_size, sequence_length)torch.LongTensor, 可选) — 用于计算掩码语言建模损失的标签。索引应为 [0, ..., config.vocab_size] 或 -100 (请参阅 input_ids 文档字符串)。索引设置为 -100 的 tokens 将被忽略 (掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的 tokens 计算。

返回值

transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqLMOutputtorch.FloatTensor 元组 (如果传递 return_dict=False 或当 config.return_dict=False 时),包括各种元素,具体取决于配置 (BigBirdPegasusConfig) 和输入。

  • loss (形状为 (1,)torch.FloatTensor, 可选, 当提供 labels 时返回) — 语言建模损失。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头的预测分数 (SoftMax 之前每个词汇表 token 的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) Tuple,其中每个 tuple 有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(self-attention 块和 cross-attention 块中的 key 和 values),可以用于(请参阅 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 Tuple(embeddings 的输出一个,如果模型有 embedding 层,+ 每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出端的隐藏状态,加上初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — 模型编码器最后一层的输出端的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组 (对于嵌入层的输出,如果模型有嵌入层,则有一个;对于每一层的输出,则各有一个)。

    编码器在每一层输出端的隐藏状态,加上初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

BigBirdPegasusForConditionalGeneration forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应该在此之后调用 Module 实例,而不是调用此函数,因为前者会处理预处理和后处理步骤,而后者会默默地忽略它们。

摘要示例

>>> from transformers import AutoTokenizer, BigBirdPegasusForConditionalGeneration

>>> model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")

>>> ARTICLE_TO_SUMMARIZE = (
...     "The dominant sequence transduction models are based on complex recurrent or convolutional neural "
...     "networks in an encoder-decoder configuration. The best performing models also connect the encoder "
...     "and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, "
...     "based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. "
...     "Experiments on two machine translation tasks show these models to be superior in quality "
...     "while being more parallelizable and requiring significantly less time to train."
... )
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=4096, return_tensors="pt", truncation=True)

>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=15)
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'dominant sequence models are based on recurrent or convolutional neural networks .'

BigBirdPegasusForSequenceClassification

class transformers.BigBirdPegasusForSequenceClassification

< >

( config: BigBirdPegasusConfig **kwargs )

参数

  • config (BigBirdPegasusConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

带有序列分类/头的 BigBirdPegasus 模型 (池化输出之上的线性层),例如用于 GLUE 任务。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法 (例如,下载或保存、调整输入嵌入大小等)。

此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (形状为 (batch_size, sequence_length)torch.Tensor可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩码 的 tokens,
    • 0 表示 被掩码 的 tokens。

    什么是 attention 掩码?

  • decoder_input_ids (形状为 (batch_size, target_sequence_length)torch.LongTensor可选) — 为翻译和摘要训练提供。 默认情况下,模型将通过将 input_ids 向右移动来创建此张量,遵循论文中的方法。
  • decoder_attention_mask (形状为 (batch_size, target_sequence_length)torch.LongTensor可选) — 默认行为:生成一个张量,该张量忽略 decoder_input_ids 中的 pad tokens。因果掩码也将默认使用。

    如果您想更改 padding 行为,您应该阅读 modeling_bigbird_pegasus._prepare_decoder_attention_mask 并根据您的需求进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。

  • decoder_head_mask (形状为 (num_layers, num_heads)torch.Tensor可选) — 用于置空 decoder 中 attention 模块的选定 heads 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩码
    • 0 表示 head 被掩码
  • encoder_outputs (tuple(tuple(torch.FloatTensor)可选) — 元组由 (last_hidden_state可选hidden_states可选attentions) 组成。 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size)可选) 是编码器最后一层输出的 hidden-states 序列。 在解码器的 cross-attention 中使用。
  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的 hidden-states(self-attention 块和 cross-attention 块中的键和值),可用于加速顺序解码(请参阅 past_key_values 输入)。

    如果使用 past_key_values,用户可以选择仅输入最后一个形状为 (batch_size, 1)decoder_input_ids(那些没有将其过去的键值状态提供给此模型的),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids

  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您想比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • decoder_inputs_embeds (形状为 (batch_size, target_sequence_length, hidden_size)torch.FloatTensor可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 decoder_input_ids。 如果使用 past_key_values,则可以选择仅输入最后一个 decoder_inputs_embeds(请参阅 past_key_values)。 如果您想比模型的内部嵌入查找矩阵更精细地控制如何将 decoder_input_ids 索引转换为关联的向量,这将非常有用。

    如果 decoder_input_idsdecoder_inputs_embeds 均未设置,则 decoder_inputs_embedsinputs_embeds 的值。

  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并且可以用于加速解码(请参阅 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (形状为 (batch_size,)torch.LongTensor可选) — 用于计算序列分类/回归损失的标签。 索引应在 [0, ..., config.num_labels - 1] 中。 如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回值

transformers.modeling_outputs.Seq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包括各种元素,具体取决于配置 (BigBirdPegasusConfig) 和输入。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 label 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (形状为 (batch_size, config.num_labels)torch.FloatTensor) — 分类(或回归,如果 config.num_labels==1)分数(在 SoftMax 之前)。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) Tuple,其中每个 tuple 有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(self-attention 块和 cross-attention 块中的 key 和 values),可以用于(请参阅 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 Tuple(embeddings 的输出一个,如果模型有 embedding 层,+ 每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出端的隐藏状态,加上初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — 模型编码器最后一层的输出端的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组 (对于嵌入层的输出,如果模型有嵌入层,则有一个;对于每一层的输出,则各有一个)。

    编码器在每一层输出端的隐藏状态,加上初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

BigBirdPegasusForSequenceClassification forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应该在此之后调用 Module 实例,而不是调用此函数,因为前者会处理预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, BigBirdPegasusForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> model = BigBirdPegasusForSequenceClassification.from_pretrained("google/bigbird-pegasus-large-arxiv")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BigBirdPegasusForSequenceClassification.from_pretrained("google/bigbird-pegasus-large-arxiv", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, BigBirdPegasusForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> model = BigBirdPegasusForSequenceClassification.from_pretrained("google/bigbird-pegasus-large-arxiv", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BigBirdPegasusForSequenceClassification.from_pretrained(
...     "google/bigbird-pegasus-large-arxiv", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

BigBirdPegasusForQuestionAnswering

class transformers.BigBirdPegasusForQuestionAnswering

< >

( config )

参数

  • config (BigBirdPegasusConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

BigBirdPegasus 模型,顶部带有跨度分类头,用于抽取式问答任务,例如 SQuAD(hidden-states 输出顶部的线性层,用于计算 span start logitsspan end logits)。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法 (例如,下载或保存、调整输入嵌入大小等)。

此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: Tensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (形状为 (batch_size, sequence_length)torch.Tensor可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩码 的 tokens,
    • 0 表示 被掩码 的 tokens。

    什么是 attention 掩码?

  • decoder_input_ids (形状为 (batch_size, target_sequence_length)torch.LongTensor可选) — 为翻译和摘要训练提供。 默认情况下,模型将通过将 input_ids 向右移动来创建此张量,遵循论文中的方法。
  • decoder_attention_mask (torch.LongTensor,形状为 (batch_size, target_sequence_length)可选) — 默认行为:生成一个张量,该张量忽略 decoder_input_ids 中的 padding 标记。默认情况下也会使用因果掩码。

    如果您想更改 padding 行为,您应该阅读 modeling_bigbird_pegasus._prepare_decoder_attention_mask 并根据您的需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图 1。

  • decoder_head_mask (torch.Tensor,形状为 (num_layers, num_heads)可选) — 用于置空 decoder 中 attention 模块的选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩蔽
    • 0 表示 head 被掩蔽
  • encoder_outputs (tuple(tuple(torch.FloatTensor)可选) — 元组由 (last_hidden_state可选hidden_states可选attentions) 组成。last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size)可选) 是编码器最后一层的输出处的隐藏状态序列。用于解码器的交叉注意力中。
  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),这些状态可以用于(参见 past_key_values 输入)加速顺序解码。

    如果使用 past_key_values,用户可以选择仅输入最后的 decoder_input_ids(那些没有将其过去的键值状态提供给此模型的),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor,形状为 (batch_size, target_sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 decoder_input_ids。如果使用 past_key_values,则可以选择仅输入最后的 decoder_inputs_embeds(参见 past_key_values)。如果您想比模型的内部嵌入查找矩阵更精细地控制如何将 decoder_input_ids 索引转换为关联的向量,这将非常有用。

    如果 decoder_input_idsdecoder_inputs_embeds 均未设置,则 decoder_inputs_embedsinputs_embeds 的值。

  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并且可以用于加速解码(参见 past_key_values)。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention 张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • start_positions (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算 token 分类损失的标记跨度开始位置(索引)的标签。位置被限制在序列的长度(sequence_length)内。序列之外的位置不计入损失计算。
  • end_positions (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算 token 分类损失的标记跨度结束位置(索引)的标签。位置被限制在序列的长度(sequence_length)内。序列之外的位置不计入损失计算。

返回值

transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput 或一个 torch.FloatTensor 元组(如果传递 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (BigBirdPegasusConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 总跨度提取损失是开始和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 跨度开始得分(在 SoftMax 之前)。

  • end_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 跨度结束得分(在 SoftMax 之前)。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) Tuple,其中每个 tuple 有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。

    包含预先计算的隐藏状态(self-attention 块和 cross-attention 块中的 key 和 values),可以用于(请参阅 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 Tuple(embeddings 的输出一个,如果模型有 embedding 层,+ 每层输出一个),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出端的隐藏状态,加上初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — 模型编码器最后一层的输出端的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组 (对于嵌入层的输出,如果模型有嵌入层,则有一个;对于每一层的输出,则各有一个)。

    编码器在每一层输出端的隐藏状态,加上初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

BigBirdPegasusForQuestionAnswering 的 forward 方法覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数内定义,但应该在此之后调用 Module 实例,而不是调用此函数,因为前者会处理预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, BigBirdPegasusForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> model = BigBirdPegasusForQuestionAnswering.from_pretrained("google/bigbird-pegasus-large-arxiv")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss

BigBirdPegasusForCausalLM

class transformers.BigBirdPegasusForCausalLM

< >

( config )

forward

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。如果您提供 padding,默认情况下将忽略 padding。

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 掩码,用于避免在 padding 标记索引上执行 attention。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩蔽
    • 0 表示标记被掩蔽

    什么是 attention 掩码?

  • encoder_hidden_states (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出处的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,用于避免对编码器输入的 padding 标记索引执行 attention。如果模型配置为解码器,则此掩码在交叉注意力中使用。掩码值在 [0, 1] 中选择:
  • head_mask (torch.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于置空 attention 模块的选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩蔽
    • 0 表示 head 被掩蔽
  • cross_attn_head_mask (torch.Tensor,形状为 (decoder_layers, decoder_attention_heads)可选) — 用于置空交叉 attention 模块的选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩蔽
    • 0 表示 head 被掩蔽
  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head)) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的附加张量。当模型用作序列到序列模型中的解码器时,才需要这两个附加张量。

    包含预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),这些状态可以用于(参见 past_key_values 输入)加速顺序解码。

    如果使用 past_key_values,用户可以选择仅输入最后的 decoder_input_ids(那些没有将其过去的键值状态提供给此模型的),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids

  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算 masked language modeling 损失的标签。索引应为 [0, ..., config.vocab_size] 或 -100(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩蔽),损失仅针对标签在 [0, ..., config.vocab_size] 中的标记计算。
  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。

    • 1 表示 未被掩码 的 token,
    • 0 表示 被掩码 的 token。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。

返回值

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (BigBirdPegasusConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于预测下一个 token)。

  • logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头的预测分数 (SoftMax 之前每个词汇表 token 的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(对于嵌入的输出,如果模型具有嵌入层,则为一个;对于每个层的输出,则为一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组 (每个层一个)。

    交叉注意力 softmax 之后的注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递了 use_cache=True 或当 config.use_cache=True 时返回) — torch.FloatTensor 元组的元组,长度为 config.n_layers,每个元组包含自注意力和交叉注意力层的缓存键、值状态(如果模型用于编码器-解码器设置)。 仅当 config.is_decoder = True 时相关。

    包含预先计算的隐藏状态(注意力块中的键和值),可以用于(参见 past_key_values 输入)加速顺序解码。

示例

>>> from transformers import AutoTokenizer, BigBirdPegasusForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> model = BigBirdPegasusForCausalLM.from_pretrained(
...     "google/bigbird-pegasus-large-arxiv", add_cross_attention=False
... )
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> logits = outputs.logits
< > 在 GitHub 上更新