BigBird
概述
BigBird 模型是在 Zaheer、Manzil 和 Guruganesh、Guru 和 Dubey、Kumar Avinava 和 Ainslie、Joshua 和 Alberti、Chris 和 Ontanon、Santiago 和 Pham、Philip 和 Ravula、Anirudh 和 Wang、Qifan 和 Yang、Li 等人的Big Bird: Transformers for Longer Sequences中提出的。BigBird 是一种基于稀疏注意力的 transformer,它将基于 Transformer 的模型(例如 BERT)扩展到更长的序列。除了稀疏注意力之外,BigBird 还对输入序列应用全局注意力和随机注意力。从理论上讲,已经证明应用稀疏、全局和随机注意力可以近似完全注意力,同时对于更长的序列而言,计算效率更高。由于能够处理更长的上下文,BigBird 在各种长文档 NLP 任务(例如问答和摘要)上与 BERT 或 RoBERTa 相比,表现出了更高的性能。
论文的摘要是:
基于 Transformer 的模型(例如 BERT)一直是 NLP 中最成功的深度学习模型之一。不幸的是,由于其完全注意力机制,它们的核心限制之一是对序列长度的二次依赖性(主要是在内存方面)。为了解决这个问题,我们提出了 BigBird,这是一种稀疏注意力机制,它将这种二次依赖性降低到线性。我们证明 BigBird 是序列函数的通用逼近器,并且是图灵完备的,从而保留了二次全注意力模型的这些特性。在此过程中,我们的理论分析揭示了拥有 O(1) 全局标记(例如 CLS)的一些好处,这些标记作为稀疏注意力机制的一部分关注整个序列。所提出的稀疏注意力可以处理长度高达之前使用类似硬件可能的 8 倍的序列。由于能够处理更长的上下文,BigBird 大幅提高了各种 NLP 任务(例如问答和摘要)的性能。我们还提出了基因组数据的新颖应用。
此模型由 vasudevgupta 贡献。原始代码可以在此处找到。
使用技巧
- 有关 BigBird 注意力工作原理的详细说明,请参阅此博客文章。
- BigBird 附带 2 个实现:original_full 和 block_sparse。对于序列长度 < 1024,建议使用 original_full,因为使用 block_sparse 注意力没有好处。
- 代码当前使用 3 个块的窗口大小和 2 个全局块。
- 序列长度必须可以被块大小整除。
- 当前实现仅支持 ITC。
- 当前实现不支持 num_random_blocks = 0
- BigBird 是一个具有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
资源
BigBirdConfig
类 transformers.BigBirdConfig
< 源代码 >( vocab_size = 50358 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu_new' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 4096 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 use_cache = True pad_token_id = 0 bos_token_id = 1 eos_token_id = 2 sep_token_id = 66 attention_type = 'block_sparse' use_bias = True rescale_embeddings = False block_size = 64 num_random_blocks = 3 classifier_dropout = None **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 50358) — BigBird 模型的词汇表大小。定义了调用 BigBirdModel 时传递的inputs_ids
可以表示的不同词例的数量。 - hidden_size (
int
, 可选, 默认为 768) — 编码器层和池化层的维度。 - num_hidden_layers (
int
, 可选, 默认为 12) — Transformer 编码器中的隐藏层数。 - num_attention_heads (
int
, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。 - intermediate_size (
int
, 可选, 默认为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。 - hidden_act (
str
或function
, 可选, 默认为"gelu_new"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。 如果是字符串,则支持"gelu"
、"relu"
、"selu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, 可选, 默认为 0.1) — 嵌入、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。 - max_position_embeddings (
int
, 可选, 默认为 4096) — 此模型可能使用的最大序列长度。 通常将其设置为较大的值以防万一(例如,1024 或 2048 或 4096)。 - type_vocab_size (
int
, 可选, 默认为 2) — 调用 BigBirdModel 时传递的token_type_ids
的词汇表大小。 - initializer_range (
float
,可选,默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
,可选,默认为 1e-12) — 层归一化层使用的 epsilon。 - is_decoder (
bool
,可选,默认为False
) — 模型是否用作解码器。如果为False
,则模型用作编码器。 - use_cache (
bool
,可选,默认为True
) — 模型是否应返回最后键/值的注意力(并非所有模型都使用)。仅在config.is_decoder=True
时相关。 - attention_type (
str
,可选,默认为"block_sparse"
) — 是否使用论文中介绍的块稀疏注意力(具有 n 复杂度)或原始注意力层(具有 n^2 复杂度)。可能的值为"original_full"
和"block_sparse"
。 - use_bias (
bool
,可选,默认为True
) — 是否在查询、键、值中使用偏差。 - rescale_embeddings (
bool
,可选,默认为False
) — 是否使用 (hidden_size ** 0.5) 重新缩放嵌入。 - block_size (
int
,可选,默认为 64) — 每个块的大小。仅在attention_type == "block_sparse"
时有用。 - num_random_blocks (
int
,可选,默认为 3) — 每个查询将参与这些数量的随机块。仅在attention_type == "block_sparse"
时有用。 - classifier_dropout (
float
,可选) — 分类头的 dropout 比率。
这是用于存储 BigBirdModel 配置的配置类。它用于根据指定的参数实例化 BigBird 模型,定义模型架构。使用默认值实例化配置将产生与 BigBird google/bigbird-roberta-base 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。
示例
>>> from transformers import BigBirdConfig, BigBirdModel
>>> # Initializing a BigBird google/bigbird-roberta-base style configuration
>>> configuration = BigBirdConfig()
>>> # Initializing a model (with random weights) from the google/bigbird-roberta-base style configuration
>>> model = BigBirdModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
BigBirdTokenizer
类 transformers.BigBirdTokenizer
< 源代码 >( vocab_file unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' pad_token = '<pad>' sep_token = '[SEP]' mask_token = '[MASK]' cls_token = '[CLS]' sp_model_kwargs: Optional = None **kwargs )
参数
- vocab_file (
str
) — SentencePiece 文件(通常扩展名为 .spm),包含实例化分词器所需的词汇表。 - unk_token (
str
, 可选, 默认为"<unk>"
) — 未知标记。词汇表中不存在的标记无法转换为 ID,并设置为使用此标记代替。 - bos_token (
str
, 可选, 默认为"<s>"
) — 序列开始标记。 - eos_token (
str
, 可选, 默认为"</s>"
) — 序列结束标记。 - pad_token (
str
, 可选, 默认为"<pad>"
) — 用于填充的标记,例如批量处理不同长度的序列时。 - sep_token (
str
, 可选, 默认为"[SEP]"
) — 分隔符标记,用于从多个序列构建序列时使用,例如用于序列分类的两个序列或用于文本和问题的问答。它也用作使用特殊标记构建的序列的最后一个标记。 - mask_token (
str
, 可选, 默认为"[MASK]"
) — 用于掩盖值的标记。这是使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。 - cls_token (
str
, 可选, 默认为"[CLS]"
) — 用于序列分类(对整个序列进行分类,而不是对每个标记进行分类)的分类标记。当使用特殊标记构建时,它是序列的第一个标记。 - sp_model_kwargs (
dict
, 可选) — 将传递给SentencePieceProcessor.__init__()
方法。 SentencePiece 的 Python 包装器 可用于设置:-
enable_sampling
:启用子词正则化。 -
nbest_size
:unigram 的采样参数。对 BPE-Dropout 无效。nbest_size = {0,1}
:不执行采样。nbest_size > 1
:从 nbest_size 个结果中采样。nbest_size < 0
:假设 nbest_size 是无限的,并使用前向过滤和后向采样算法从所有假设(格)中采样。
-
alpha
:unigram 采样的平滑参数,以及 BPE-dropout 的合并操作的 dropout 概率。
-
构建一个 BigBird 分词器。基于 SentencePiece。
此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。
build_inputs_with_special_tokens
< 源代码 >( token_ids_0: List token_ids_1: Optional = None ) → List[int]
通过连接和添加特殊标记,从序列或序列对构建用于序列分类任务的模型输入。Big Bird 序列具有以下格式
- 单个序列:
[CLS] X [SEP]
- 序列对:
[CLS] A [SEP] B [SEP]
get_special_tokens_mask
< 源代码 >( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → List[int]
从未添加特殊令牌的令牌列表中检索序列 ID。当使用分词器 prepare_for_model
方法添加特殊令牌时,将调用此方法。
create_token_type_ids_from_sequences
< 源代码 >( token_ids_0: List token_ids_1: Optional = None ) → List[int]
根据传入的两个序列创建一个掩码,用于序列对分类任务。BERT 序列对掩码具有以下格式: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | 第一个序列 | 第二个序列 | 如果 token_ids_1
为 None
,则此方法仅返回掩码的第一部分(0)。
BigBirdTokenizerFast
类 transformers.BigBirdTokenizerFast
< 源代码 >( vocab_file = None tokenizer_file = None unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' pad_token = '<pad>' sep_token = '[SEP]' mask_token = '[MASK]' cls_token = '[CLS]' **kwargs )
参数
- vocab_file (
str
) — SentencePiece 文件(通常扩展名为 .spm),其中包含实例化分词器所需的词汇表。 - bos_token (
str
, 可选, 默认为"<s>"
) — 预训练期间使用的序列开始标记。可以用作序列分类标记。使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是
cls_token
。 - eos_token (
str
, 可选, 默认为"</s>"
) — 序列结束标记。 .. 注意:: 当使用特殊标记构建序列时,这不是用于序列结束的标记。 使用的标记是sep_token
。 - unk_token (
str
, 可选, 默认为"<unk>"
) — 未知标记。 词汇表中不存在的标记无法转换为 ID,并设置为改为使用此标记。 - sep_token (
str
, 可选, 默认为"[SEP]"
) — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。 它也用作使用特殊标记构建的序列的最后一个标记。 - pad_token (
str
, 可选, 默认为"<pad>"
) — 用于填充的标记,例如在批处理不同长度的序列时。 - cls_token (
str
, 可选, 默认为"[CLS]"
) — 分类器标记,用于在进行序列分类时(对整个序列进行分类而不是对每个标记进行分类)。 使用特殊标记构建时,它是序列的第一个标记。 - mask_token (
str
, 可选, 默认为"[MASK]"
) — 用于屏蔽值的标记。 这是在使用屏蔽语言建模训练此模型时使用的标记。 这是模型将尝试预测的标记。
构建一个“快速”BigBird 分词器(由 HuggingFace 的 tokenizers 库支持)。 基于 Unigram。 此分词器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。 用户应参考此超类以获取有关这些方法的更多信息
build_inputs_with_special_tokens
< source >( token_ids_0: List token_ids_1: Optional = None ) → List[int]
通过连接和添加特殊标记,从序列或序列对构建用于序列分类任务的模型输入。BigBird 序列具有以下格式
- 单个序列:
[CLS] X [SEP]
- 序列对:
[CLS] A [SEP] B [SEP]
create_token_type_ids_from_sequences
< source >( token_ids_0: List token_ids_1: Optional = None ) → List[int]
根据传入的两个序列创建一个掩码,用于序列对分类任务。ALBERT
如果 token_ids_1 为 None,则只返回掩码的第一部分(0)。
get_special_tokens_mask
< source >( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → List[int]
从没有添加特殊标记的标记列表中检索序列 ID。 当使用分词器 prepare_for_model
方法添加特殊标记时,将调用此方法。
BigBird 特定的输出
类 transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput
< 源代码 >( loss: Optional = None prediction_logits: FloatTensor = None seq_relationship_logits: FloatTensor = None hidden_states: Optional = None attentions: Optional = None )
参数
- loss (可选, 当提供
labels
时返回, 形状为(1,)
的torch.FloatTensor
) — 总损失,即掩码语言建模损失和下一序列预测(分类)损失的总和。 - prediction_logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 - seq_relationship_logits (
torch.FloatTensor
形状为(batch_size, 2)
) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。 - hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
- attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForPreTraining 的输出类型。
BigBirdModel
类 transformers.BigBirdModel
< 源代码 >( config add_pooling_layer = True )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
基本的 BigBird 模型 Transformer,输出原始隐藏状态,顶部没有任何特定头部。此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有内容。
该模型可以充当编码器(仅具有自注意力机制),也可以充当解码器,在这种情况下,按照 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin 在 Attention is all you need 中描述的架构,在自注意力层之间添加一层交叉注意力层。
要充当解码器,需要使用将配置的 is_decoder
参数设置为 True
来初始化模型。要在 Seq2Seq 模型中使用,需要使用 is_decoder
参数和 add_cross_attention
都设置为 True
来初始化模型;然后需要将 encoder_hidden_states
作为输入传递给前向传播。
forward
< source >( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码以避免对填充标记索引执行注意力。掩码值在[0, 1]
中选择:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被屏蔽,
- 0 表示头部已被屏蔽。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望更好地控制如何将 input_ids 索引转换为关联向量,而不是使用模型的内部嵌入查找矩阵,则此选项很有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - encoder_hidden_states (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
,可选) — 避免对编码器输入的填充标记索引执行注意力操作的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。在[0, 1]
中选择的掩码值:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
- past_key_values (长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
,每个元组包含 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
的张量) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。
返回值
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或 config.return_dict=False
时)包含各种元素,具体取决于配置(BigBirdConfig)和输入。
-
last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
形状为(batch_size, hidden_size)
) — 序列第一个标记(分类标记)的最后一层隐藏状态,经过用于辅助预训练任务的层进一步处理后得到。例如,对于 BERT 系列模型,这会在经过线性层和 tanh 激活函数处理后返回分类标记。线性层权重在预训练期间从下一句预测(分类)目标中训练得到。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则一个是嵌入的输出,+ 一个是每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
和config.add_cross_attention=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器交叉注意力层的注意力权重,在注意力 softmax 后,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及可选的(如果config.is_encoder_decoder=True
)2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块中的键和值,以及可选的(如果
config.is_encoder_decoder=True
)交叉注意力块中的键和值),可用于(请参阅past_key_values
输入)加速顺序解码。
BigBirdModel 的 forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BigBirdModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdModel.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
BigBirdForPreTraining
forward
< source >( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None next_sentence_label: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。索引可以通过 AutoTokenizer 获取。详见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,避免对填充标记索引执行注意力。掩码值在[0, 1]
中选择:- 1 表示 未被掩码 的标记,
- 0 表示 被掩码 的标记。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- position_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被遮蔽,
- 0 表示头部已被遮蔽.
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
形状为(batch_size, sequence_length)
, 可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(参见input_ids
文档字符串)索引设置为-100
的标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的标记计算 - next_sentence_label (
torch.LongTensor
形状为(batch_size,)
,可选) — 用于计算下一句预测(分类)损失的标签。如果指定,nsp 损失将添加到 masked_lm 损失中。输入应为序列对(请参阅input_ids
文档字符串)索引应在[0, 1]
中:- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是随机序列。
