Transformers 文档
BigBird
并获得增强的文档体验
开始使用
BigBird
BigBird 是一个 Transformer 模型,旨在处理最长可达 4096 的序列,而 BERT 的序列长度为 512。传统 Transformer 模型在处理长输入时会遇到困难,因为随着序列长度的增加,注意力机制的计算成本会变得非常昂贵。BigBird 通过使用稀疏注意力机制解决了这个问题,这意味着它不会一次性关注所有内容。相反,它混合了局部注意力、随机注意力和一些全局标记来处理整个输入。这种组合使其兼具两者的优点,既保持了计算效率,又能捕获到足够多的序列信息以很好地理解内容。因此,BigBird 非常适合涉及长文档的任务,如问答、摘要和基因组应用。
你可以在 Google 组织下找到所有原始的 BigBird checkpoints。
点击右侧边栏中的 BigBird 模型,查看更多关于如何将 BigBird 应用于不同语言任务的示例。
下面的示例演示了如何使用 Pipeline、AutoModel 以及从命令行预测 [MASK]
标记。
import torch
from transformers import pipeline
pipeline = pipeline(
task="fill-mask",
model="google/bigbird-roberta-base",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create [MASK] through a process known as photosynthesis.")
注意事项
- 输入应在右侧进行填充,因为 BigBird 使用绝对位置嵌入。
- BigBird 支持
original_full
和block_sparse
两种注意力机制。如果输入序列长度小于 1024,建议使用original_full
,因为稀疏模式对于较短的输入不会带来太多好处。 - 当前实现使用的窗口大小为 3 个块,2 个全局块,仅支持 ITC 实现,且不支持
num_random_blocks=0
。 - 序列长度必须能被块大小整除。
资源
- 阅读 BigBird 博客文章,了解其注意力机制的更多细节。
BigBirdConfig
class transformers.BigBirdConfig
< 源代码 >( vocab_size = 50358 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu_new' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 4096 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 use_cache = True pad_token_id = 0 bos_token_id = 1 eos_token_id = 2 sep_token_id = 66 attention_type = 'block_sparse' use_bias = True rescale_embeddings = False block_size = 64 num_random_blocks = 3 classifier_dropout = None **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 50358) — BigBird 模型的词汇表大小。定义了在调用 BigBirdModel 时传递的inputs_ids
可以表示的不同标记的数量。 - hidden_size (
int
, 可选, 默认为 768) — 编码器层和池化层的维度。 - num_hidden_layers (
int
, 可选, 默认为 12) — Transformer 编码器中的隐藏层数量。 - num_attention_heads (
int
, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数量。 - intermediate_size (
int
, 可选, 默认为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。 - hidden_act (
str
或function
, 可选, 默认为"gelu_new"
) — 编码器和池化层中的非线性激活函数(函数或字符串)。如果为字符串,支持"gelu"
、"relu"
、"selu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, 可选, 默认为 0.1) — 嵌入层、编码器和池化层中所有全连接层的丢弃概率。 - attention_probs_dropout_prob (
float
, 可选, 默认为 0.1) — 注意力概率的丢弃率。 - max_position_embeddings (
int
, 可选, 默认为 4096) — 此模型可能使用的最大序列长度。通常将其设置为一个较大的值以备不时之需(例如,1024、2048 或 4096)。 - type_vocab_size (
int
, 可选, 默认为 2) — 调用 BigBirdModel 时传递的token_type_ids
的词汇表大小。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。 - is_decoder (
bool
, 可选, 默认为False
) — 模型是否用作解码器。如果为False
,则模型用作编码器。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后一个键/值注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - attention_type (
str
, 可选, 默认为"block_sparse"
) — 是否使用论文中介绍的块稀疏注意力(复杂度为 n)或原始注意力层(复杂度为 n^2)。可能的值为"original_full"
和"block_sparse"
。 - use_bias (
bool
, 可选, 默认为True
) — 是否在查询、键、值中使用偏置。 - rescale_embeddings (
bool
, 可选, 默认为False
) — 是否使用 (hidden_size ** 0.5) 重新缩放嵌入。 - block_size (
int
, 可选, 默认为 64) — 每个块的大小。仅在attention_type == "block_sparse"
时有用。 - num_random_blocks (
int
, 可选, 默认为 3) — 每个查询将关注的随机块的数量。仅在attention_type == "block_sparse"
时有用。 - classifier_dropout (
float
, 可选) — 分类头的丢弃率。
这是用于存储 BigBirdModel 配置的配置类。它根据指定的参数实例化 BigBird 模型,定义模型架构。使用默认值实例化配置将产生与 BigBird google/bigbird-roberta-base 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import BigBirdConfig, BigBirdModel
>>> # Initializing a BigBird google/bigbird-roberta-base style configuration
>>> configuration = BigBirdConfig()
>>> # Initializing a model (with random weights) from the google/bigbird-roberta-base style configuration
>>> model = BigBirdModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
BigBirdTokenizer
class transformers.BigBirdTokenizer
< source >( vocab_file unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' pad_token = '<pad>' sep_token = '[SEP]' mask_token = '[MASK]' cls_token = '[CLS]' sp_model_kwargs: typing.Optional[dict[str, typing.Any]] = None **kwargs )
参数
- vocab_file (
str
) — SentencePiece 文件(通常扩展名为 .spm),其中包含实例化分词器所需的词汇表。 - unk_token (
str
, 可选, 默认为"<unk>"
) — 未知词元。不在词汇表中的词元无法转换为 ID,将被设置为此词元。 - bos_token (
str
, 可选, 默认为"<s>"
) — 序列开始词元。 - eos_token (
str
, 可选, 默认为"</s>"
) — 序列结束词元。 - pad_token (
str
, 可选, 默认为"<pad>"
) — 用于填充的词元,例如在批处理不同长度的序列时使用。 - sep_token (
str
, 可选, 默认为"[SEP]"
) — 分隔符词元,用于从多个序列构建一个序列时,例如用于序列分类的两个序列,或用于问答的文本和问题。它也用作带有特殊词元的序列的最后一个词元。 - mask_token (
str
, 可选, 默认为"[MASK]"
) — 用于掩码值的词元。这是在使用掩码语言建模训练此模型时使用的词元。这是模型将尝试预测的词元。 - cls_token (
str
, 可选, 默认为"[CLS]"
) — 分类器词元,用于进行序列分类(对整个序列进行分类,而不是逐词元分类)。当使用特殊词元构建序列时,它是序列的第一个词元。 - sp_model_kwargs (
dict
, 可选) — 将传递给SentencePieceProcessor.__init__()
方法。SentencePiece 的 Python 包装器可用于设置以下内容等:-
enable_sampling
: 启用子词正则化。 -
nbest_size
: Unigram 的采样参数。对 BPE-Dropout 无效。nbest_size = {0,1}
: 不执行采样。nbest_size > 1
: 从 nbest_size 个结果中采样。nbest_size < 0
: 假设 nbest_size 无穷大,并使用前向过滤-后向采样算法从所有假设(格)中采样。
-
alpha
: Unigram 采样的平滑参数,以及 BPE-dropout 的合并操作的丢弃概率。
-
构建一个 BigBird 分词器。基于 SentencePiece。
该分词器继承自 PreTrainedTokenizer,其中包含大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。
build_inputs_with_special_tokens
< source >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) → List[int]
通过连接和添加特殊词元,从一个序列或一对序列为序列分类任务构建模型输入。Big Bird 序列具有以下格式:
- 单个序列:
[CLS] X [SEP]
- 序列对:
[CLS] A [SEP] B [SEP]
get_special_tokens_mask
< source >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None already_has_special_tokens: bool = False ) → List[int]
从没有添加特殊标记的标记列表中检索序列ID。此方法在使用分词器prepare_for_model
方法添加特殊标记时调用。
create_token_type_ids_from_sequences
< source >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) → list[int]
创建与传入序列对应的标记类型 ID。什么是标记类型 ID?
如果模型有特殊的构建方式,应在子类中重写此方法。
BigBirdTokenizerFast
class transformers.BigBirdTokenizerFast
< source >( vocab_file = None tokenizer_file = None unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' pad_token = '<pad>' sep_token = '[SEP]' mask_token = '[MASK]' cls_token = '[CLS]' **kwargs )
参数
- vocab_file (
str
) — SentencePiece 文件(通常扩展名为 .spm),其中包含实例化分词器所需的词汇表。 - bos_token (
str
, 可选, 默认为"<s>"
) — 预训练期间使用的序列开始词元。可用作序列分类器词元。当使用特殊词元构建序列时,这不是用于序列开始的词元。使用的词元是
cls_token
。 - eos_token (
str
, 可选, 默认为"</s>"
) — 序列结束词元。.. 注意:当使用特殊词元构建序列时,这不是用于序列结束的词元。使用的词元是sep_token
。 - unk_token (
str
, 可选, 默认为"<unk>"
) — 未知词元。不在词汇表中的词元无法转换为 ID,将被设置为此词元。 - sep_token (
str
, 可选, 默认为"[SEP]"
) — 分隔符词元,用于从多个序列构建一个序列时,例如用于序列分类的两个序列,或用于问答的文本和问题。它也用作带有特殊词元的序列的最后一个词元。 - pad_token (
str
, 可选, 默认为"<pad>"
) — 用于填充的词元,例如在批处理不同长度的序列时使用。 - cls_token (
str
, 可选, 默认为"[CLS]"
) — 分类器词元,用于进行序列分类(对整个序列进行分类,而不是逐词元分类)。当使用特殊词元构建序列时,它是序列的第一个词元。 - mask_token (
str
, 可选, 默认为"[MASK]"
) — 用于掩码值的词元。这是在使用掩码语言建模训练此模型时使用的词元。这是模型将尝试预测的词元。
构建一个“快速”BigBird 分词器(由 HuggingFace 的 tokenizers 库支持)。基于 Unigram。该分词器继承自 PreTrainedTokenizerFast,其中包含大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息
build_inputs_with_special_tokens
< source >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None ) → List[int]
通过连接和添加特殊词元,从一个序列或一对序列为序列分类任务构建模型输入。一个 BigBird 序列具有以下格式:
- 单个序列:
[CLS] X [SEP]
- 序列对:
[CLS] A [SEP] B [SEP]
get_special_tokens_mask
< source >( token_ids_0: list token_ids_1: typing.Optional[list[int]] = None already_has_special_tokens: bool = False ) → List[int]
从没有添加特殊词元的词元列表中检索序列 ID。当使用分词器的 prepare_for_model
方法添加特殊词元时,会调用此方法。
BigBird 特定输出
class transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput
< source >( loss: typing.Optional[torch.FloatTensor] = None prediction_logits: typing.Optional[torch.FloatTensor] = None seq_relationship_logits: typing.Optional[torch.FloatTensor] = None hidden_states: typing.Optional[tuple[torch.FloatTensor]] = None attentions: typing.Optional[tuple[torch.FloatTensor]] = None )
参数
- loss (
*可选*
, 当提供labels
时返回, 形状为(1,)
的torch.FloatTensor
) — 总损失,是掩码语言建模损失和下一序列预测(分类)损失的和。 - prediction_logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头的预测分数(SoftMax 前每个词汇表词元的分数)。 - seq_relationship_logits (形状为
(batch_size, 2)
的torch.FloatTensor
) — 下一序列预测(分类)头的预测分数(SoftMax 前的 True/False 连续性分数)。 - hidden_states (
tuple[torch.FloatTensor]
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个是嵌入层的输出,如果模型有嵌入层,+ 一个是每一层的输出)。模型在每一层输出的隐藏状态,以及可选的初始嵌入输出。
- attentions (
tuple[torch.FloatTensor]
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForPreTraining 的输出类型。
BigBirdModel
class transformers.BigBirdModel
< source >( config add_pooling_layer = True )
参数
- config (BigBirdModel) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法以加载模型权重。
- add_pooling_layer (
bool
, 可选, 默认为True
) — 是否添加池化层
基础的 Big Bird 模型,输出原始的隐藏状态,顶部没有任何特定的头。
该模型继承自 PreTrainedModel。请查看超类的文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
此模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被遮盖,
- 0 表示标记被遮盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 *句子 A* 标记,
- 1 对应于 *句子 B* 标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置零自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被遮盖,
- 0 表示头被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这会很有用。 - encoder_hidden_states (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对编码器输入的填充标记索引执行注意力操作的掩码。如果模型被配置为解码器,则此掩码用于交叉注意力。掩码值在[0, 1]
中选择:- 1 表示标记未被遮盖,
- 0 表示标记被遮盖。
- past_key_values (
tuple[tuple[torch.FloatTensor]]
,可选) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码的前一个阶段返回的 `past_key_values`,当 `use_cache=True` 或 `config.use_cache=True` 时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为 `config.n_layers` 的 `tuple(torch.FloatTensor)` 元组,每个元组包含2个形状为 `(batch_size, num_heads, sequence_length, embed_size_per_head)` 的张量。这也称为旧式缓存格式。
模型将输出与输入相同的缓存格式。如果未传递 `past_key_values`,将返回旧式缓存格式。
如果使用 `past_key_values`,用户可以选择性地只输入形状为 `(batch_size, 1)` 的最后一个 `input_ids`(那些没有为该模型提供其过去键值状态的 `input_ids`),而不是形状为 `(batch_size, sequence_length)` 的所有 `input_ids`。
- use_cache (
bool
,可选) — 如果设置为True
,将返回 `past_key_values` 键值状态,可用于加速解码(请参阅 `past_key_values`)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 `attentions`。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 `hidden_states`。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个 `torch.FloatTensor` 的元组(如果传递了 `return_dict=False` 或者 `config.return_dict=False`),包含根据配置(BigBirdConfig)和输入而变化的不同元素。
-
last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
,形状为(batch_size, hidden_size)
) — 序列的第一个标记(分类标记)的最后一层隐藏状态,经过用于辅助预训练任务的层的进一步处理。例如,对于 BERT 系列模型,这将返回经过线性层和 tanh 激活函数处理后的分类标记。线性层权重是在预训练期间从下一句预测(分类)目标中训练的。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 和 `config.add_cross_attention=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
-
past_key_values (`Cache`,*可选*,当传递 `use_cache=True` 或 `config.use_cache=True` 时返回) — 这是一个 Cache 实例。更多详情,请参阅我们的 kv 缓存指南。
包含预先计算的隐藏状态(自注意力块中的键和值,以及当 `config.is_encoder_decoder=True` 时交叉注意力块中的键和值),可用于(请参阅 `past_key_values` 输入)加速顺序解码。
BigBirdModel 的 forward 方法重写了 `__call__` 特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
BigBirdForPreTraining
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.FloatTensor] = None next_sentence_label: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被遮盖,
- 0 表示标记被遮盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 *句子 A* 标记,
- 1 对应于 *句子 B* 标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置零自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被遮盖,
- 0 表示头被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这会很有用。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算掩码语言建模损失的标签。索引应在 `[-100, 0, ..., config.vocab_size]` 中(请参阅 `input_ids` 文档字符串)。索引设置为 `-100` 的标记将被忽略(遮盖),损失仅对标签在 `[0, ..., config.vocab_size]` 中的标记计算。 - next_sentence_label (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算下一序列预测(分类)损失的标签。如果指定,nsp 损失将添加到 masked_lm 损失中。输入应为序列对(请参阅 `input_ids` 文档字符串)。索引应在 `[0, 1]` 中:- 0 表示序列 B 是序列 A 的延续,
- 1 表示序列 B 是一个随机序列。
- output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 `attentions`。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 `hidden_states`。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput 或 tuple(torch.FloatTensor)
一个 transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput 或一个 `torch.FloatTensor` 的元组(如果传递了 `return_dict=False` 或者 `config.return_dict=False`),包含根据配置(BigBirdConfig)和输入而变化的不同元素。
-
loss (
*可选*
,当提供了 `labels` 时返回,torch.FloatTensor
,形状为(1,)
) — 总损失,是掩码语言建模损失和下一序列预测(分类)损失的和。 -
prediction_logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇 token 的分数)。 -
seq_relationship_logits (
torch.FloatTensor
形状为(batch_size, 2)
) — 下一序列预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。 -
hidden_states (
tuple[torch.FloatTensor]
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple[torch.FloatTensor]
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForPreTraining 的 forward 方法重写了 `__call__` 特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BigBirdForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
BigBirdForCausalLM
class transformers.BigBirdForCausalLM
< source >( config )
参数
- config (BigBirdForCausalLM) — 包含模型所有参数的模型配置类。使用配置文件进行初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法以加载模型权重。
BigBird 模型,在顶部带有用于 CLM 微调的 `语言建模` 头。
该模型继承自 PreTrainedModel。请查看超类的文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
此模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None past_key_values: typing.Optional[tuple[tuple[torch.FloatTensor]]] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下,填充将被忽略。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力操作的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被遮盖,
- 0 表示标记被遮盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 *句子 A* 标记,
- 1 对应于 *句子 B* 标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置零自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被遮盖,
- 0 表示头被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这会很有用。 - encoder_hidden_states (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则在交叉注意力机制中使用。 - encoder_attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对编码器输入的填充标记索引执行注意力的掩码。如果模型被配置为解码器,则此掩码在交叉注意力机制中使用。掩码值选自[0, 1]
:- 1 表示标记未被遮盖,
- 0 表示标记已被遮盖。
- past_key_values (
tuple[tuple[torch.FloatTensor]]
, 可选) — 预计算的隐藏状态(自注意力和交叉注意力块中的键和值),可用于加速序列解码。这通常由模型在之前的解码阶段返回的past_key_values
组成,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 一个长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果没有传递
past_key_values
,将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择只输入最后一个input_ids
(那些没有为其提供过去键值状态的input_ids
),其形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算从左到右语言建模损失(下一个词预测)的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(遮盖),损失仅对标签在[0, ..., config.vocab_size]
范围内的标记进行计算。 - use_cache (
bool
, 可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(BigBirdConfig)和输入包含各种元素。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均。
-
past_key_values (`Cache`,*可选*,当传递 `use_cache=True` 或 `config.use_cache=True` 时返回) — 这是一个 Cache 实例。更多详情,请参阅我们的 kv 缓存指南。
包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。
BigBirdForCausalLM 的 forward 方法,重写了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
BigBirdForMaskedLM
class transformers.BigBirdForMaskedLM
< 来源 >( config )
参数
- config (BigBirdForMaskedLM) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
带有 language modeling
头的 Big Bird 模型。
该模型继承自 PreTrainedModel。请查看超类的文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
此模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 来源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示标记未被遮盖,
- 0 表示标记已被遮盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引选自[0, 1]
:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围[0, config.n_positions - 1]
。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头无效的掩码。掩码值选自[0, 1]
:- 1 表示头未被遮盖,
- 0 表示头已被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为相关向量,这将非常有用。 - encoder_hidden_states (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 编码器最后一层输出的隐藏状态序列。如果模型被配置为解码器,则在交叉注意力机制中使用。 - encoder_attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对编码器输入的填充标记索引执行注意力的掩码。如果模型被配置为解码器,则此掩码在交叉注意力机制中使用。掩码值选自[0, 1]
:- 1 表示标记未被遮盖,
- 0 表示标记已被遮盖。
- labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算遮盖语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(遮盖),损失仅对标签在[0, ..., config.vocab_size]
范围内的标记进行计算。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(BigBirdConfig)和输入包含各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 掩码语言建模 (MLM) 损失。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForMaskedLM 的 forward 方法,重写了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForMaskedLM
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train")
>>> # select random long article
>>> LONG_ARTICLE_TARGET = squad_ds[81514]["context"]
>>> # select random sentence
>>> LONG_ARTICLE_TARGET[332:398]
'the highest values are very close to the theoretical maximum value'
>>> # add mask_token
>>> LONG_ARTICLE_TO_MASK = LONG_ARTICLE_TARGET.replace("maximum", "[MASK]")
>>> inputs = tokenizer(LONG_ARTICLE_TO_MASK, return_tensors="pt")
>>> # long article input
>>> list(inputs["input_ids"].shape)
[1, 919]
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'maximum'
BigBirdForSequenceClassification
class transformers.BigBirdForSequenceClassification
< 来源 >( config )
参数
- config (BigBirdForSequenceClassification) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
BigBird Transformer 模型,顶部带有一个序列分类/回归头(一个在池化输出之上的线性层),例如用于 GLUE 任务。
该模型继承自 PreTrainedModel。请查看超类的文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
此模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 来源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示标记未被遮盖,
- 0 表示标记已被遮盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引选自[0, 1]
:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围[0, config.n_positions - 1]
。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头无效的掩码。掩码值选自[0, 1]
:- 1 表示头未被遮盖,
- 0 表示头已被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将input_ids
索引转换为相关向量,这将非常有用。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(BigBirdConfig)和输入包含各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。 -
logits (形状为
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForSequenceClassification 的 forward 方法,重写了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForSequenceClassification
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("l-yohai/bigbird-roberta-base-mnli")
>>> model = BigBirdForSequenceClassification.from_pretrained("l-yohai/bigbird-roberta-base-mnli")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train")
>>> LONG_ARTICLE = squad_ds[81514]["context"]
>>> inputs = tokenizer(LONG_ARTICLE, return_tensors="pt")
>>> # long input article
>>> list(inputs["input_ids"].shape)
[1, 919]
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_0'
BigBirdForMultipleChoice
class transformers.BigBirdForMultipleChoice
< 来源 >( config )
参数
- config (BigBirdForMultipleChoice) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
Big Bird 模型,顶部带有一个多项选择分类头(一个在池化输出之上的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
该模型继承自 PreTrainedModel。请查看超类的文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
此模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 来源 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选自[0, 1]
:- 1 表示标记未被遮盖,
- 0 表示标记已被遮盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引选自[0, 1]
:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选自范围[0, config.max_position_embeddings - 1]
。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头无效的掩码。掩码值选自[0, 1]
:- 1 表示头未被遮盖,
- 0 表示头已被遮盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length, hidden_size)
,可选) — 可选地,你可以选择直接传递嵌入表示,而不是传递input_ids
。如果你想比模型内部的嵌入查找矩阵更好地控制如何将 input_ids 索引转换为相关向量,这将非常有用。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
范围内,其中num_choices
是输入张量第二维的大小。(参见上面的input_ids
) - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(BigBirdConfig)和输入,包含各种元素。
-
loss (形状为 (1,) 的
torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, num_choices)
的torch.FloatTensor
) — num_choices 是输入张量的第二维大小。(请参阅上面的 input_ids)。分类分数(SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForMultipleChoice 的前向方法,覆盖了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BigBirdForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForMultipleChoice.from_pretrained("google/bigbird-roberta-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
BigBirdForTokenClassification
class transformers.BigBirdForTokenClassification
< 源码 >( config )
参数
- config (BigBirdForTokenClassification) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
Big Bird transformer,在其顶部带有一个词元分类头(一个在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。
该模型继承自 PreTrainedModel。请查看超类的文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
此模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免在填充词元索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示词元未被掩码,
- 0 表示词元被掩码。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 段词元索引,用于指示输入的第一和第二部分。索引在[0, 1]
中选择:- 0 对应于一个 句子 A 的词元,
- 1 对应于一个 句子 B 的词元。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列词元在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于置零自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被掩码,
- 0 表示头被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,你可以选择直接传递一个嵌入表示,而不是传递input_ids
。如果你想对如何将input_ids
索引转换为关联向量进行更多控制,而不是使用模型内部的嵌入查找矩阵,这很有用。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于计算词元分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(BigBirdConfig)和输入,包含各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分类分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForTokenClassification 的前向方法,覆盖了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, BigBirdForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForTokenClassification.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
BigBirdForQuestionAnswering
class transformers.BigBirdForQuestionAnswering
< 源码 >( config add_pooling_layer = False )
参数
- config (BigBirdForQuestionAnswering) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- add_pooling_layer (
bool
, 可选, 默认为True
) — 是否添加一个池化层
Big Bird transformer,在其顶部带有一个片段分类头,用于像 SQuAD 这样的抽取式问答任务(一个在隐藏状态输出之上的线性层,用于计算 span start logits
和 span end logits
)。
该模型继承自 PreTrainedModel。请查看超类的文档以了解该库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪注意力头等)。
此模型也是 PyTorch torch.nn.Module 的子类。可以像常规 PyTorch 模块一样使用它,并参考 PyTorch 文档了解所有与常规用法和行为相关的事项。
forward
< 源码 >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None question_lengths: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.big_bird.modeling_big_bird.BigBirdForQuestionAnsweringModelOutput
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 词汇表中输入序列词元的索引。默认情况下,填充将被忽略。可以使用 AutoTokenizer 获取索引。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
, 可选) — 用于避免在填充词元索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示词元未被掩码,
- 0 表示词元被掩码。
- question_lengths (
torch.LongTensor
,形状为(batch_size, 1)
, 可选) — 批次中问题的长度。 - token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 段词元索引,用于指示输入的第一和第二部分。索引在[0, 1]
中选择:- 0 对应于一个 句子 A 的词元,
- 1 对应于一个 句子 B 的词元。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列词元在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于置零自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头未被掩码,
- 0 表示头被掩码。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,你可以选择直接传递一个嵌入表示,而不是传递input_ids
。如果你想对如何将input_ids
索引转换为关联向量进行更多控制,而不是使用模型内部的嵌入查找矩阵,这很有用。 - start_positions (
torch.LongTensor
,形状为(batch_size,)
, 可选) — 标记片段开始位置(索引)的标签,用于计算词元分类损失。位置被限制在序列长度(sequence_length
)内。超出序列的位置在计算损失时不被考虑。 - end_positions (
torch.LongTensor
,形状为(batch_size,)
, 可选) — 标记片段结束位置(索引)的标签,用于计算词元分类损失。位置被限制在序列长度(sequence_length
)内。超出序列的位置在计算损失时不被考虑。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.models.big_bird.modeling_big_bird.BigBirdForQuestionAnsweringModelOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.big_bird.modeling_big_bird.BigBirdForQuestionAnsweringModelOutput
或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),根据配置(BigBirdConfig)和输入,包含各种元素。
-
loss (
torch.FloatTensor
of shape(1,)
, 可选, 当提供labels
时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选,默认为None
) — 跨度开始分数(SoftMax 之前)。 -
end_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选,默认为None
) — 跨度结束分数(SoftMax 之前)。 -
pooler_output (
torch.FloatTensor
,形状为(batch_size, 1)
) — 来自 BigBigModel 的池化器输出 -
hidden_states (
tuple[torch.FloatTensor]
,可选,当传递 `output_hidden_states=True` 或 `config.output_hidden_states=True` 时返回) — `torch.FloatTensor` 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出),形状为 `(batch_size, sequence_length, hidden_size)`。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple[torch.FloatTensor]
,可选,当传递 `output_attentions=True` 或 `config.output_attentions=True` 时返回) — `torch.FloatTensor` 的元组(每层一个),形状为 `(batch_size, num_heads, sequence_length, sequence_length)`。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
BigBirdForQuestionAnswering 的前向方法,覆盖了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForQuestionAnswering
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train")
>>> # select random article and question
>>> LONG_ARTICLE = squad_ds[81514]["context"]
>>> QUESTION = squad_ds[81514]["question"]
>>> QUESTION
'During daytime how high can the temperatures reach?'
>>> inputs = tokenizer(QUESTION, LONG_ARTICLE, return_tensors="pt")
>>> # long article and question input
>>> list(inputs["input_ids"].shape)
[1, 929]
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_token_ids = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> predict_answer_token = tokenizer.decode(predict_answer_token_ids)
FlaxBigBirdModel
class transformers.FlaxBigBirdModel
< 源码 >( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
裸的 BigBird 模型 transformer,输出原始隐藏状态,顶部没有任何特定的头。
该模型继承自 FlaxPreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载、保存和转换 PyTorch 模型的权重)。
该模型也是一个 flax.linen.Module 子类。请像常规的 Flax linen 模块一样使用它,并参考 Flax 文档了解所有与一般用法和行为相关的事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。可以使用 AutoTokenizer 获取索引。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 用于避免在填充词元索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示词元未被掩码,
- 0 表示词元被掩码。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 段词元索引,用于指示输入的第一和第二部分。索引在[0, 1]
中选择:- 0 对应于一个 句子 A 的词元,
- 1 对应于一个 句子 B 的词元。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列词元在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) -- 用于置零注意力模块中选定头的掩码。掩码值在
[0, 1]` 中选择:- 1 表示头未被掩码,
- 0 表示头被掩码。
- return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 对象而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置(BigBirdConfig)和输入而变化的不同元素。
-
last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
jnp.ndarray
,形状为(batch_size, hidden_size)
) — 序列中第一个标记(分类标记)的最后一层隐藏状态,经过一个线性层和一个 Tanh 激活函数进一步处理。该线性层的权重是在预训练期间通过下一句预测(分类)目标进行训练的。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入层的输出,一个用于每一层的输出)。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdPreTrainedModel
的前向方法覆盖了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdModel
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdModel.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxBigBirdForPreTraining
class transformers.FlaxBigBirdForPreTraining
< 源码 >( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
BigBird 模型,顶部带有两个头,与预训练时相同:一个掩码语言建模
头和一个下一句预测(分类)
头。
该模型继承自 FlaxPreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载、保存和转换 PyTorch 模型的权重)。
该模型也是一个 flax.linen.Module 子类。请像常规的 Flax linen 模块一样使用它,并参考 Flax 文档了解所有与一般用法和行为相关的事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) → transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForPreTrainingOutput
或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力计算的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记已被掩码。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一部分和第二部分的片段标记索引。索引在[0, 1]
中选择:- 0 对应于句子 A 的标记,
- 1 对应于句子 B 的标记。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) -- 用于置零注意力模块中选定头的掩码。掩码值在
[0, 1]` 中选择:- 1 表示头未被掩码,
- 0 表示头已被掩码。
- return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 对象而不是一个普通的元组。
返回
transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForPreTrainingOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForPreTrainingOutput
或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置(BigBirdConfig)和输入而变化的不同元素。
-
prediction_logits (
jnp.ndarray
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
seq_relationship_logits (
jnp.ndarray
,形状为(batch_size, 2)
) — 下一句预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入层的输出,一个用于每一层的输出)。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdPreTrainedModel
的前向方法覆盖了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
FlaxBigBirdForCausalLM
class transformers.FlaxBigBirdForCausalLM
< 源码 >( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
BigBird 模型,顶部带有一个语言建模头(隐藏状态输出之上是一个线性层),例如用于自回归任务。
该模型继承自 FlaxPreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载、保存和转换 PyTorch 模型的权重)。
该模型也是一个 flax.linen.Module 子类。请像常规的 Flax linen 模块一样使用它,并参考 Flax 文档了解所有与一般用法和行为相关的事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) → transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力计算的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记已被掩码。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一部分和第二部分的片段标记索引。索引在[0, 1]
中选择:- 0 对应于句子 A 的标记,
- 1 对应于句子 B 的标记。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) -- 用于置零注意力模块中选定头的掩码。掩码值在
[0, 1]` 中选择:- 1 表示头未被掩码,
- 0 表示头已被掩码。
- return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 对象而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置(BigBirdConfig)和输入而变化的不同元素。
-
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 语言建模头的预测分数(SoftMax 之前每个词汇 token 的分数)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入层的输出,一个用于每一层的输出)。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均。
-
past_key_values (
tuple(tuple(jnp.ndarray))
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的jnp.ndarray
元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态(如果模型用于编码器-解码器设置)。仅当config.is_decoder = True
时相关。包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。
FlaxBigBirdPreTrainedModel
的前向方法覆盖了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForCausalLM.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]
FlaxBigBirdForMaskedLM
class transformers.FlaxBigBirdForMaskedLM
< 源码 >( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
BigBird 模型,顶部带有一个语言建模
头。
该模型继承自 FlaxPreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载、保存和转换 PyTorch 模型的权重)。
该模型也是一个 flax.linen.Module 子类。请像常规的 Flax linen 模块一样使用它,并参考 Flax 文档了解所有与一般用法和行为相关的事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) → transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充标记索引执行注意力计算的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记已被掩码。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一部分和第二部分的片段标记索引。索引在[0, 1]
中选择:- 0 对应于句子 A 的标记,
- 1 对应于句子 B 的标记。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) -- 用于置零注意力模块中选定头的掩码。掩码值在
[0, 1]` 中选择:- 1 表示头未被掩码,
- 0 表示头已被掩码。
- return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 对象而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或 config.return_dict=False
),包含根据配置(BigBirdConfig)和输入而变化的不同元素。
-
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 语言建模头的预测分数(SoftMax 之前每个词汇 token 的分数)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入层的输出,一个用于每一层的输出)。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdPreTrainedModel
的前向方法覆盖了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxBigBirdForSequenceClassification
class transformers.FlaxBigBirdForSequenceClassification
< 源码 >( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件进行初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的
dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
BigBird Transformer 模型,顶部带有一个序列分类/回归头(一个在池化输出之上的线性层),例如用于 GLUE 任务。
该模型继承自 FlaxPreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载、保存和转换 PyTorch 模型的权重)。
该模型也是一个 flax.linen.Module 子类。请像常规的 Flax linen 模块一样使用它,并参考 Flax 文档了解所有与一般用法和行为相关的事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) → transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。可以使用 AutoTokenizer 获取索引。详见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充词元索引执行注意力操作的掩码。掩码值的选择范围为[0, 1]
:- 1 表示词元未被掩码,
- 0 表示词元被掩码。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一和第二部分的片段词元索引。索引的选择范围为[0, 1]
:- 0 对应于 *A 句子* 的词元,
- 1 对应于 *B 句子* 的词元。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列词元的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) -- 用于置零注意力模块中选定头的掩码。掩码值的选择范围为
[0, 1]`:- 1 表示头未被掩码,
- 0 表示头被掩码。
- return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。
返回
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个 torch.FloatTensor
的元组 (如果传递了 return_dict=False
或 config.return_dict=False
),它包含根据配置 (BigBirdConfig) 和输入而定的各种元素。
-
logits (形状为
(batch_size, config.num_labels)
的jnp.ndarray
) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入层的输出,一个用于每一层的输出)。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdPreTrainedModel
的前向方法覆盖了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForSequenceClassification.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxBigBirdForMultipleChoice
class transformers.FlaxBigBirdForMultipleChoice
< 源代码 >( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (BigBirdConfig) — 包含模型所有参数的模型配置类。使用配置文件进行初始化时,不会加载与模型相关的权重,仅加载配置。请查阅 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
,可选,默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 中的一种。该参数可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 `dtype` 执行。
请注意,这仅指定了计算的数据类型,不影响模型参数的数据类型。
带有选择题分类头的 BigBird 模型 (在池化输出之上有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
该模型继承自 FlaxPreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载、保存和转换 PyTorch 模型的权重)。
该模型也是一个 flax.linen.Module 子类。请像常规的 Flax linen 模块一样使用它,并参考 Flax 文档了解所有与一般用法和行为相关的事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) → transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列词元的索引。可以使用 AutoTokenizer 获取索引。详见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
,可选) — 用于避免对填充词元索引执行注意力操作的掩码。掩码值的选择范围为[0, 1]
:- 1 表示词元未被掩码,
- 0 表示词元被掩码。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
,可选) — 用于指示输入的第一和第二部分的片段词元索引。索引的选择范围为[0, 1]
:- 0 对应于 *A 句子* 的词元,
- 1 对应于 *B 句子* 的词元。
- position_ids (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
,可选) — 位置嵌入中每个输入序列词元的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 - head_mask (
numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
,可选) -- 用于置零注意力模块中选定头的掩码。掩码值的选择范围为
[0, 1]`:- 1 表示头未被掩码,
- 0 表示头被掩码。
- return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。
返回
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个 torch.FloatTensor
的元组 (如果传递了 return_dict=False
或 config.return_dict=False
),它包含根据配置 (BigBirdConfig) 和输入而定的各种元素。
-
logits (形状为
(batch_size, num_choices)
的jnp.ndarray
) — num_choices 是输入张量的第二个维度。(请参阅上面的 input_ids)。分类分数(SoftMax 之前)。
-
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入层的输出,一个用于每一层的输出)。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdPreTrainedModel
的前向方法覆盖了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForMultipleChoice
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForMultipleChoice.from_pretrained("google/bigbird-roberta-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})
>>> logits = outputs.logits
FlaxBigBirdForTokenClassification
class transformers.FlaxBigBirdForTokenClassification
< 源代码 >( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 包含模型所有参数的模型配置类。使用配置文件进行初始化时,不会加载与模型相关的权重,仅加载配置。请查阅 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
,可选,默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 中的一种。该参数可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 `dtype` 执行。
请注意,这仅指定了计算的数据类型,不影响模型参数的数据类型。
带有词元分类头的 BigBird 模型 (在隐藏状态输出之上有一个线性层),例如用于命名实体识别 (NER) 任务。
该模型继承自 FlaxPreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载、保存和转换 PyTorch 模型的权重)。
该模型也是一个 flax.linen.Module 子类。请像常规的 Flax linen 模块一样使用它,并参考 Flax 文档了解所有与一般用法和行为相关的事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None past_key_values: typing.Optional[dict] = None ) → transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。可以使用 AutoTokenizer 获取索引。详见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充词元索引执行注意力操作的掩码。掩码值的选择范围为[0, 1]
:- 1 表示词元未被掩码,
- 0 表示词元被掩码。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一和第二部分的片段词元索引。索引的选择范围为[0, 1]
:- 0 对应于 *A 句子* 的词元,
- 1 对应于 *B 句子* 的词元。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列词元的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) -- 用于置零注意力模块中选定头的掩码。掩码值的选择范围为
[0, 1]`:- 1 表示头未被掩码,
- 0 表示头被掩码。
- return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。
返回
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个 torch.FloatTensor
的元组 (如果传递了 return_dict=False
或 config.return_dict=False
),它包含根据配置 (BigBirdConfig) 和输入而定的各种元素。
-
logits (
jnp.ndarray
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入层的输出,一个用于每一层的输出)。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdPreTrainedModel
的前向方法覆盖了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForTokenClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForTokenClassification.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxBigBirdForQuestionAnswering
class transformers.FlaxBigBirdForQuestionAnswering
< 源代码 >( config: BigBirdConfig input_shape: typing.Optional[tuple] = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )
参数
- config (BigBirdConfig) — 包含模型所有参数的模型配置类。使用配置文件进行初始化时,不会加载与模型相关的权重,仅加载配置。请查阅 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
,可选,默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上) 和jax.numpy.bfloat16
(在 TPU 上) 中的一种。该参数可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 `dtype` 执行。
请注意,这仅指定了计算的数据类型,不影响模型参数的数据类型。
带有片段分类头的 BigBird 模型,用于 SQuAD 等抽取式问答任务 (在隐藏状态输出之上有一个线性层,用于计算 span start logits
和 span end logits
)。
该模型继承自 FlaxPreTrainedModel。请查看超类文档以了解该库为其所有模型实现的通用方法(例如下载、保存和转换 PyTorch 模型的权重)。
该模型也是一个 flax.linen.Module 子类。请像常规的 Flax linen 模块一样使用它,并参考 Flax 文档了解所有与一般用法和行为相关的事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源代码 >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None question_lengths = None params: typing.Optional[dict] = None dropout_rng: typing.Optional[PRNGKey] = None indices_rng: typing.Optional[PRNGKey] = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForQuestionAnsweringModelOutput
或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列词元的索引。可以使用 AutoTokenizer 获取索引。详见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充词元索引执行注意力操作的掩码。掩码值的选择范围为[0, 1]
:- 1 表示词元未被掩码,
- 0 表示词元被掩码。
- token_type_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一和第二部分的片段词元索引。索引的选择范围为[0, 1]
:- 0 对应于 *A 句子* 的词元,
- 1 对应于 *B 句子* 的词元。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列词元的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 - head_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) -- 用于置零注意力模块中选定头的掩码。掩码值的选择范围为
[0, 1]`:- 1 表示头未被掩码,
- 0 表示头被掩码。
- return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。
返回
transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForQuestionAnsweringModelOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForQuestionAnsweringModelOutput
或一个元组(tuple),元组内元素为 torch.FloatTensor
(如果传递了 return_dict=False
或当 config.return_dict=False
时)。它包含多个元素,具体取决于配置(BigBirdConfig)和输入。
-
start_logits (
jnp.ndarray
,形状为(batch_size, sequence_length)
) — 跨度开始得分(SoftMax 之前)。 -
end_logits (
jnp.ndarray
,形状为(batch_size, sequence_length)
) — 跨度结束得分(SoftMax 之前)。 -
pooled_output (
jnp.ndarray
,形状为(batch_size, hidden_size)
) — FlaxBigBirdModel 返回的 pooled_output。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入层的输出,一个用于每一层的输出)。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxBigBirdForQuestionAnswering 的 forward 方法覆盖了 __call__
特殊方法。
尽管前向传播的流程需要在此函数内定义,但之后应调用 `Module` 实例而不是此函数,因为前者会处理运行前处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxBigBirdForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits