Transformers 文档
PEGASUS-X
并获取增强的文档体验
开始使用
PEGASUS-X
概述
PEGASUS-X 模型由 Jason Phang、Yao Zhao 和 Peter J. Liu 在 Investigating Efficiently Extending Transformers for Long Input Summarization 中提出。
PEGASUS-X (PEGASUS 扩展版) 通过额外的长输入预训练,并在编码器中使用交错的块局部注意力与全局 tokens,扩展了 PEGASUS 模型以用于长输入摘要。
论文摘要如下:
虽然大型预训练 Transformer 模型已被证明在处理自然语言任务方面非常强大,但处理长序列输入仍然是一个重大挑战。其中一项任务是长输入摘要,其中输入长度超过大多数预训练模型的最大输入上下文。通过大量的实验,我们研究了哪些模型架构更改和预训练范式可以最有效地使预训练 Transformer 适应长输入摘要。我们发现,带有全局编码器 tokens 的交错块局部 Transformer 在性能和效率之间取得了良好的平衡,并且在长序列上的额外预训练阶段有意义地提高了下游摘要性能。基于我们的发现,我们推出了 PEGASUS-X,它是 PEGASUS 模型的扩展版,具有额外的长输入预训练,可以处理高达 16K tokens 的输入。PEGASUS-X 在长输入摘要任务上实现了与更大的模型相当的强大性能,同时添加了很少的额外参数,并且不需要模型并行来训练。
文档资源
PEGASUS-X 使用与 PEGASUS 相同的分词器。
PegasusXConfig
class transformers.PegasusXConfig
< source >( vocab_size = 96103 max_position_embeddings = 16384 encoder_layers = 16 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 16 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 use_cache = True is_encoder_decoder = True activation_function = 'gelu' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 decoder_start_token_id = 0 scale_embedding = True pad_token_id = 0 eos_token_id = 1 forced_eos_token_id = 1 num_global_tokens = 32 block_size = 512 stagger_local_blocks = True **kwargs )
参数
- vocab_size (
int
, optional, 默认为 96103) — PEGASUS-X 模型的词汇表大小。 定义了在调用 PegasusXModel 时传递的inputs_ids
可以表示的不同 token 的数量。 - d_model (
int
, optional, 默认为 1024) — 层和池化器层的维度。 - encoder_layers (
int
, optional, 默认为 16) — 编码器层数。 - decoder_layers (
int
, optional, 默认为 16) — 解码器层数。 - encoder_attention_heads (
int
, optional, 默认为 16) — Transformer 编码器中每个 attention 层的 attention head 数量。 - decoder_attention_heads (
int
, optional, 默认为 16) — Transformer 解码器中每个 attention 层的 attention head 数量。 - decoder_ffn_dim (
int
, optional, 默认为 4096) — 解码器中“中间”(通常称为前馈)层的维度。 - encoder_ffn_dim (
int
, optional, 默认为 4096) — 解码器中“中间”(通常称为前馈)层的维度。 - activation_function (
str
或function
, optional, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。 如果是字符串,则支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 - dropout (
float
, optional, 默认为 0.1) — embeddings、编码器和池化器中所有全连接层的 dropout 概率。 - attention_dropout (
float
, optional, 默认为 0.0) — attention 概率的 dropout 比率。 - activation_dropout (
float
, optional, 默认为 0.0) — 全连接层内部激活的 dropout 比率。 - max_position_embeddings (
int
, optional, 默认为 16384) — 此模型可能使用的最大序列长度。 通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - init_std (
float
, optional, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - encoder_layerdrop (
float
, optional, 默认为 0.0) — 编码器的 LayerDrop 概率。 有关更多详细信息,请参见 [LayerDrop 论文](see https://arxiv.org/abs/1909.11556)。 - decoder_layerdrop (
float
, optional, 默认为 0.0) — 解码器的 LayerDrop 概率。 有关更多详细信息,请参见 [LayerDrop 论文](see https://arxiv.org/abs/1909.11556)。 - use_cache (
bool
, optional, 默认为True
) — 模型是否应返回最后的 key/values attentions (并非所有模型都使用) - forced_eos_token_id (
int
, optional, 默认为 1) — 当达到max_length
时,强制作为最后生成的 token 的 token id。 通常设置为eos_token_id
。 - num_global_tokens (
int
, optional, 默认为 128) — 用于编码器的全局 token 数量 - block_size (
int
, optional, 默认为 512) — 编码器局部 attention 的块大小。 序列长度应为块大小的精确倍数。 如果 stagger_local_block 为 True,则 block_size 必须是 2 的倍数 - stagger_local_block (
bool
, optional, 默认为True
) — 是否将每隔一个局部 attention 错开半个块
这是用于存储 PegasusXModel 配置的配置类。 它用于根据指定的参数实例化 PEGASUS-X 模型,定义模型架构。 使用默认值实例化配置将产生与 PEGASUS-X google/pegasus-x-large 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。 有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import PegasusXConfig, PegasusXModel
>>> # Initializing a PEGASUS google/pegasus-x-large style configuration
>>> configuration = PegasusXConfig()
>>> # Initializing a model (with random weights) from the google/pegasus-x-large style configuration
>>> model = PegasusXModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
PegasusXModel
class transformers.PegasusXModel
< source >( config: PegasusXConfig )
参数
- config (PegasusXConfig) — 具有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,而只会加载配置。 查看 from_pretrained() 方法以加载模型权重。
裸 PEGASUS-X 模型输出原始隐藏状态,顶部没有任何特定的 head。 此模型继承自 PreTrainedModel。 查看超类文档,了解库为所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、修剪 head 等)。
此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch Module,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.Tensor] = None decoder_attention_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[torch.FloatTensor]] = None past_key_values: typing.Optional[typing.Tuple[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.Tensor] = None decoder_inputs_embeds: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
, 形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。如果您提供 padding,默认情况下 padding 将被忽略。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- inputs_embeds (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 - attention_mask (
torch.Tensor
, 形状为(batch_size, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 未被掩盖 的 token,
- 0 表示 被掩盖 的 token。
- decoder_input_ids (
torch.LongTensor
, 形状为(batch_size, target_sequence_length)
, 可选) — 词汇表中解码器输入序列 token 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
PEGASUS-X 使用
pad_token_id
作为decoder_input_ids
生成的起始 token。如果使用past_key_values
,则可以选择仅输入最后一个decoder_input_ids
(请参阅past_key_values
)。 - decoder_attention_mask (
torch.LongTensor
, 形状为(batch_size, target_sequence_length)
, 可选) — 默认行为:生成一个忽略decoder_input_ids
中的 padding token 的 tensor。默认情况下,也将使用因果掩码。 - encoder_outputs (
tuple(tuple(torch.FloatTensor)
, 可选) — Tuple 由 (last_hidden_state
, 可选:hidden_states
, 可选:attentions
) 组成。last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
, 可选) 是编码器最后一层输出的隐藏状态序列。在解码器的 cross-attention 中使用。 - past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
,其中每个 tuple 包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
) 的 tensor 和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加 tensor。包含预先计算的隐藏状态(self-attention 块和 cross-attention 块中的键和值),可用于加速顺序解码(请参阅
past_key_values
输入)。如果使用
past_key_values
,用户可以选择仅输入最后一个decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - decoder_inputs_embeds (
torch.FloatTensor
, 形状为(batch_size, target_sequence_length, hidden_size)
, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递decoder_input_ids
。 如果使用past_key_values
,则可以选择仅输入最后一个decoder_inputs_embeds
(请参阅past_key_values
)。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将decoder_input_ids
索引转换为关联的向量,这将非常有用。如果
decoder_input_ids
和decoder_inputs_embeds
均未设置,则decoder_inputs_embeds
取inputs_embeds
的值。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有 attention 层的 attentions tensor。 有关更多详细信息,请参阅返回的 tensors 下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通 tuple。
返回值
transformers.modeling_outputs.Seq2SeqModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个 torch.FloatTensor
的 tuple(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (PegasusXConfig) 和输入。
-
last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层输出的隐藏状态序列。如果使用
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
,其中每个 tuple 包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
) 的 tensor 和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加 tensor。包含预先计算的隐藏状态(self-attention 块和 cross-attention 块中的键和值),可用于加速顺序解码(请参阅
past_key_values
输入)。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的 tuple(如果模型具有嵌入层,则为嵌入输出的 tuple + 每个层输出的 tuple),形状为(batch_size, sequence_length, hidden_size)
。解码器在每一层输出的隐藏状态,加上可选的初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的 tuple(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的 attention 权重,在 attention softmax 之后,用于计算 self-attention 头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的 tuple(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的 cross-attention 层的 attention 权重,在 attention softmax 之后,用于计算 cross-attention 头中的加权平均值。
-
encoder_last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
, 可选) — 模型编码器最后一层输出的隐藏状态序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的 tuple(如果模型具有嵌入层,则为嵌入输出的 tuple + 每个层输出的 tuple),形状为(batch_size, sequence_length, hidden_size)
。编码器在每一层输出的隐藏状态,加上可选的初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的 tuple(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。编码器的 attention 权重,在 attention softmax 之后,用于计算 self-attention 头中的加权平均值。
PegasusXModel
forward 方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数内定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, PegasusModel
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-x-large")
>>> model = PegasusModel.from_pretrained("google/pegasus-x-large")
>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
>>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt")
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 4, 1024]
PegasusXForConditionalGeneration
class transformers.PegasusXForConditionalGeneration
< source >( config: PegasusXConfig )
参数
- config (PegasusXConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
用于条件生成(例如,摘要)的 PEGASUS-X。 此模型继承自 PreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如,下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch Module,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.Tensor] = None decoder_attention_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[torch.FloatTensor]] = None past_key_values: typing.Optional[typing.Tuple[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.Tensor] = None decoder_inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.Seq2SeqLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。 如果您提供填充,默认情况下填充将被忽略。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 - attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充 token 索引上执行 attention 的 Mask。 Mask 值在[0, 1]
中选择:- 1 表示 未被 mask 的 tokens,
- 0 表示 被 mask 的 tokens。
- decoder_input_ids (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 词汇表中 decoder 输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
PEGASUS-X 使用
pad_token_id
作为decoder_input_ids
生成的起始 token。 如果使用past_key_values
,则可以选择仅输入最后一个decoder_input_ids
(请参阅past_key_values
)。 - decoder_attention_mask (
torch.LongTensor
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个忽略decoder_input_ids
中填充 tokens 的 tensor。 默认情况下,也会使用因果 mask。 - encoder_outputs (
tuple(tuple(torch.FloatTensor)
,可选) — Tuple 由 (last_hidden_state
, optional:hidden_states
, optional:attentions
) 组成last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选) 是编码器最后一层输出处的 hidden-states 序列。 在 decoder 的 cross-attention 中使用。 - past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回) —tuple(torch.FloatTensor)
的 tuple,长度为config.n_layers
,每个 tuple 有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的 tensors 和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外 tensors。包含预先计算的 hidden-states(self-attention 块和 cross-attention 块中的键和值),可以用于(参见
past_key_values
输入)加速顺序解码。如果使用
past_key_values
,用户可以选择仅输入最后一个decoder_input_ids
(那些没有将其 past key value states 提供给此模型的)形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - decoder_inputs_embeds (
torch.FloatTensor
,形状为(batch_size, target_sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递decoder_input_ids
。 如果使用past_key_values
,则可以选择仅输入最后一个decoder_inputs_embeds
(请参阅past_key_values
)。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将decoder_input_ids
索引转换为关联的向量,这将非常有用。如果
decoder_input_ids
和decoder_inputs_embeds
均未设置,则decoder_inputs_embeds
取inputs_embeds
的值。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回的 tensors 下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的 tensors 下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的 tuple。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算 masked language modeling loss 的标签。 索引应为[0, ..., config.vocab_size]
或 -100(请参阅input_ids
docstring)。 索引设置为-100
的 tokens 将被忽略(masked),loss 仅针对标签在[0, ..., config.vocab_size]
中的 tokens 计算。
返回值
transformers.modeling_outputs.Seq2SeqLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个 torch.FloatTensor
的 tuple(如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (PegasusXConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模 loss。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇表 token 的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(tuple(torch.FloatTensor))
,其中每个 tuple 包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
) 的 tensor 和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加 tensor。包含预先计算的隐藏状态(self-attention 块和 cross-attention 块中的键和值),可用于加速顺序解码(请参阅
past_key_values
输入)。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的 tuple(如果模型具有嵌入层,则为嵌入输出的 tuple + 每个层输出的 tuple),形状为(batch_size, sequence_length, hidden_size)
。decoder 在每一层输出以及初始嵌入输出处的 Hidden-states。
-
decoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的 tuple(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的 attention 权重,在 attention softmax 之后,用于计算 self-attention 头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的 tuple(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的 cross-attention 层的 attention 权重,在 attention softmax 之后,用于计算 cross-attention 头中的加权平均值。
-
encoder_last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
, 可选) — 模型编码器最后一层输出的隐藏状态序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
的 tuple(如果模型具有嵌入层,则为嵌入输出的 tuple + 每个层输出的 tuple),形状为(batch_size, sequence_length, hidden_size)
。encoder 在每一层输出以及初始嵌入输出处的 Hidden-states。
-
encoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
的 tuple(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。编码器的 attention 权重,在 attention softmax 之后,用于计算 self-attention 头中的加权平均值。
The PegasusXForConditionalGeneration forward 方法,覆盖了 __call__
特殊方法。
虽然 forward 传递的配方需要在该函数内定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
摘要示例
>>> from transformers import AutoTokenizer, PegasusXForConditionalGeneration
>>> model = PegasusXForConditionalGeneration.from_pretrained("google/pegasus-x-base")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-x-large")
>>> ARTICLE_TO_SUMMARIZE = (
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"])
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"California's largest electricity provider has turned off power to hundreds of thousands of customers."