- kwargs (
Dict[str, any]
,可选,默认为{}
) — 用于隐藏已弃用的旧参数。
返回值
transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput 或 tuple(torch.FloatTensor)
一个 transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput 或一个 torch.FloatTensor
的元组(如果传递 return_dict=False
或当 config.return_dict=False
时)包含根据配置 (BigBirdConfig) 和输入的不同元素。
-
loss (可选,当提供
labels
时返回,torch.FloatTensor
形状为(1,)
) — 总损失,为掩码语言建模损失和下一句预测(分类)损失的总和。 -
prediction_logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
seq_relationship_logits (
torch.FloatTensor
形状为(batch_size, 2)
) — 下一句预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入的输出 + 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForPreTraining 前向方法,覆盖 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BigBirdForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
BigBirdForCausalLM
类 transformers.BigBirdForCausalLM
< 源代码 >( config )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。
BigBird 模型,顶部带有 语言建模
头,用于 CLM 微调。此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有内容。
forward
< 源码 >( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。索引可以通过 AutoTokenizer 获取。 更多信息请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
, 可选) — 掩码避免在填充词元索引上执行注意力。掩码值在[0, 1]
中选择:- 1 表示词元未被掩码,
- 0 表示词元已被掩码。
- token_type_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
, 可选) — 片段词元索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 词元,
- 1 对应于 句子 B 词元。
- position_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被屏蔽,
- 0 表示头部已被屏蔽。
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。 - encoder_hidden_states (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
,可选) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
, 可选) — 避免对编码器输入的填充标记索引执行注意力机制的掩码。如果模型配置为解码器,则此掩码将用于交叉注意力机制。掩码值在[0, 1]
中选择:- 1 表示 未被掩码 的标记,
- 0 表示 被掩码 的标记。
- past_key_values (长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
,每个元组包含 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
的张量) — 包含注意力块的预先计算的键和值隐藏状态。可用于加速解码。如果使用了past_key_values
,则用户可以选择只输入最后的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - labels (
torch.LongTensor
形状为(batch_size, sequence_length)
, 可选) — 用于计算从左到右的语言建模损失(下一个词预测)的标签。索引应在[-100, 0, ..., config.vocab_size]
中(参见input_ids
文档字符串)索引设置为-100
的标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的标记计算。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。
返回值
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置 (BigBirdConfig) 和输入的不同元素。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选,当提供labels
时返回) — 语言建模损失(用于下一个标记预测)。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则一个是嵌入的输出,+ 一个是每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 Softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的torch.FloatTensor
元组的元组,每个元组包含自注意力机制和交叉注意力机制层的缓存键、值状态(如果模型用于编码器-解码器设置)。仅在config.is_decoder = True
时相关。包含预先计算的隐藏状态(注意力块中的键和值),可以使用这些状态(参见
past_key_values
输入)来加速顺序解码。
BigBirdForCausalLM forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForCausalLM.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits
BigBirdForMaskedLM
类 transformers.BigBirdForMaskedLM
< 源代码 >( config )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
BigBird 模型顶部带有 语言建模
头。此模型是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与一般使用和行为相关的所有内容。
forward
< 源代码 >( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码,避免对填充标记索引执行注意力。掩码值在[0, 1]
中选择:- 1 表示 未被掩码 的标记
- 0 表示 被掩码 的标记
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 标记
- 1 对应于 句子 B 标记
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被掩码
- 0 表示头部 被掩码
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望更多地控制如何将 input_ids 索引转换为关联向量,而不是模型的内部嵌入查找矩阵,这将很有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
形状为(batch_size, sequence_length)
, 可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(请参阅input_ids
文档字符串)索引设置为-100
的标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
中的标记计算。
返回值
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置 (BigBirdConfig) 和输入的不同元素。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 掩码语言建模 (MLM) 损失。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则一个是嵌入的输出,+ 一个是每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForMaskedLM 的 forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForMaskedLM
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train")
>>> # select random long article
>>> LONG_ARTICLE_TARGET = squad_ds[81514]["context"]
>>> # select random sentence
>>> LONG_ARTICLE_TARGET[332:398]
'the highest values are very close to the theoretical maximum value'
>>> # add mask_token
>>> LONG_ARTICLE_TO_MASK = LONG_ARTICLE_TARGET.replace("maximum", "[MASK]")
>>> inputs = tokenizer(LONG_ARTICLE_TO_MASK, return_tensors="pt")
>>> # long article input
>>> list(inputs["input_ids"].shape)
[1, 919]
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'maximum'
BigBirdForSequenceClassification
类 transformers.BigBirdForSequenceClassification
< 源代码 >( config )
参数
- config (BigBirdConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。
BigBird 模型变压器,顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。
此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。
forward
< source >( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。索引可以通过 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
形状为(batch_size, sequence_length)
, 可选) — 避免对填充标记索引执行注意力机制的掩码。掩码值在[0, 1]
中选择:- 未被掩码 的标记为 1,
- 被掩码 的标记为 0。
- token_type_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
, 可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- position_ids (
torch.LongTensor
形状为(batch_size, sequence_length)
, 可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (形状为
(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被屏蔽,
- 0 表示头部已被屏蔽。
- inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。 - labels (形状为
(batch_size,)
的torch.LongTensor
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方误差),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回值
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.SequenceClassifierOutput 或 torch.FloatTensor
的元组(如果传递 return_dict=False
或当 config.return_dict=False
时)包含根据配置(BigBirdConfig)和输入的不同元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (形状为
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分类(或回归,如果 config.num_labels==1)分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则一个是嵌入的输出,+ 一个是每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForSequenceClassification 的前向方法,覆盖了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForSequenceClassification
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("l-yohai/bigbird-roberta-base-mnli")
>>> model = BigBirdForSequenceClassification.from_pretrained("l-yohai/bigbird-roberta-base-mnli")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train")
>>> LONG_ARTICLE = squad_ds[81514]["context"]
>>> inputs = tokenizer(LONG_ARTICLE, return_tensors="pt")
>>> # long input article
>>> list(inputs["input_ids"].shape)
[1, 919]
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_0'
BigBirdForMultipleChoice
类 transformers.BigBirdForMultipleChoice
< 源代码 >( config )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
BigBird 模型,顶部有多选分类头(在池化输出顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。
forward
< 源代码 >( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
形状为(batch_size, num_choices, sequence_length)
, 可选) — 掩码避免在填充标记索引上执行注意力。掩码值在[0, 1]
中选择:- 1 表示 未被遮蔽 的标记,
- 0 表示 被遮蔽 的标记.
- token_type_ids (
torch.LongTensor
形状为(batch_size, num_choices, sequence_length)
, 可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记.
- position_ids (
torch.LongTensor
形状为(batch_size, num_choices, sequence_length)
, 可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被遮蔽,
- 0 表示头部 被遮蔽.
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, num_choices, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (
torch.LongTensor
形状为(batch_size,)
, 可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
范围内,其中num_choices
是输入张量的第二维的大小。(参见上面的input_ids
)
返回值
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置 (BigBirdConfig) 和输入的不同元素。
-
loss (
torch.FloatTensor
形状为 (1,), 可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二维。(参见上面的 input_ids)。分类分数(SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则一个是嵌入的输出,+ 一个是每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForMultipleChoice 前向方法,覆盖 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BigBirdForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForMultipleChoice.from_pretrained("google/bigbird-roberta-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
BigBirdForTokenClassification
类 transformers.BigBirdForTokenClassification
< 源码 >( config )
参数
- config (BigBirdConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。
BigBird 模型,顶部带有标记分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。
此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。
forward
< 源码 >( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。索引可以通过 AutoTokenizer 获取。 更多细节请参考 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码避免在填充词元索引上执行注意力。掩码值在[0, 1]
中选择:- 未掩码的词元为 1,
- 已掩码的词元为 0。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段词元索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 词元,
- 1 对应于 句子 B 词元。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列词元的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (形状为
(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被屏蔽,
- 0 表示头部已被屏蔽。
- inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 或者,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望更好地控制如何将 *input_ids* 索引转换为关联向量,而不是使用模型的内部嵌入查找矩阵,则此选项很有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - labels (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]
中。
返回值
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含根据配置(BigBirdConfig)和输入而不同的各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,在提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分类分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(如果模型有嵌入层,则一个是嵌入的输出,+ 一个是每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForTokenClassification 的前向方法,覆盖了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BigBirdForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForTokenClassification.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
BigBirdForQuestionAnswering
类 transformers.BigBirdForQuestionAnswering
< 源代码 >( config add_pooling_layer = False )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。
BigBird 模型,顶部有一个用于提取式问答任务(例如 SQuAD)的跨度分类头(隐藏状态输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。
forward
< 源代码 >( input_ids: Optional = None attention_mask: Optional = None question_lengths: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.models.big_bird.modeling_big_bird.BigBirdForQuestionAnsweringModelOutput
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。索引可以通过 AutoTokenizer 获取。 更多详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 掩码以避免对填充词元索引执行注意力。掩码值在[0, 1]
中选择:- 未被掩码 的词元为 1,
- 被掩码 的词元为 0。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段词元索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 *句子 A* 词元,
- 1 对应于 *句子 B* 词元。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列词元的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 掩码以使自注意力模块的选定头部无效。掩码值在[0, 1]
中选择:- 1 表示头部未被掩码,
- 0 表示头部被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 或者,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想比模型的内部嵌入查找矩阵更好地控制如何将 *input_ids* 索引转换为关联向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通的元组。 - start_positions (
torch.LongTensor
形状为(batch_size,)
, 可选) — 用于计算标记分类损失的标记跨度开始位置(索引)的标签。位置会被限制在序列长度 (sequence_length
) 内。序列外的的位置不会被考虑用于计算损失。 - end_positions (
torch.LongTensor
形状为(batch_size,)
, 可选) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。位置会被限制在序列长度 (sequence_length
) 内。序列外的的位置不会被考虑用于计算损失。
返回值
transformers.models.big_bird.modeling_big_bird.BigBirdForQuestionAnsweringModelOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.big_bird.modeling_big_bird.BigBirdForQuestionAnsweringModelOutput
或一个 torch.FloatTensor
的元组(如果传入 return_dict=False
或 config.return_dict=False
), 包含根据配置 (BigBirdConfig) 和输入的不同元素。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选,当提供labels
时返回) — 总体跨度提取损失是开始和结束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
形状为(batch_size, sequence_length)
) — 跨度开始分数(SoftMax 之前)。 -
end_logits (
torch.FloatTensor
形状为(batch_size, sequence_length)
) — 跨度结束分数(SoftMax 之前)。 -
pooler_output (
torch.FloatTensor
形状为(batch_size, 1)
) — 来自 BigBigModel 的池化器输出 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的元组(一个用于嵌入的输出 + 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForQuestionAnswering 的 forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForQuestionAnswering
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train")
>>> # select random article and question
>>> LONG_ARTICLE = squad_ds[81514]["context"]
>>> QUESTION = squad_ds[81514]["question"]
>>> QUESTION
'During daytime how high can the temperatures reach?'
>>> inputs = tokenizer(QUESTION, LONG_ARTICLE, return_tensors="pt")
>>> # long article and question input
>>> list(inputs["input_ids"].shape)
[1, 929]
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_token_ids = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> predict_answer_token = tokenizer.decode(predict_answer_token_ids)
FlaxBigBirdModel
类 transformers.FlaxBigBirdModel
< 源代码 >( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
基本的 BigBird 模型转换器,输出原始隐藏状态,顶部没有任何特定的头部。
此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 掩码,避免对填充词元索引执行注意力。掩码值在[0, 1]
中选择:- 1 表示词元未被掩码,
- 0 表示词元已被掩码。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 段词元索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于句子 A 词元,
- 1 对应于句子 B 词元。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列词元的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) -- 用于清空注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被掩码,
- 0 表示头部已被掩码。
- return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含根据配置 (BigBirdConfig) 和输入的不同元素。
-
last_hidden_state (
jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
jnp.ndarray
,形状为(batch_size, hidden_size)
) — 序列第一个词元(分类词元)的最后一层隐藏状态,经过线性层和 Tanh 激活函数的进一步处理。线性层权重在预训练期间从下一句预测(分类)目标中训练得到。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdPreTrainedModel
的前向方法重写了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdModel
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdModel.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxBigBirdForPreTraining
类 transformers.FlaxBigBirdForPreTraining
< 源代码 >( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选,默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
BigBird 模型在顶部有两个头,就像在预训练期间所做的那样:一个 掩码语言建模
头和一个 下一句预测(分类)
头。
此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForPreTrainingOutput
或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 避免对填充标记索引执行注意力机制的掩码。掩码值在[0, 1]
中选择:- 1 表示 未被掩码 的标记,
- 0 表示 已被掩码 的标记。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (形状为
(batch_size, sequence_length)
的numpy.ndarray
,可选) -- 用于将注意力模块的选定头部置零的掩码。掩码值在 [0, 1]` 中选择:- 1 表示头部未被屏蔽,
- 0 表示头部已被屏蔽。
- return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForPreTrainingOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForPreTrainingOutput
或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含根据配置 (BigBirdConfig) 和输入的不同元素。
-
prediction_logits (形状为
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
seq_relationship_logits (形状为
(batch_size, 2)
的jnp.ndarray
) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdPreTrainedModel
的前向方法重写了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
FlaxBigBirdForCausalLM
类 transformers.FlaxBigBirdForCausalLM
< 源码 >( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
,可选,默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不会影响模型参数的 dtype。
BigBird 模型,顶部有一个语言建模头(隐藏状态输出顶部的线性层),例如用于自回归任务。
此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。索引可以通过 AutoTokenizer 获取。 更多详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 掩码,避免对填充词元索引执行注意力。掩码值在[0, 1]
中选择:- 未被掩码的词元为 1,
- 被掩码的词元为 0。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 段词元索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 词元,
- 1 对应于 句子 B 词元。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) -- 用于将注意力模块的选定头部置零的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被屏蔽,
- 0 表示头部已被屏蔽。
- return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
的元组(如果传入 return_dict=False
或当 config.return_dict=False
时),包含根据配置 (BigBirdConfig) 和输入的不同元素。
-
logits (
jnp.ndarray
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(jnp.ndarray)
,可选,当传入output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 Softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
tuple(tuple(jnp.ndarray))
,可选,当传入use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的jnp.ndarray
元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态(如果模型用于编码器-解码器设置)。仅在config.is_decoder = True
时相关。包含预先计算的隐藏状态(注意力块中的键和值),可以使用这些状态(参见
past_key_values
输入)来加速顺序解码。
FlaxBigBirdPreTrainedModel
的前向方法重写了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForCausalLM.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]
FlaxBigBirdForMaskedLM
类 transformers.FlaxBigBirdForMaskedLM
< 源代码 >( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
带有顶部 语言建模
头的 BigBird 模型。
此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 掩码以避免对填充标记索引执行注意力。掩码值在[0, 1]
中选择:- 未掩码 的标记为 1,
- 已掩码 的标记为 0。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于将注意力模块的选定头部置零的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被掩盖,
- 0 表示头部被掩盖。
- return_dict (
bool
, 可选) — 是否返回 模型输出 而不是普通元组。
返回值
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个 torch.FloatTensor
元组(如果传入 return_dict=False
或当 config.return_dict=False
时),包含根据配置 (BigBirdConfig) 和输入而不同的各种元素。
-
logits (
jnp.ndarray
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdPreTrainedModel
的前向方法重写了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxBigBirdForSequenceClassification
类 transformers.FlaxBigBirdForSequenceClassification
< 源代码 >( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
BigBird 模型变压器,顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。
此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 掩码,避免对填充标记索引执行注意力。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记已被掩码。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) -- 用于将注意力模块的选定头部置零的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被掩码,
- 0 表示头部已被掩码。
- return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。
返回值
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含根据配置 (BigBirdConfig) 和输入而变化的各种元素。
-
logits (
jnp.ndarray
,形状为(batch_size, config.num_labels)
) — 分类(如果 config.num_labels==1 则为回归)分数(在 SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdPreTrainedModel
的前向方法重写了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForSequenceClassification.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxBigBirdForMultipleChoice
类 transformers.FlaxBigBirdForMultipleChoice
< 源代码 >( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (BigBirdConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,而不影响模型参数的 dtype。
BigBird 模型,顶部有多选分类头(在池化输出顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
,可选) — 掩码以避免对填充标记索引执行注意力。在[0, 1]
中选择的掩码值:- 未屏蔽标记为 1,
- 已屏蔽标记为 0。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。在[0, 1]
中选择的索引:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
,可选) -- 用于将注意力模块的选定头部置空的掩码。在[0, 1]
中选择的掩码值:- 1 表示头部未被屏蔽,
- 0 表示头部已被屏蔽。
- return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含根据配置 (BigBirdConfig) 和输入而不同的各种元素。
-
logits (
jnp.ndarray
,形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二个维度。(参见上面的 input_ids)。分类分数(SoftMax 之前)。
-
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdPreTrainedModel
的前向方法重写了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForMultipleChoice
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForMultipleChoice.from_pretrained("google/bigbird-roberta-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})
>>> logits = outputs.logits
FlaxBigBirdForTokenClassification
类 transformers.FlaxBigBirdForTokenClassification
< 源代码 >( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,只会加载配置。 请查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。 可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,而不影响模型参数的 dtype。
BigBird 模型,顶部带有标记分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 避免对填充标记索引执行注意力机制的掩码。掩码值在[0, 1]
中选择:- 未被掩码的标记为 1,
- 被掩码的标记为 0。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 标记,
- 1 对应于 句子 B 标记。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) -- 用于使注意力模块的选定头部无效的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被掩码,
- 0 表示头部被掩码。
- return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个 torch.FloatTensor
的元组(如果传递 return_dict=False
或当 config.return_dict=False
时)包含根据配置 (BigBirdConfig) 和输入的不同元素。
-
logits (形状为
(batch_size, sequence_length, config.num_labels)
的jnp.ndarray
) — 分类分数(SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdPreTrainedModel
的前向方法重写了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForTokenClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForTokenClassification.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxBigBirdForQuestionAnswering
类 transformers.FlaxBigBirdForQuestionAnswering
< 源代码 >( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
BigBird 模型,顶部有一个用于提取式问答任务(例如 SQuAD)的跨度分类头(隐藏状态输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)
此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None question_lengths = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForQuestionAnsweringModelOutput
或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。索引可以使用 AutoTokenizer 获取。详见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 掩码,避免对填充标记索引执行注意力。掩码值在[0, 1]
中选择:- 1 表示未被掩码的标记,
- 0 表示已被掩码的标记。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) -- 用于将注意力模块的选定头部置零的掩码。掩码值在[0, 1]
中选择:- 1 表示头部未被屏蔽,
- 0 表示头部已被屏蔽。
- return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForQuestionAnsweringModelOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForQuestionAnsweringModelOutput
或一个 torch.FloatTensor
的元组(如果传入 return_dict=False
或当 config.return_dict=False
时),包含的元素取决于配置(BigBirdConfig)和输入。
-
start_logits (
jnp.ndarray
,形状为(batch_size, sequence_length)
) — Span-start 分数(SoftMax 之前)。 -
end_logits (
jnp.ndarray
,形状为(batch_size, sequence_length)
) — Span-end 分数(SoftMax 之前)。 -
pooled_output (
jnp.ndarray
,形状为(batch_size, hidden_size)
) — FlaxBigBirdModel 返回的 pooled_output。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdForQuestionAnswering 的 forward 方法,覆盖了 __call__
特殊方法。
尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits