Transformers 文档

BertGeneration

Hugging Face's logo
加入 Hugging Face 社区

并获得增强的文档体验

开始使用

BertGeneration

PyTorch

Overview

BertGeneration 模型是一种 BERT 模型,可以利用 EncoderDecoderModel 进行序列到序列的任务,正如 Sascha Rothe、Shashi Narayan 和 Aliaksei Severyn 在 Leveraging Pre-trained Checkpoints for Sequence Generation Tasks 中提出的那样。

该论文的摘要如下:

大型神经模型的无监督预训练最近彻底改变了自然语言处理领域。通过从公开的检查点进行热启动,NLP 从业者在多个基准测试中推动了最先进的技术,同时节省了大量的计算时间。到目前为止,重点主要集中在自然语言理解任务上。在本文中,我们展示了预训练检查点在序列生成方面的有效性。我们开发了一个基于 Transformer 的序列到序列模型,该模型与公开可用的预训练 BERT、GPT-2 和 RoBERTa 检查点兼容,并对使用这些检查点初始化我们的模型(包括编码器和解码器)的效用进行了广泛的实证研究。我们的模型在机器翻译、文本摘要、句子分割和句子融合方面取得了新的最先进的结果。

此模型由 patrickvonplaten 贡献。原始代码可以在此处找到。

使用示例和技巧

该模型可以与 EncoderDecoderModel 结合使用,以利用两个预训练的 BERT 检查点进行后续微调

>>> # leverage checkpoints for Bert2Bert model...
>>> # use BERT's cls token as BOS token and sep token as EOS token
>>> encoder = BertGenerationEncoder.from_pretrained("google-bert/bert-large-uncased", bos_token_id=101, eos_token_id=102)
>>> # add cross attention layers and use BERT's cls token as BOS token and sep token as EOS token
>>> decoder = BertGenerationDecoder.from_pretrained(
...     "google-bert/bert-large-uncased", add_cross_attention=True, is_decoder=True, bos_token_id=101, eos_token_id=102
... )
>>> bert2bert = EncoderDecoderModel(encoder=encoder, decoder=decoder)

>>> # create tokenizer...
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-large-uncased")

>>> input_ids = tokenizer(
...     "This is a long article to summarize", add_special_tokens=False, return_tensors="pt"
... ).input_ids
>>> labels = tokenizer("This is a short summary", return_tensors="pt").input_ids

>>> # train...
>>> loss = bert2bert(input_ids=input_ids, decoder_input_ids=labels, labels=labels).loss
>>> loss.backward()

预训练的 EncoderDecoderModel 也可直接在模型中心获得,例如

>>> # instantiate sentence fusion model
>>> sentence_fuser = EncoderDecoderModel.from_pretrained("google/roberta2roberta_L-24_discofuse")
>>> tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_discofuse")

>>> input_ids = tokenizer(
...     "This is the first sentence. This is the second sentence.", add_special_tokens=False, return_tensors="pt"
... ).input_ids

>>> outputs = sentence_fuser.generate(input_ids)

>>> print(tokenizer.decode(outputs[0]))

技巧

  • BertGenerationEncoderBertGenerationDecoder 应该与 EncoderDecoder 结合使用。
  • 对于摘要、句子分割、句子融合和翻译,输入不需要特殊标记。因此,不应在输入的末尾添加 EOS 标记。

BertGenerationConfig

class transformers.BertGenerationConfig

< >

( vocab_size = 50358 hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 intermediate_size = 4096 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 bos_token_id = 2 eos_token_id = 1 position_embedding_type = 'absolute' use_cache = True **kwargs )

参数

  • vocab_size (int, 可选, 默认为 50358) — BERT 模型的词汇表大小。定义了调用 BertGeneration 时传递的 inputs_ids 可以表示的不同标记的数量。
  • hidden_size (int, 可选, 默认为 1024) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 24) — Transformer 编码器中隐藏层的数量。
  • num_attention_heads (int, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头的数量。
  • intermediate_size (int, 可选, 默认为 4096) — Transformer 编码器中“中间”层(通常称为前馈层)的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持 "gelu", "relu", "silu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。
  • max_position_embeddings (int, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。
  • pad_token_id (int, 可选, 默认为 0) — 填充标记 ID。
  • bos_token_id (int, 可选, 默认为 2) — 流开始标记 ID。
  • eos_token_id (int, 可选, 默认为 1) — 流结束标记 ID。
  • position_embedding_type (str, 可选, 默认为 "absolute") — 位置嵌入的类型。选择 "absolute", "relative_key", "relative_key_query" 之一。对于位置嵌入,请使用 "absolute"。有关 "relative_key" 的更多信息,请参阅 Self-Attention with Relative Position Representations (Shaw et al.)。有关 "relative_key_query" 的更多信息,请参阅 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的方法 4
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅当 config.is_decoder=True 时相关。

这是用于存储 BertGenerationPreTrainedModel 配置的配置类。它用于根据指定的参数实例化 BertGeneration 模型,从而定义模型架构。使用默认值实例化配置将产生与 BertGeneration google/bert_for_seq_generation_L-24_bbc_encoder 架构类似的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import BertGenerationConfig, BertGenerationEncoder

>>> # Initializing a BertGeneration config
>>> configuration = BertGenerationConfig()

>>> # Initializing a model (with random weights) from the config
>>> model = BertGenerationEncoder(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

BertGenerationTokenizer

class transformers.BertGenerationTokenizer

< >

( vocab_file bos_token = '<s>' eos_token = '</s>' unk_token = '<unk>' pad_token = '<pad>' sep_token = '<::::>' sp_model_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None **kwargs )

参数

  • vocab_file (str) — SentencePiece 文件(通常具有 .spm 扩展名),其中包含实例化分词器所需的词汇表。
  • bos_token (str可选,默认为 "<s>") — 序列开始标记。
  • eos_token (str可选,默认为 "</s>") — 序列结束标记。
  • unk_token (str可选,默认为 "<unk>") — 未知标记。词汇表中不存在的 token 无法转换为 ID,并将设置为此标记。
  • pad_token (str可选,默认为 "<pad>") — 用于填充的标记,例如在批量处理不同长度的序列时。
  • sep_token (str可选,默认为 "< --:::>"):分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • sp_model_kwargs (dict可选) — 将传递给 SentencePieceProcessor.__init__() 方法。 SentencePiece 的 Python 封装器 可以用于设置:

    • enable_sampling:启用子词正则化。

    • nbest_size:unigram 的采样参数。对 BPE-Dropout 无效。

      • nbest_size = {0,1}:不执行采样。
      • nbest_size > 1:从 nbest_size 结果中采样。
      • nbest_size < 0:假设 nbest_size 是无限的,并使用前向过滤和后向采样算法从所有假设(lattice)中采样。
    • alpha:unigram 采样的平滑参数,以及 BPE-dropout 的合并操作的 dropout 概率。

构建 BertGeneration 分词器。基于 SentencePiece

此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此父类以获取有关这些方法的更多信息。

save_vocabulary

< >

( save_directory: str filename_prefix: typing.Optional[str] = None )

BertGenerationEncoder

class transformers.BertGenerationEncoder

< >

( config )

参数

  • config (BertGenerationConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

裸 BertGeneration 模型 transformer,输出原始 hidden-states,顶部没有任何特定的 head。

此模型继承自 PreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 heads 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch Module,并参考 PyTorch 文档以了解与一般用法和行为相关的所有事项。

该模型可以充当编码器(仅具有自注意力)以及解码器,在后一种情况下,在自注意力层之间添加一个交叉注意力层,遵循 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin 在 Attention is all you need 中描述的架构。

当利用 Bert 或 Roberta 检查点用于 EncoderDecoderModel 类时,应使用此模型,如 Sascha Rothe、Shashi Narayan 和 Aliaksei Severyn 在 Leveraging Pre-trained Checkpoints for Sequence Generation Tasks 中所述。

要作为解码器运行,模型需要在配置的 is_decoder 参数设置为 True 的情况下初始化。要在 Seq2Seq 模型中使用,模型需要使用 is_decoder 参数和 add_cross_attention 都设置为 True 进行初始化;然后期望 encoder_hidden_states 作为前向传播的输入。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是 input IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免对填充 token 索引执行 attention 的 Mask。Mask 值在 [0, 1] 中选择:

    • 1 表示 token 未被 mask
    • 0 表示 token 已被 mask

    什么是 attention masks?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在位置 embeddings 中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify 自注意力模块的选定 heads 的 Mask。Mask 值在 [0, 1] 中选择:

    • 1 表示 head 未被 mask
    • 0 表示 head 已被 mask
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部 embedding 查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions tensors。有关更多详细信息,请参阅返回的 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。有关更多详细信息,请参阅返回的 tensors 下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是 plain tuple。
  • encoder_hidden_states (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的 hidden-states 序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免对编码器输入的填充 token 索引执行 attention 的 Mask。如果模型配置为解码器,则此 mask 在交叉注意力中使用。Mask 值在 [0, 1] 中选择:1 表示 token 未被 MASK,0 表示 token 已被 MASK。
  • past_key_values (tuple(tuple(torch.FloatTensor)),长度为 config.n_layers,每个 tuple 有 4 个形状为 (batch_size, num_heads, sequence_length - 1, embed_size_per_head) 的 tensors) — 包含 attention blocks 的预计算 key 和 value hidden states。可用于加速解码。

    如果使用 past_key_values,用户可以选择仅输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids(那些没有将其 past key value states 提供给此模型的 decoder_input_ids),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids

  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values key value states,可用于加速解码(请参阅 past_key_values)。

返回

transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一个 torch.FloatTensor 元组(如果传递 return_dict=False 或当 config.return_dict=False 时),包括各种元素,具体取决于配置 (BertGenerationConfig) 和输入。

  • last_hidden_state (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的 hidden-states 序列。

    如果使用 past_key_values,则仅输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个 hidden-state。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(tuple(torch.FloatTensor)) 元组,每个 tuple 有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的 tensors,以及可选的,如果 config.is_encoder_decoder=True,则还有 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的 tensors。

    包含预计算的 hidden-states(自注意力模块中的 key 和 values,以及可选的,如果 config.is_encoder_decoder=True,则交叉注意力模块中的 key 和 values),这些 hidden-states 可以用于加速顺序解码(请参阅 past_key_values 输入)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有 embedding 层,则为 embeddings 的输出一个,+ 为每一层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出的 Hidden-states 加上可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 attentions 权重,用于计算自注意力 heads 中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的 attentions 权重,在 attention softmax 之后,用于计算交叉注意力 heads 中的加权平均值。

BertGenerationEncoder 的 forward 方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在该函数中定义,但是应该在之后调用 Module 实例而不是此函数,因为前者会处理预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, BertGenerationEncoder
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
>>> model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

BertGenerationDecoder

class transformers.BertGenerationDecoder

< >

( config )

参数

  • config (BertGenerationConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。请查看 from_pretrained() 方法来加载模型权重。

BertGeneration 模型,顶部带有用于 CLM 微调的 语言建模 头。

此模型继承自 PreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入 embeddings 大小、剪枝 heads 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch Module,并参考 PyTorch 文档以了解与一般用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode() 获取详细信息。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 未被 Mask
    • 0 表示 tokens 已被 Mask

    什么是 attention masks?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 tokens 在 position embeddings 中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify self-attention 模块中选定 heads 的 Mask。Mask 值在 [0, 1] 中选择:

    • 1 表示 head 未被 Mask
    • 0 表示 head 已被 Mask
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions tensors。有关更多详细信息,请参见返回的 tensors 下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。有关更多详细信息,请参见返回的 tensors 下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通的 tuple。
  • encoder_hidden_states (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层输出的 hidden-states 序列。如果模型配置为 decoder,则在 cross-attention 中使用。
  • encoder_attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在编码器输入的 padding token 索引上执行 attention 的 Mask。如果模型配置为 decoder,则此 mask 在 cross-attention 中使用。Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 未被 Mask
    • 0 表示 tokens 已被 Mask
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算从左到右语言建模损失(下一个单词预测)的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(请参阅 input_ids docstring)。索引设置为 -100 的 tokens 将被忽略(masked),损失仅针对标签在 [0, ..., config.vocab_size] 中的 tokens 计算。
  • past_key_values (tuple(tuple(torch.FloatTensor)),长度为 config.n_layers,每个 tuple 具有 4 个形状为 (batch_size, num_heads, sequence_length - 1, embed_size_per_head) 的 tensors) — 包含 attention blocks 的预计算 key 和 value hidden states。可用于加速解码。

    如果使用 past_key_values,则用户可以选择仅输入最后一次的 decoder_input_ids(那些没有将其 past key value states 提供给此模型的)的形状为 (batch_size, 1) 而不是所有形状为 (batch_size, sequence_length)decoder_input_ids

  • use_cache (bool可选) — 如果设置为 True,则返回 past_key_values key value states,并且可以用于加速解码(请参阅 past_key_values)。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 的 tuple(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (BertGenerationConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个 token 预测)。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇表 token 的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有 embedding 层,则为 embeddings 的输出一个,+ 为每一层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出的 Hidden-states 加上可选的初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 attentions 权重,用于计算自注意力 heads 中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的 Tuple(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 Cross attentions 权重,用于计算 cross-attention heads 中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递了 use_cache=True 或当 config.use_cache=True 时返回) — torch.FloatTensor tuples 的 Tuple,长度为 config.n_layers,每个 tuple 包含 self-attention 和 cross-attention 层的缓存 key、value states(如果模型在 encoder-decoder 设置中使用)。仅当 config.is_decoder = True 时相关。

    包含可用于加速顺序解码的预计算 hidden-states(attention blocks 中的 key 和 values)(请参阅 past_key_values 输入)。

BertGenerationDecoder 的 forward 方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在该函数中定义,但是应该在之后调用 Module 实例而不是此函数,因为前者会处理预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, BertGenerationDecoder, BertGenerationConfig
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
>>> config = BertGenerationConfig.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
>>> config.is_decoder = True
>>> model = BertGenerationDecoder.from_pretrained(
...     "google/bert_for_seq_generation_L-24_bbc_encoder", config=config
... )

>>> inputs = tokenizer("Hello, my dog is cute", return_token_type_ids=False, return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits
< > 在 GitHub 上更新