Transformers 文档

BigBird

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

BigBird

概述

BigBird 模型是在 Zaheer、Manzil 和 Guruganesh、Guru 和 Dubey、Kumar Avinava 和 Ainslie、Joshua 和 Alberti、Chris 和 Ontanon、Santiago 和 Pham、Philip 和 Ravula、Anirudh 和 Wang、Qifan 和 Yang、Li 等人的Big Bird: Transformers for Longer Sequences中提出的。BigBird 是一种基于稀疏注意力的 transformer,它将基于 Transformer 的模型(例如 BERT)扩展到更长的序列。除了稀疏注意力之外,BigBird 还对输入序列应用全局注意力和随机注意力。从理论上讲,已经证明应用稀疏、全局和随机注意力可以近似完全注意力,同时对于更长的序列而言,计算效率更高。由于能够处理更长的上下文,BigBird 在各种长文档 NLP 任务(例如问答和摘要)上与 BERT 或 RoBERTa 相比,表现出了更高的性能。

论文的摘要是:

基于 Transformer 的模型(例如 BERT)一直是 NLP 中最成功的深度学习模型之一。不幸的是,由于其完全注意力机制,它们的核心限制之一是对序列长度的二次依赖性(主要是在内存方面)。为了解决这个问题,我们提出了 BigBird,这是一种稀疏注意力机制,它将这种二次依赖性降低到线性。我们证明 BigBird 是序列函数的通用逼近器,并且是图灵完备的,从而保留了二次全注意力模型的这些特性。在此过程中,我们的理论分析揭示了拥有 O(1) 全局标记(例如 CLS)的一些好处,这些标记作为稀疏注意力机制的一部分关注整个序列。所提出的稀疏注意力可以处理长度高达之前使用类似硬件可能的 8 倍的序列。由于能够处理更长的上下文,BigBird 大幅提高了各种 NLP 任务(例如问答和摘要)的性能。我们还提出了基因组数据的新颖应用。

此模型由 vasudevgupta 贡献。原始代码可以在此处找到。

使用技巧

  • 有关 BigBird 注意力工作原理的详细说明,请参阅此博客文章
  • BigBird 附带 2 个实现:original_fullblock_sparse。对于序列长度 < 1024,建议使用 original_full,因为使用 block_sparse 注意力没有好处。
  • 代码当前使用 3 个块的窗口大小和 2 个全局块。
  • 序列长度必须可以被块大小整除。
  • 当前实现仅支持 ITC
  • 当前实现不支持 num_random_blocks = 0
  • BigBird 是一个具有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。

资源

BigBirdConfig

transformers.BigBirdConfig

< >

( vocab_size = 50358 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu_new' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 4096 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 use_cache = True pad_token_id = 0 bos_token_id = 1 eos_token_id = 2 sep_token_id = 66 attention_type = 'block_sparse' use_bias = True rescale_embeddings = False block_size = 64 num_random_blocks = 3 classifier_dropout = None **kwargs )

参数

  • vocab_size (int, 可选, 默认为 50358) — BigBird 模型的词汇表大小。定义了调用 BigBirdModel 时传递的 inputs_ids 可以表示的不同词例的数量。
  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中的隐藏层数。
  • num_attention_heads (int, 可选, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。
  • intermediate_size (int, 可选, 默认为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu_new") — 编码器和池化器中的非线性激活函数(函数或字符串)。 如果是字符串,则支持 "gelu""relu""selu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。
  • max_position_embeddings (int, 可选, 默认为 4096) — 此模型可能使用的最大序列长度。 通常将其设置为较大的值以防万一(例如,1024 或 2048 或 4096)。
  • type_vocab_size (int, 可选, 默认为 2) — 调用 BigBirdModel 时传递的 token_type_ids 的词汇表大小。
  • initializer_range (float可选,默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float可选,默认为 1e-12) — 层归一化层使用的 epsilon。
  • is_decoder (bool可选,默认为 False) — 模型是否用作解码器。如果为 False,则模型用作编码器。
  • use_cache (bool可选,默认为 True) — 模型是否应返回最后键/值的注意力(并非所有模型都使用)。仅在 config.is_decoder=True 时相关。
  • attention_type (str可选,默认为 "block_sparse") — 是否使用论文中介绍的块稀疏注意力(具有 n 复杂度)或原始注意力层(具有 n^2 复杂度)。可能的值为 "original_full""block_sparse"
  • use_bias (bool可选,默认为 True) — 是否在查询、键、值中使用偏差。
  • rescale_embeddings (bool可选,默认为 False) — 是否使用 (hidden_size ** 0.5) 重新缩放嵌入。
  • block_size (int可选,默认为 64) — 每个块的大小。仅在 attention_type == "block_sparse" 时有用。
  • num_random_blocks (int可选,默认为 3) — 每个查询将参与这些数量的随机块。仅在 attention_type == "block_sparse" 时有用。
  • classifier_dropout (float可选) — 分类头的 dropout 比率。

这是用于存储 BigBirdModel 配置的配置类。它用于根据指定的参数实例化 BigBird 模型,定义模型架构。使用默认值实例化配置将产生与 BigBird google/bigbird-roberta-base 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例

>>> from transformers import BigBirdConfig, BigBirdModel

>>> # Initializing a BigBird google/bigbird-roberta-base style configuration
>>> configuration = BigBirdConfig()

>>> # Initializing a model (with random weights) from the google/bigbird-roberta-base style configuration
>>> model = BigBirdModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

BigBirdTokenizer

transformers.BigBirdTokenizer

< >

( vocab_file unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' pad_token = '<pad>' sep_token = '[SEP]' mask_token = '[MASK]' cls_token = '[CLS]' sp_model_kwargs: Optional = None **kwargs )

参数

  • vocab_file (str) — SentencePiece 文件(通常扩展名为 .spm),包含实例化分词器所需的词汇表。
  • unk_token (str, 可选, 默认为 "<unk>") — 未知标记。词汇表中不存在的标记无法转换为 ID,并设置为使用此标记代替。
  • bos_token (str, 可选, 默认为 "<s>") — 序列开始标记。
  • eos_token (str, 可选, 默认为 "</s>") — 序列结束标记。
  • pad_token (str, 可选, 默认为 "<pad>") — 用于填充的标记,例如批量处理不同长度的序列时。
  • sep_token (str, 可选, 默认为 "[SEP]") — 分隔符标记,用于从多个序列构建序列时使用,例如用于序列分类的两个序列或用于文本和问题的问答。它也用作使用特殊标记构建的序列的最后一个标记。
  • mask_token (str, 可选, 默认为 "[MASK]") — 用于掩盖值的标记。这是使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
  • cls_token (str, 可选, 默认为 "[CLS]") — 用于序列分类(对整个序列进行分类,而不是对每个标记进行分类)的分类标记。当使用特殊标记构建时,它是序列的第一个标记。
  • sp_model_kwargs (dict, 可选) — 将传递给 SentencePieceProcessor.__init__() 方法。 SentencePiece 的 Python 包装器 可用于设置:

    • enable_sampling:启用子词正则化。

    • nbest_size:unigram 的采样参数。对 BPE-Dropout 无效。

      • nbest_size = {0,1}:不执行采样。
      • nbest_size > 1:从 nbest_size 个结果中采样。
      • nbest_size < 0:假设 nbest_size 是无限的,并使用前向过滤和后向采样算法从所有假设(格)中采样。
    • alpha:unigram 采样的平滑参数,以及 BPE-dropout 的合并操作的 dropout 概率。

构建一个 BigBird 分词器。基于 SentencePiece

此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表。
  • token_ids_1 (List[int], 可选) — 序列对的可选第二个 ID 列表。

返回值

List[int]

带有适当特殊标记的 输入 ID 列表。

通过连接和添加特殊标记,从序列或序列对构建用于序列分类任务的模型输入。Big Bird 序列具有以下格式

  • 单个序列: [CLS] X [SEP]
  • 序列对: [CLS] A [SEP] B [SEP]

get_special_tokens_mask

< >

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 用于序列对的可选第二个 ID 列表。
  • already_has_special_tokens (bool, 可选, defaults to False) — 令牌列表是否已使用模型的特殊令牌进行格式化。

返回值

List[int]

一个范围在 [0, 1] 内的整数列表:1 表示特殊令牌,0 表示序列令牌。

从未添加特殊令牌的令牌列表中检索序列 ID。当使用分词器 prepare_for_model 方法添加特殊令牌时,将调用此方法。

create_token_type_ids_from_sequences

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 用于序列对的可选第二个 ID 列表。

返回值

List[int]

根据给定序列的令牌类型 ID列表。

根据传入的两个序列创建一个掩码,用于序列对分类任务。BERT 序列对掩码具有以下格式: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | 第一个序列 | 第二个序列 | 如果 token_ids_1None,则此方法仅返回掩码的第一部分(0)。

save_vocabulary

< >

( save_directory: str filename_prefix: Optional = None )

BigBirdTokenizerFast

transformers.BigBirdTokenizerFast

< >

( vocab_file = None tokenizer_file = None unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' pad_token = '<pad>' sep_token = '[SEP]' mask_token = '[MASK]' cls_token = '[CLS]' **kwargs )

参数

  • vocab_file (str) — SentencePiece 文件(通常扩展名为 .spm),其中包含实例化分词器所需的词汇表。
  • bos_token (str, 可选, 默认为 "<s>") — 预训练期间使用的序列开始标记。可以用作序列分类标记。

    使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是 cls_token

  • eos_token (str, 可选, 默认为 "</s>") — 序列结束标记。 .. 注意:: 当使用特殊标记构建序列时,这不是用于序列结束的标记。 使用的标记是 sep_token
  • unk_token (str, 可选, 默认为 "<unk>") — 未知标记。 词汇表中不存在的标记无法转换为 ID,并设置为改为使用此标记。
  • sep_token (str, 可选, 默认为 "[SEP]") — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。 它也用作使用特殊标记构建的序列的最后一个标记。
  • pad_token (str, 可选, 默认为 "<pad>") — 用于填充的标记,例如在批处理不同长度的序列时。
  • cls_token (str, 可选, 默认为 "[CLS]") — 分类器标记,用于在进行序列分类时(对整个序列进行分类而不是对每个标记进行分类)。 使用特殊标记构建时,它是序列的第一个标记。
  • mask_token (str, 可选, 默认为 "[MASK]") — 用于屏蔽值的标记。 这是在使用屏蔽语言建模训练此模型时使用的标记。 这是模型将尝试预测的标记。

构建一个“快速”BigBird 分词器(由 HuggingFace 的 tokenizers 库支持)。 基于 Unigram。 此分词器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。 用户应参考此超类以获取有关这些方法的更多信息

build_inputs_with_special_tokens

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表
  • token_ids_1 (List[int], 可选) — 序列对的可选第二个 ID 列表。

返回值

List[int]

带有适当特殊标记的 输入 ID 列表。

通过连接和添加特殊标记,从序列或序列对构建用于序列分类任务的模型输入。BigBird 序列具有以下格式

  • 单个序列: [CLS] X [SEP]
  • 序列对: [CLS] A [SEP] B [SEP]

create_token_type_ids_from_sequences

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 序列对的可选第二个 ID 列表。

返回值

List[int]

根据给定序列的令牌类型 ID列表。

根据传入的两个序列创建一个掩码,用于序列对分类任务。ALBERT

序列对掩码具有以下格式

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1 为 None,则只返回掩码的第一部分(0)。

get_special_tokens_mask

< >

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], 可选) — 序列对的可选第二个 ID 列表。
  • already_has_special_tokens (bool, 可选, 默认为 False) — 如果标记列表已使用模型的特殊标记进行格式化,则设置为 True

返回值

List[int]

一个范围在 [0, 1] 内的整数列表:1 表示特殊令牌,0 表示序列令牌。

从没有添加特殊标记的标记列表中检索序列 ID。 当使用分词器 prepare_for_model 方法添加特殊标记时,将调用此方法。

BigBird 特定的输出

transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput

< >

( loss: Optional = None prediction_logits: FloatTensor = None seq_relationship_logits: FloatTensor = None hidden_states: Optional = None attentions: Optional = None )

参数

  • loss (可选, 当提供 labels 时返回, 形状为 (1,)torch.FloatTensor) — 总损失,即掩码语言建模损失和下一序列预测(分类)损失的总和。
  • prediction_logits (形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。
  • seq_relationship_logits (torch.FloatTensor 形状为 (batch_size, 2)) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。
  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

BigBirdForPreTraining 的输出类型。

Pytorch
隐藏 Pytorch 内容

BigBirdModel

transformers.BigBirdModel

< >

( config add_pooling_layer = True )

参数

  • config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

基本的 BigBird 模型 Transformer,输出原始隐藏状态,顶部没有任何特定头部。此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有内容。

该模型可以充当编码器(仅具有自注意力机制),也可以充当解码器,在这种情况下,按照 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin 在 Attention is all you need 中描述的架构,在自注意力层之间添加一层交叉注意力层。

要充当解码器,需要使用将配置的 is_decoder 参数设置为 True 来初始化模型。要在 Seq2Seq 模型中使用,需要使用 is_decoder 参数和 add_cross_attention 都设置为 True 来初始化模型;然后需要将 encoder_hidden_states 作为输入传递给前向传播。

forward

< >

( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor ,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor ,形状为 (batch_size, sequence_length)可选) — 掩码以避免对填充标记索引执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示未被掩码的标记,
    • 0 表示被掩码的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor ,形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A 标记,
    • 1 对应于句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被屏蔽
    • 0 表示头部已被屏蔽
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望更好地控制如何将 input_ids 索引转换为关联向量,而不是使用模型的内部嵌入查找矩阵,则此选项很有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • encoder_hidden_states (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length)可选) — 避免对编码器输入的填充标记索引执行注意力操作的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。在 [0, 1] 中选择的掩码值:

    • 1 表示未被掩码的标记,
    • 0 表示被掩码的标记。
  • past_key_values (长度为 config.n_layerstuple(tuple(torch.FloatTensor)),每个元组包含 4 个形状为 (batch_size, num_heads, sequence_length - 1, embed_size_per_head) 的张量) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用 past_key_values,用户可以选择只输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids(那些没有将其过去的键值状态提供给此模型的),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids
  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past_key_values)。

返回值

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=Falseconfig.return_dict=False 时)包含各种元素,具体取决于配置(BigBirdConfig)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (torch.FloatTensor 形状为 (batch_size, hidden_size)) — 序列第一个标记(分类标记)的最后一层隐藏状态,经过用于辅助预训练任务的层进一步处理后得到。例如,对于 BERT 系列模型,这会在经过线性层和 tanh 激活函数处理后返回分类标记。线性层权重在预训练期间从下一句预测(分类)目标中训练得到。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入的输出,+ 一个是每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.add_cross_attention=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 后,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,以及可选的(如果 config.is_encoder_decoder=True)2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,以及可选的(如果 config.is_encoder_decoder=True)交叉注意力块中的键和值),可用于(请参阅 past_key_values 输入)加速顺序解码。

BigBirdModel 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, BigBirdModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdModel.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

BigBirdForPreTraining

transformers.BigBirdForPreTraining

< >

( config )

forward

< >

( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None next_sentence_label: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor ,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    索引可以通过 AutoTokenizer 获取。详见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor ,形状为 (batch_size, sequence_length)可选) — 掩码,避免对填充标记索引执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩码 的标记,
    • 0 表示 被掩码 的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor ,形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被遮蔽,
    • 0 表示头部已被遮蔽.
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(参见 input_ids 文档字符串)索引设置为 -100 的标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的标记计算
  • next_sentence_label (torch.LongTensor 形状为 (batch_size,)可选) — 用于计算下一句预测(分类)损失的标签。如果指定,nsp 损失将添加到 masked_lm 损失中。输入应为序列对(请参阅 input_ids 文档字符串)索引应在 [0, 1] 中:

    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是随机序列。
  • kwargs (Dict[str, any]可选,默认为 {}) — 用于隐藏已弃用的旧参数。

返回值

transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutputtuple(torch.FloatTensor)

一个 transformers.models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput 或一个 torch.FloatTensor 的元组(如果传递 return_dict=False 或当 config.return_dict=False 时)包含根据配置 (BigBirdConfig) 和输入的不同元素。

  • loss (可选,当提供 labels 时返回,torch.FloatTensor 形状为 (1,)) — 总损失,为掩码语言建模损失和下一句预测(分类)损失的总和。

  • prediction_logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • seq_relationship_logits (torch.FloatTensor 形状为 (batch_size, 2)) — 下一句预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入的输出 + 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

BigBirdForPreTraining 前向方法,覆盖 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, BigBirdForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

BigBirdForCausalLM

transformers.BigBirdForCausalLM

< >

( config )

参数

  • config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。

BigBird 模型,顶部带有 语言建模 头,用于 CLM 微调。此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以了解与一般用法和行为相关的所有内容。

forward

< >

( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 词汇表中输入序列词元的索引。

    索引可以通过 AutoTokenizer 获取。 更多信息请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length), 可选) — 掩码避免在填充词元索引上执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被掩码,
    • 0 表示词元已被掩码

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 片段词元索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 词元,
    • 1 对应于 句子 B 词元。

    什么是词元类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads)可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被屏蔽
    • 0 表示头部已被屏蔽
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通的元组。
  • encoder_hidden_states (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length), 可选) — 避免对编码器输入的填充标记索引执行注意力机制的掩码。如果模型配置为解码器,则此掩码将用于交叉注意力机制。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩码 的标记,
    • 0 表示 被掩码 的标记。
  • past_key_values (长度为 config.n_layerstuple(tuple(torch.FloatTensor)),每个元组包含 4 个形状为 (batch_size, num_heads, sequence_length - 1, embed_size_per_head) 的张量) — 包含注意力块的预先计算的键和值隐藏状态。可用于加速解码。如果使用了 past_key_values,则用户可以选择只输入最后的 decoder_input_ids(那些没有将其过去的键值状态提供给此模型的)形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids
  • labels (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 用于计算从左到右的语言建模损失(下一个词预测)的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(参见 input_ids 文档字符串)索引设置为 -100 的标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的标记计算。
  • use_cache (bool, 可选) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(参见 past_key_values)。

返回值

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置 (BigBirdConfig) 和输入的不同元素。

  • loss (torch.FloatTensor 形状为 (1,), 可选,当提供 labels 时返回) — 语言建模损失(用于下一个标记预测)。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入的输出,+ 一个是每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每层一个)。

    注意力 Softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstorch.FloatTensor 元组的元组,每个元组包含自注意力机制和交叉注意力机制层的缓存键、值状态(如果模型用于编码器-解码器设置)。仅在 config.is_decoder = True 时相关。

    包含预先计算的隐藏状态(注意力块中的键和值),可以使用这些状态(参见 past_key_values 输入)来加速顺序解码。

BigBirdForCausalLM forward 方法,覆盖了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForCausalLM.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits

BigBirdForMaskedLM

transformers.BigBirdForMaskedLM

< >

( config )

参数

  • config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

BigBird 模型顶部带有 语言建模 头。此模型是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档了解与一般使用和行为相关的所有内容。

forward

< >

( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor ,形状为 (batch_size, sequence_length)可选) — 掩码,避免对填充标记索引执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩码 的标记
    • 0 表示 被掩码 的标记

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor ,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记
    • 1 对应于 句子 B 标记

    什么是标记类型 ID?

  • position_ids (torch.LongTensor ,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor ,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部 未被掩码
    • 0 表示头部 被掩码
  • inputs_embeds (torch.FloatTensor ,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望更多地控制如何将 input_ids 索引转换为关联向量,而不是模型的内部嵌入查找矩阵,这将很有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(请参阅 input_ids 文档字符串)索引设置为 -100 的标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的标记计算。

返回值

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置 (BigBirdConfig) 和输入的不同元素。

  • loss (torch.FloatTensor 形状为 (1,), 可选, 当提供 labels 时返回) — 掩码语言建模 (MLM) 损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入的输出,+ 一个是每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

BigBirdForMaskedLM 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForMaskedLM
>>> from datasets import load_dataset

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train")
>>> # select random long article
>>> LONG_ARTICLE_TARGET = squad_ds[81514]["context"]
>>> # select random sentence
>>> LONG_ARTICLE_TARGET[332:398]
'the highest values are very close to the theoretical maximum value'

>>> # add mask_token
>>> LONG_ARTICLE_TO_MASK = LONG_ARTICLE_TARGET.replace("maximum", "[MASK]")
>>> inputs = tokenizer(LONG_ARTICLE_TO_MASK, return_tensors="pt")
>>> # long article input
>>> list(inputs["input_ids"].shape)
[1, 919]

>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'maximum'
>>> labels = tokenizer(LONG_ARTICLE_TARGET, return_tensors="pt")["input_ids"]
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
1.99

BigBirdForSequenceClassification

transformers.BigBirdForSequenceClassification

< >

( config )

参数

  • config (BigBirdConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。

BigBird 模型变压器,顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。

此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

< >

( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor 形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    索引可以通过 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor 形状为 (batch_size, sequence_length), 可选) — 避免对填充标记索引执行注意力机制的掩码。掩码值在 [0, 1] 中选择:

    • 未被掩码 的标记为 1,
    • 被掩码 的标记为 0。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (形状为 (num_heads,)(num_layers, num_heads)torch.FloatTensor可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被屏蔽
    • 0 表示头部已被屏蔽
  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentionsbool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_statesbool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dictbool可选) — 是否返回 ModelOutput 而不是普通的元组。
  • labels (形状为 (batch_size,)torch.LongTensor可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方误差),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回值

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

transformers.modeling_outputs.SequenceClassifierOutputtorch.FloatTensor 的元组(如果传递 return_dict=False 或当 config.return_dict=False 时)包含根据配置(BigBirdConfig)和输入的不同元素。

  • loss (形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (形状为 (batch_size, config.num_labels)torch.FloatTensor) — 分类(或回归,如果 config.num_labels==1)分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入的输出,+ 一个是每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

BigBirdForSequenceClassification 的前向方法,覆盖了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForSequenceClassification
>>> from datasets import load_dataset

>>> tokenizer = AutoTokenizer.from_pretrained("l-yohai/bigbird-roberta-base-mnli")
>>> model = BigBirdForSequenceClassification.from_pretrained("l-yohai/bigbird-roberta-base-mnli")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train")
>>> LONG_ARTICLE = squad_ds[81514]["context"]
>>> inputs = tokenizer(LONG_ARTICLE, return_tensors="pt")
>>> # long input article
>>> list(inputs["input_ids"].shape)
[1, 919]

>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_0'
>>> num_labels = len(model.config.id2label)
>>> model = BigBirdForSequenceClassification.from_pretrained(
...     "l-yohai/bigbird-roberta-base-mnli", num_labels=num_labels
... )
>>> labels = torch.tensor(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
1.13

BigBirdForMultipleChoice

transformers.BigBirdForMultipleChoice

< >

( config )

参数

  • config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。

BigBird 模型,顶部有多选分类头(在池化输出顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

< >

( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor ,形状为 (batch_size, num_choices, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor 形状为 (batch_size, num_choices, sequence_length), 可选) — 掩码避免在填充标记索引上执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示 未被遮蔽 的标记,
    • 0 表示 被遮蔽 的标记.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor 形状为 (batch_size, num_choices, sequence_length), 可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记.

    什么是标记类型 ID?

  • position_ids (torch.LongTensor 形状为 (batch_size, num_choices, sequence_length), 可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部 未被遮蔽,
    • 0 表示头部 被遮蔽.
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, num_choices, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor 形状为 (batch_size,), 可选) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices-1] 范围内,其中 num_choices 是输入张量的第二维的大小。(参见上面的 input_ids

返回值

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置 (BigBirdConfig) 和输入的不同元素。

  • loss (torch.FloatTensor 形状为 (1,), 可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor 形状为 (batch_size, num_choices)) — num_choices 是输入张量的第二维。(参见上面的 input_ids)。

    分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入的输出,+ 一个是每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

BigBirdForMultipleChoice 前向方法,覆盖 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, BigBirdForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForMultipleChoice.from_pretrained("google/bigbird-roberta-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

BigBirdForTokenClassification

transformers.BigBirdForTokenClassification

< >

( config )

参数

  • config (BigBirdConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。

BigBird 模型,顶部带有标记分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。

此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

< >

( input_ids: LongTensor = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor ,形状为 (batch_size, sequence_length)) — 词汇表中输入序列词元的索引。

    索引可以通过 AutoTokenizer 获取。 更多细节请参考 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor ,形状为 (batch_size, sequence_length)可选) — 掩码避免在填充词元索引上执行注意力。掩码值在 [0, 1] 中选择:

    • 未掩码的词元为 1,
    • 已掩码的词元为 0。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor ,形状为 (batch_size, sequence_length)可选) — 段词元索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 词元,
    • 1 对应于 句子 B 词元。

    什么是词元类型 ID?

  • position_ids (torch.LongTensor ,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列词元的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (形状为 (num_heads,)(num_layers, num_heads)torch.FloatTensor可选) — 用于将自注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被屏蔽
    • 0 表示头部已被屏蔽
  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望更好地控制如何将 *input_ids* 索引转换为关联向量,而不是使用模型的内部嵌入查找矩阵,则此选项很有用。
  • output_attentionsbool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_statesbool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dictbool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (形状为 (batch_size, sequence_length)torch.LongTensor可选) — 用于计算标记分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。

返回值

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含根据配置(BigBirdConfig)和输入而不同的各种元素。

  • loss (形状为 (1,)torch.FloatTensor可选,在提供 labels 时返回) — 分类损失。

  • logits (形状为 (batch_size, sequence_length, config.num_labels)torch.FloatTensor) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(如果模型有嵌入层,则一个是嵌入的输出,+ 一个是每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

BigBirdForTokenClassification 的前向方法,覆盖了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, BigBirdForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForTokenClassification.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

BigBirdForQuestionAnswering

transformers.BigBirdForQuestionAnswering

< >

( config add_pooling_layer = False )

参数

  • config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。

BigBird 模型,顶部有一个用于提取式问答任务(例如 SQuAD)的跨度分类头(隐藏状态输出顶部的线性层,用于计算 span start logitsspan end logits)。

此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None question_lengths: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.models.big_bird.modeling_big_bird.BigBirdForQuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor ,形状为 (batch_size, sequence_length)) — 词汇表中输入序列词元的索引。

    索引可以通过 AutoTokenizer 获取。 更多详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor ,形状为 (batch_size, sequence_length),可选) — 掩码以避免对填充词元索引执行注意力。掩码值在 [0, 1] 中选择:

    • 未被掩码 的词元为 1,
    • 被掩码 的词元为 0。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor ,形状为 (batch_size, sequence_length),可选) — 段词元索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 *句子 A* 词元,
    • 1 对应于 *句子 B* 词元。

    什么是词元类型 ID?

  • position_ids (torch.LongTensor ,形状为 (batch_size, sequence_length),可选) — 位置嵌入中每个输入序列词元的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor ,形状为 (num_heads,)(num_layers, num_heads),可选) — 掩码以使自注意力模块的选定头部无效。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被掩码
    • 0 表示头部被掩码
  • inputs_embeds (torch.FloatTensor ,形状为 (batch_size, sequence_length, hidden_size),可选) — 或者,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您想比模型的内部嵌入查找矩阵更好地控制如何将 *input_ids* 索引转换为关联向量,这将非常有用。
  • output_attentions (bool,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通的元组。
  • start_positions (torch.LongTensor 形状为 (batch_size,), 可选) — 用于计算标记分类损失的标记跨度开始位置(索引)的标签。位置会被限制在序列长度 (sequence_length) 内。序列外的的位置不会被考虑用于计算损失。
  • end_positions (torch.LongTensor 形状为 (batch_size,), 可选) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。位置会被限制在序列长度 (sequence_length) 内。序列外的的位置不会被考虑用于计算损失。

返回值

transformers.models.big_bird.modeling_big_bird.BigBirdForQuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.models.big_bird.modeling_big_bird.BigBirdForQuestionAnsweringModelOutput 或一个 torch.FloatTensor 的元组(如果传入 return_dict=Falseconfig.return_dict=False), 包含根据配置 (BigBirdConfig) 和输入的不同元素。

  • loss (torch.FloatTensor 形状为 (1,), 可选,当提供 labels 时返回) — 总体跨度提取损失是开始和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor 形状为 (batch_size, sequence_length)) — 跨度开始分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor 形状为 (batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。

  • pooler_output (torch.FloatTensor 形状为 (batch_size, 1)) — 来自 BigBigModel 的池化器输出

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入的输出 + 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — torch.FloatTensor 的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

BigBirdForQuestionAnswering 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForQuestionAnswering
>>> from datasets import load_dataset

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train")
>>> # select random article and question
>>> LONG_ARTICLE = squad_ds[81514]["context"]
>>> QUESTION = squad_ds[81514]["question"]
>>> QUESTION
'During daytime how high can the temperatures reach?'

>>> inputs = tokenizer(QUESTION, LONG_ARTICLE, return_tensors="pt")
>>> # long article and question input
>>> list(inputs["input_ids"].shape)
[1, 929]

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_token_ids = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> predict_answer_token = tokenizer.decode(predict_answer_token_ids)
>>> target_start_index, target_end_index = torch.tensor([130]), torch.tensor([132])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
JAX
隐藏 JAX 内容

FlaxBigBirdModel

transformers.FlaxBigBirdModel

< >

( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。

    如果您希望更改模型参数的 dtype,请参阅 to_fp16()to_bf16()

基本的 BigBird 模型转换器,输出原始隐藏状态,顶部没有任何特定的头部。

此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPoolingtuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)) — 词汇表中输入序列词元的索引。

    索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 掩码,避免对填充词元索引执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示词元未被掩码
    • 0 表示词元已被掩码

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 段词元索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A 词元,
    • 1 对应于句子 B 词元。

    什么是词元类型 ID?

  • position_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列词元的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • head_mask (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) -- 用于清空注意力模块中选定头的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被掩码
    • 0 表示头部已被掩码
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

返回值

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPoolingtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置 (BigBirdConfig) 和输入的不同元素。

  • last_hidden_state (jnp.ndarray ,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (jnp.ndarray ,形状为 (batch_size, hidden_size)) — 序列第一个词元(分类词元)的最后一层隐藏状态,经过线性层和 Tanh 激活函数的进一步处理。线性层权重在预训练期间从下一句预测(分类)目标中训练得到。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBigBirdPreTrainedModel 的前向方法重写了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdModel

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdModel.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxBigBirdForPreTraining

transformers.FlaxBigBirdForPreTraining

< >

( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • dtype (jax.numpy.dtype, 可选,默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。

    如果您希望更改模型参数的 dtype,请参阅 to_fp16()to_bf16()

BigBird 模型在顶部有两个头,就像在预训练期间所做的那样:一个 掩码语言建模 头和一个 下一句预测(分类) 头。

此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForPreTrainingOutputtuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 避免对填充标记索引执行注意力机制的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 未被掩码 的标记,
    • 0 表示 已被掩码 的标记。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • head_mask (形状为 (batch_size, sequence_length)numpy.ndarray可选) -- 用于将注意力模块的选定头部置零的掩码。掩码值在 [0, 1]` 中选择:

    • 1 表示头部未被屏蔽
    • 0 表示头部已被屏蔽
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

返回值

transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForPreTrainingOutputtuple(torch.FloatTensor)

一个 transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForPreTrainingOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置 (BigBirdConfig) 和输入的不同元素。

  • prediction_logits (形状为 (batch_size, sequence_length, config.vocab_size)jnp.ndarray) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • seq_relationship_logits (形状为 (batch_size, 2)jnp.ndarray) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBigBirdPreTrainedModel 的前向方法重写了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForPreTraining

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

FlaxBigBirdForCausalLM

transformers.FlaxBigBirdForCausalLM

< >

( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • dtype (jax.numpy.dtype可选,默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的 dtype,不会影响模型参数的 dtype。

    如果您希望更改模型参数的 dtype,请参阅 to_fp16()to_bf16()

BigBird 模型,顶部有一个语言建模头(隐藏状态输出顶部的线性层),例如用于自回归任务。

此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)) — 词汇表中输入序列词元的索引。

    索引可以通过 AutoTokenizer 获取。 更多详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 掩码,避免对填充词元索引执行注意力。掩码值在 [0, 1] 中选择:

    • 未被掩码的词元为 1,
    • 被掩码的词元为 0。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 段词元索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 词元,
    • 1 对应于 句子 B 词元。

    什么是词元类型 ID?

  • position_ids (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • head_mask (numpy.ndarray,形状为 (batch_size, sequence_length)可选) -- 用于将注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被屏蔽
    • 0 表示头部已被屏蔽
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

返回值

transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 的元组(如果传入 return_dict=False 或当 config.return_dict=False 时),包含根据配置 (BigBirdConfig) 和输入的不同元素。

  • logits (jnp.ndarray,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray)可选,当传入 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 Softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(jnp.ndarray))可选,当传入 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layersjnp.ndarray 元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态(如果模型用于编码器-解码器设置)。仅在 config.is_decoder = True 时相关。

    包含预先计算的隐藏状态(注意力块中的键和值),可以使用这些状态(参见 past_key_values 输入)来加速顺序解码。

FlaxBigBirdPreTrainedModel 的前向方法重写了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForCausalLM.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]

FlaxBigBirdForMaskedLM

transformers.FlaxBigBirdForMaskedLM

< >

( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。

    如果您希望更改模型参数的 dtype,请参阅 to_fp16()to_bf16()

带有顶部 语言建模 头的 BigBird 模型。

此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (numpy.ndarray,形状为 (batch_size, sequence_length), 可选) — 掩码以避免对填充标记索引执行注意力。掩码值在 [0, 1] 中选择:

    • 未掩码 的标记为 1,
    • 已掩码 的标记为 0。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • head_mask (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 用于将注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被掩盖
    • 0 表示头部被掩盖
  • return_dict (bool, 可选) — 是否返回 模型输出 而不是普通元组。

返回值

transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个 torch.FloatTensor 元组(如果传入 return_dict=False 或当 config.return_dict=False 时),包含根据配置 (BigBirdConfig) 和输入而不同的各种元素。

  • logits (jnp.ndarray,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBigBirdPreTrainedModel 的前向方法重写了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForMaskedLM

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBigBirdForSequenceClassification

transformers.FlaxBigBirdForSequenceClassification

< >

( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。

    如果您希望更改模型参数的 dtype,请参阅 to_fp16()to_bf16()

BigBird 模型变压器,顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。

此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) transformers.modeling_flax_outputs.FlaxSequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 掩码,避免对填充标记索引执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记已被掩码

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A 标记,
    • 1 对应于句子 B 标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • head_mask (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) -- 用于将注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被掩码
    • 0 表示头部已被掩码
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通的元组。

返回值

transformers.modeling_flax_outputs.FlaxSequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置 (BigBirdConfig) 和输入而变化的各种元素。

  • logits (jnp.ndarray ,形状为 (batch_size, config.num_labels)) — 分类(如果 config.num_labels==1 则为回归)分数(在 SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBigBirdPreTrainedModel 的前向方法重写了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForSequenceClassification.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBigBirdForMultipleChoice

transformers.FlaxBigBirdForMultipleChoice

< >

( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (BigBirdConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的 dtype,而不影响模型参数的 dtype。

    如果您希望更改模型参数的 dtype,请参阅 to_fp16()to_bf16()

BigBird 模型,顶部有多选分类头(在池化输出顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray ,形状为 (batch_size, num_choices, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (numpy.ndarray ,形状为 (batch_size, num_choices, sequence_length)可选) — 掩码以避免对填充标记索引执行注意力。在 [0, 1] 中选择的掩码值:

    • 未屏蔽标记为 1,
    • 已屏蔽标记为 0。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray ,形状为 (batch_size, num_choices, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。在 [0, 1] 中选择的索引:

    • 0 对应于句子 A 标记,
    • 1 对应于句子 B 标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray ,形状为 (batch_size, num_choices, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • head_mask (numpy.ndarray ,形状为 (batch_size, num_choices, sequence_length)可选) -- 用于将注意力模块的选定头部置空的掩码。在 [0, 1] 中选择的掩码值:

    • 1 表示头部未被屏蔽
    • 0 表示头部已被屏蔽
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

返回值

transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个 torch.FloatTensor 的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含根据配置 (BigBirdConfig) 和输入而不同的各种元素。

  • logits (jnp.ndarray ,形状为 (batch_size, num_choices)) — num_choices 是输入张量的第二个维度。(参见上面的 input_ids)。

    分类分数(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBigBirdPreTrainedModel 的前向方法重写了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForMultipleChoice

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForMultipleChoice.from_pretrained("google/bigbird-roberta-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})

>>> logits = outputs.logits

FlaxBigBirdForTokenClassification

transformers.FlaxBigBirdForTokenClassification

< >

( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (BigBirdConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,只会加载配置。 请查看 from_pretrained() 方法来加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。 可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的 dtype,而不影响模型参数的 dtype。

    如果您希望更改模型参数的 dtype,请参阅 to_fp16()to_bf16()

BigBird 模型,顶部带有标记分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。

此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) transformers.modeling_flax_outputs.FlaxTokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 避免对填充标记索引执行注意力机制的掩码。掩码值在 [0, 1] 中选择:

    • 未被掩码的标记为 1,
    • 被掩码的标记为 0。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • head_mask (numpy.ndarray,形状为 (batch_size, sequence_length)可选) -- 用于使注意力模块的选定头部无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被掩码
    • 0 表示头部被掩码
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。

返回值

transformers.modeling_flax_outputs.FlaxTokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个 torch.FloatTensor 的元组(如果传递 return_dict=False 或当 config.return_dict=False 时)包含根据配置 (BigBirdConfig) 和输入的不同元素。

  • logits (形状为 (batch_size, sequence_length, config.num_labels)jnp.ndarray) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBigBirdPreTrainedModel 的前向方法重写了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForTokenClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForTokenClassification.from_pretrained("google/bigbird-roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBigBirdForQuestionAnswering

transformers.FlaxBigBirdForQuestionAnswering

< >

( config: BigBirdConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (BigBirdConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。请查看 from_pretrained() 方法来加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。

    如果您希望更改模型参数的 dtype,请参阅 to_fp16()to_bf16()

BigBird 模型,顶部有一个用于提取式问答任务(例如 SQuAD)的跨度分类头(隐藏状态输出顶部的线性层,用于计算 span start logitsspan end logits)。

此模型继承自 FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型也是 flax.linen.Module 的子类。将其用作常规 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有内容。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None question_lengths = None params: dict = None dropout_rng: Optional = None indices_rng: Optional = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForQuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    索引可以使用 AutoTokenizer 获取。详见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 掩码,避免对填充标记索引执行注意力。掩码值在 [0, 1] 中选择:

    • 1 表示未被掩码的标记,
    • 0 表示已被掩码的标记。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A 标记,
    • 1 对应于句子 B 标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray ,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在 [0, config.max_position_embeddings - 1] 范围内选择。
  • head_mask (numpy.ndarray ,形状为 (batch_size, sequence_length),可选) -- 用于将注意力模块的选定头部置零的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被屏蔽
    • 0 表示头部已被屏蔽
  • return_dict (bool,可选) — 是否返回 ModelOutput 而不是普通元组。

返回值

transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForQuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.models.big_bird.modeling_flax_big_bird.FlaxBigBirdForQuestionAnsweringModelOutput 或一个 torch.FloatTensor 的元组(如果传入 return_dict=False 或当 config.return_dict=False 时),包含的元素取决于配置(BigBirdConfig)和输入。

  • start_logits (jnp.ndarray ,形状为 (batch_size, sequence_length)) — Span-start 分数(SoftMax 之前)。

  • end_logits (jnp.ndarray ,形状为 (batch_size, sequence_length)) — Span-end 分数(SoftMax 之前)。

  • pooled_output (jnp.ndarray ,形状为 (batch_size, hidden_size)) — FlaxBigBirdModel 返回的 pooled_output。

  • hidden_states (tuple(jnp.ndarray)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — jnp.ndarray 的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBigBirdForQuestionAnswering 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管前向传递的方法需要在此函数中定义,但之后应该调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxBigBirdForQuestionAnswering

>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")

>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits
< > 在 GitHub 上更新