Transformers 文档
DiffLlama
并获取增强的文档体验
开始使用
DiffLlama
概述
DiffLlama 模型由 Kazuma Matsumoto 在 Differential Transformer 中提出。此模型结合了 Llama 模型和 Differential Transformer 的 Attention 机制。
以下是论文的摘要:
Transformer 倾向于过度分配注意力给不相关的上下文。在这项工作中,我们介绍了 Diff Transformer,它可以放大对相关上下文的注意力,同时消除噪声。具体来说,差分注意力机制将注意力分数计算为两个独立的 softmax 注意力图之间的差异。减法消除了噪声,促进了稀疏注意力模式的出现。在语言建模上的实验结果表明,在扩大模型尺寸和训练 tokens 的各种设置中,Diff Transformer 的性能优于 Transformer。更令人感兴趣的是,它在实际应用中提供了显著的优势,例如长上下文建模、关键信息检索、幻觉缓解、上下文学习和激活异常值的减少。通过减少对不相关上下文的分心,Diff Transformer 可以减轻问答和文本摘要中的幻觉。对于上下文学习,Diff Transformer 不仅提高了准确性,而且对顺序置换也更鲁棒,这被认为是长期的鲁棒性问题。结果表明,Diff Transformer 是一种高效且有前途的架构,可以推进大型语言模型的发展。
使用提示
此模型的超参数与 Llama 模型相同。
DiffLlamaConfig
class transformers.DiffLlamaConfig
< source >( vocab_size = 32000 hidden_size = 2048 intermediate_size = 8192 num_hidden_layers = 16 num_attention_heads = 32 num_key_value_heads = None hidden_act = 'silu' max_position_embeddings = 2048 initializer_range = 0.02 rms_norm_eps = 1e-05 use_cache = True pad_token_id = None bos_token_id = 1 eos_token_id = 2 tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None attention_bias = False attention_dropout = 0.0 lambda_std_dev = 0.1 head_dim = None **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 32000) — DiffLlama 模型的词汇表大小。定义了在调用 DiffLlamaModel 时传递的inputs_ids
可以表示的不同 tokens 的数量。 - hidden_size (
int
, 可选, 默认为 2048) — 隐藏层表示的维度。 - intermediate_size (
int
, 可选, 默认为 8192) — MLP 表示的维度。 - num_hidden_layers (
int
, 可选, 默认为 16) — Transformer 解码器中隐藏层的数量。 - num_attention_heads (
int
, 可选, 默认为 32) — Transformer 解码器中每个注意力层的注意力头数。 - num_key_value_heads (
int
, 可选) — 这是应该用于实现分组查询注意力(Grouped Query Attention)的 key_value 头的数量。如果num_key_value_heads=num_attention_heads
,模型将使用多头注意力(Multi Head Attention, MHA);如果num_key_value_heads=1
,模型将使用多查询注意力(Multi Query Attention, MQA);否则,将使用 GQA。当将多头检查点转换为 GQA 检查点时,每个组 key 和 value 头应通过平均池化该组内的所有原始头来构建。有关更多详细信息,请查看这篇论文。如果未指定,则默认为num_attention_heads
。 - hidden_act (
str
或function
, 可选, 默认为"silu"
) — 解码器中的非线性激活函数(函数或字符串)。 - max_position_embeddings (
int
, 可选, 默认为 2048) — 此模型可能使用的最大序列长度。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - rms_norm_eps (
float
, 可选, 默认为 1e-05) — rms 归一化层使用的 epsilon 值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回上次的 key/values 注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - pad_token_id (
int
, 可选) — Padding token id。 - bos_token_id (
int
, 可选, 默认为 1) — 流开始 token id。 - eos_token_id (
int
, 可选, 默认为 2) — 流结束 token id。 - tie_word_embeddings (
bool
, 可选, 默认为False
) — 是否绑定词嵌入权重 - rope_theta (
float
, 可选, 默认为 10000.0) — RoPE 嵌入的基础周期。 - rope_scaling (
Dict
, 可选) — 包含 RoPE 嵌入的缩放配置的字典。注意:如果您应用新的 rope 类型,并期望模型在更长的max_position_embeddings
上工作,我们建议您相应地更新此值。预期内容:rope_type
(str
):要使用的 RoPE 的子变体。可以是 [‘default’, ‘linear’, ‘dynamic’, ‘yarn’, ‘longrope’, ‘diffllama3’] 之一,其中 ‘default’ 是原始 RoPE 实现。factor
(float
, 可选):与除 ‘default’ 之外的所有 rope 类型一起使用。应用于 RoPE 嵌入的缩放因子。在大多数缩放类型中,x 的factor
将使模型能够处理长度为 x * 原始最大预训练长度的序列。original_max_position_embeddings
(int
, 可选):与 ‘dynamic’、‘longrope’ 和 ‘diffllama3’ 一起使用。预训练期间使用的原始最大位置嵌入。attention_factor
(float
, 可选):与 ‘yarn’ 和 ‘longrope’ 一起使用。应用于注意力计算的缩放因子。如果未指定,则默认为实现建议的值,使用factor
字段推断建议值。beta_fast
(float
, 可选):仅与 ‘yarn’ 一起使用。用于在线性斜坡函数中设置外推(仅限)边界的参数。如果未指定,则默认为 32。beta_slow
(float
, 可选):仅与 ‘yarn’ 一起使用。用于在线性斜坡函数中设置插值(仅限)边界的参数。如果未指定,则默认为 1。short_factor
(List[float]
, 可选):仅与 ‘longrope’ 一起使用。应用于短上下文(<original_max_position_embeddings
)的缩放因子。必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 的长度相同。long_factor
(List[float]
, 可选):仅与 ‘longrope’ 一起使用。应用于长上下文(<original_max_position_embeddings
)的缩放因子。必须是数字列表,其长度与隐藏层大小除以注意力头数再除以 2 的长度相同。low_freq_factor
(float
, 可选):仅与 ‘diffllama3’ 一起使用。应用于 RoPE 低频分量的缩放因子。high_freq_factor
(float
, 可选):仅与 ‘diffllama3’ 一起使用。应用于 RoPE 高频分量的缩放因子。 - attention_bias (
bool
, 可选, 默认为False
) — 在自注意力期间,是否在 query、key、value 和输出投影层中使用偏置。 - attention_dropout (
float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。 - lambda_std_dev (
float
, 可选, 默认为 0.1) — 注意力层中参数 lambda 初始化时的标准差。 - head_dim (
int
, 可选) — 注意力头的维度。如果为 None,则默认为 hidden_size // num_heads
这是用于存储 DiffLlamaModel 配置的配置类。它用于根据指定的参数实例化 DiffLlama 模型,定义模型架构。使用默认值实例化配置将产生与 kajuma/DiffLlama-0.3B-handcut 相似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。
>>> from transformers import DiffLlamaModel, DiffLlamaConfig
>>> # Initializing a DiffLlama diffllama-7b style configuration
>>> configuration = DiffLlamaConfig()
>>> # Initializing a model from the diffllama-7b style configuration
>>> model = DiffLlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
DiffLlamaModel
class transformers.DiffLlamaModel
< source >( config: DiffLlamaConfig )
参数
- config (DiffLlamaConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
- config — DiffLlamaConfig
裸 DiffLlama 模型输出原始隐藏状态,顶部没有任何特定的头部。此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与通用用法和行为相关的所有事项。
Transformer 解码器,由 config.num_hidden_layers 层组成。每一层都是一个 DiffLlamaDecoderLayer
前向传播
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。如果您提供填充,默认情况下将忽略填充。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示未被掩盖的标记,
- 0 表示被掩盖的标记。
索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后一个input_ids
(请参阅past_key_values
)。如果您想更改填充行为,则应阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示头部未被掩盖,
- 0 表示头部被掩盖。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的),形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描述输入序列标记在序列中位置的索引。 与position_ids
相反,此张量不受填充的影响。 它用于在正确的位置更新缓存并推断完整序列长度。
DiffLlamaModel 的前向传播方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
DiffLlamaForCausalLM
前向传播
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.models.diffllama.modeling_diffllama.KwargsForCausalLM] ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被 mask,
- 0 表示 tokens 已被 mask。
索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示 head 未被 mask,
- 0 表示 head 已被 mask。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 tokens 的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组都有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其过去的键值状态提供给此模型的input_ids
),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参阅返回的张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是纯元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列 tokens 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算 masked language modeling loss 的标签。 索引应在[0, ..., config.vocab_size]
或 -100 中(请参阅input_ids
文档字符串)。 索引设置为-100
的 tokens 将被忽略(masked),loss 仅针对标签在[0, ..., config.vocab_size]
中的 tokens 计算。 - logits_to_keep (
int
或torch.Tensor
,可选) — 如果是int
,则计算最后logits_to_keep
个 tokens 的 logits。 如果为0
,则计算所有input_ids
的 logits(特殊情况)。 只有最后一个 token logits 是生成所需的,并且仅针对该 token 计算它们可以节省内存,这对于长序列或大词汇量大小而言变得非常重要。 如果是torch.Tensor
,则必须是 1D,对应于要在序列长度维度中保留的索引。 这在使用 packed tensor 格式(批次和序列长度的单个维度)时很有用。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (DiffLlamaConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模 loss(用于下一个 token 预测)。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组都有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的隐藏状态(自注意力模块中的键和值),可用于加速顺序解码(请参阅
past_key_values
输入)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出提供一个,+ 每个层的输出提供一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出以及可选的初始嵌入输出处的 hidden-states。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attentions 权重,用于计算自注意力 head 中的加权平均值。
DiffLlamaForCausalLM forward 方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, DiffLlamaForCausalLM
>>> model = DiffLlamaForCausalLM.from_pretrained("google/diffllama-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/diffllama-7b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
DiffLlamaForSequenceClassification
class transformers.DiffLlamaForSequenceClassification
< source >( config )
参数
- config (DiffLlamaConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
带有序列分类 head(线性层)的 DiffLlama 模型 transformer。
DiffLlamaForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型(例如 GPT-2)一样。
由于它在最后一个 token 上进行分类,因此需要知道最后一个 token 的位置。 如果在配置中定义了 pad_token_id
,它会在每行中找到最后一个不是 padding token 的 token。 如果未定义 pad_token_id
,它只会在批次的每行中获取最后一个值。 由于当传递 inputs_embeds
而不是 input_ids
时,它无法猜测 padding tokens,因此它执行相同的操作(在批次的每行中获取最后一个值)。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与通用用法和行为相关的所有事项。
前向传播
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被 mask,
- 0 表示 tokens 已被 mask。
索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需要进行修改。 有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示 head 未被 mask,
- 0 表示 head 已被 mask。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 tokens 的位置索引。在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组都有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其过去的键值状态提供给此模型的input_ids
),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。 详见返回张量下的attentions
部分了解更多详情。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 详见返回张量下的hidden_states
部分了解更多详情。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是纯粹的元组。 - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — 索引,描述输入序列 token 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存,并推断完整序列的长度。 - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失 (均方误差损失)。 如果config.num_labels > 1
,则计算分类损失 (交叉熵损失)。
The DiffLlamaForSequenceClassification forward 方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
DiffLlamaForQuestionAnswering
class transformers.DiffLlamaForQuestionAnswering
< source >( config )
参数
- config (DiffLlamaConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法加载模型权重。
带有跨度分类头的 DiffLlama 模型 Transformer,用于抽取式问答任务,如 SQuAD (隐藏状态输出之上的线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与通用用法和行为相关的所有事项。
前向传播
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs )
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。 如果您提供 padding,默认情况下将被忽略。索引可以使用 AutoTokenizer 获取。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在 padding token 索引上执行注意力的掩码。 在[0, 1]
中选择掩码值:- 1 表示 tokens 未被掩蔽,
- 0 表示 tokens 已被掩蔽。
索引可以使用 AutoTokenizer 获取。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
如果使用
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改 padding 行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需求进行修改。 有关默认策略的更多信息,请参阅 论文 中的图 1。- 1 表示 head 未被掩蔽,
- 0 表示 head 已被掩蔽。
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
ortuple(tuple(torch.FloatTensor))
, optional) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其 past key value 状态提供给此模型的),形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。 详见返回张量下的attentions
部分了解更多详情。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 详见返回张量下的hidden_states
部分了解更多详情。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是纯粹的元组。 - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — 索引,描述输入序列 tokens 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存,并推断完整序列的长度。 - start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算 token 分类损失的已标注跨度开始位置(索引)的标签。 位置被限制在序列的长度 (sequence_length
) 内。 序列之外的位置不计入损失计算。 - end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算 token 分类损失的已标注跨度结束位置(索引)的标签。 位置被限制在序列的长度 (sequence_length
) 内。 序列之外的位置不计入损失计算。
The DiffLlamaForQuestionAnswering forward 方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
DiffLlamaForTokenClassification
class transformers.DiffLlamaForTokenClassification
< source >( config )
参数
- config (DiffLlamaConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法加载模型权重。
带有 token 分类头的 DiffLlama 模型 Transformer(隐藏状态输出之上的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。 查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与通用用法和行为相关的所有事项。
前向传播
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。如果您提供填充,默认情况下将忽略填充。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 获取详细信息。
- attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 获取详细信息。
如果使用了
past_key_values
,则可以选择仅输入最后的input_ids
(请参阅past_key_values
)。如果您想更改填充行为,您应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据您的需求进行修改。 有关默认策略的更多信息,请参见 论文 中的图 1。- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的 hidden-states(self-attention 模块和 cross-attention 模块中的 key 和 values),可用于加速顺序解码。 这通常包含模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为传统缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回传统缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些没有将其过去的 key value 状态提供给此模型的) 形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 或者,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回的张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描述输入序列 tokens 在序列中位置的索引。 与position_ids
相反,此张量不受填充的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方误差损失)。 如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),包括各种元素,具体取决于配置 (DiffLlamaConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出提供一个,+ 每个层的输出提供一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出以及可选的初始嵌入输出处的 hidden-states。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attentions 权重,用于计算自注意力 head 中的加权平均值。
DiffLlamaForTokenClassification forward 方法,覆盖了 __call__
特殊方法。
尽管前向传播的配方需要在该函数中定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, DiffLlamaForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("kajuma/DiffLlama-0.3B-handcut")
>>> model = DiffLlamaForTokenClassification.from_pretrained("kajuma/DiffLlama-0.3B-handcut")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss