GPT-J
概述
GPT-J 模型由 Ben Wang 和 Aran Komatsuzaki 在 kingoflolz/mesh-transformer-jax 仓库中发布。它是一个类似于 GPT-2 的因果语言模型,在 The Pile 数据集上训练。
此模型由 Stella Biderman 贡献。
使用技巧
- 要在 float32 中加载 GPT-J,至少需要 2 倍模型大小的 RAM:1 倍用于初始权重,另 1 倍用于加载检查点。因此,对于 GPT-J,仅加载模型至少需要 48GB RAM。为了减少 RAM 使用量,有几种选择。可以使用
torch_dtype
参数仅在 CUDA 设备上以半精度初始化模型。还有一个 fp16 分支,其中存储了 fp16 权重,可用于进一步最大限度地减少 RAM 使用量
>>> from transformers import GPTJForCausalLM
>>> import torch
>>> device = "cuda"
>>> model = GPTJForCausalLM.from_pretrained(
... "EleutherAI/gpt-j-6B",
... revision="float16",
... torch_dtype=torch.float16,
... ).to(device)
该模型应该能够fit到 16GB GPU 上进行推理。对于训练/微调,它将需要更多的 GPU 内存。例如,Adam 优化器会创建模型的四个副本:模型、梯度、梯度的平均值和平方平均值。因此,即使使用混合精度,它也至少需要 4 倍模型大小的 GPU 内存,因为梯度更新是在 fp32 中进行的。这还不包括激活值和数据批次,它们将再次需要更多的 GPU 内存。因此,应该探索诸如 DeepSpeed 之类的解决方案来训练/微调模型。另一种选择是使用原始代码库在 TPU 上训练/微调模型,然后将模型转换为 Transformers 格式以进行推理。相关说明可以在这里找到
尽管嵌入矩阵的大小为 50400,但 GPT-2 分词器仅使用 50257 个条目。添加这些额外的 token 是为了提高在 TPU 上的效率。为了避免嵌入矩阵大小和词汇表大小之间的不匹配,GPT-J 的分词器包含 143 个额外的 token
<|extratoken_1|>... <|extratoken_143|>
,因此分词器的vocab_size
也变为 50400。
使用示例
可以使用 generate() 方法来使用 GPT-J 模型生成文本。
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> prompt = (
... "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
... "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
... "researchers was the fact that the unicorns spoke perfect English."
... )
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
>>> gen_tokens = model.generate(
... input_ids,
... do_sample=True,
... temperature=0.9,
... max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
...或者使用 float16 精度
>>> from transformers import GPTJForCausalLM, AutoTokenizer
>>> import torch
>>> device = "cuda"
>>> model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", torch_dtype=torch.float16).to(device)
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> prompt = (
... "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
... "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
... "researchers was the fact that the unicorns spoke perfect English."
... )
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
>>> gen_tokens = model.generate(
... input_ids,
... do_sample=True,
... temperature=0.9,
... max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
资源
以下是官方 Hugging Face 和社区 (用 🌎 表示) 资源列表,可帮助您开始使用 GPT-J。如果您有兴趣提交资源并将其包含在此处,请随时打开 Pull Request,我们将对其进行审核!理想情况下,该资源应展示一些新的内容,而不是重复现有资源。
- GPT-J 的描述。
- 一篇关于如何使用 Hugging Face Transformers 和 Amazon SageMaker 部署 GPT-J 6B 进行推理的博客。
- 一篇关于如何使用 GPU 上的 DeepSpeed-Inference 加速 GPT-J 推理的博客。
- 一篇介绍 GPT-J-6B:基于 JAX 的 6B Transformer 的博文。🌎
- 一个用于 GPT-J-6B 推理演示的 notebook。🌎
- 另一个演示 使用 GPT-J-6B 进行推理的 notebook。
- 🤗 Hugging Face 课程的因果语言建模章节。
- GPTJForCausalLM 受此因果语言建模示例脚本、文本生成示例脚本和notebook 支持。
- TFGPTJForCausalLM 受此因果语言建模示例脚本和notebook 支持。
- FlaxGPTJForCausalLM 受此因果语言建模示例脚本和notebook 支持。
文档资源
GPTJConfig
class transformers.GPTJConfig
< source >( vocab_size = 50400 n_positions = 2048 n_embd = 4096 n_layer = 28 n_head = 16 rotary_dim = 64 n_inner = None activation_function = 'gelu_new' resid_pdrop = 0.0 embd_pdrop = 0.0 attn_pdrop = 0.0 layer_norm_epsilon = 1e-05 initializer_range = 0.02 use_cache = True bos_token_id = 50256 eos_token_id = 50256 tie_word_embeddings = False **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 50400) — GPT-J 模型的词汇表大小。定义了在调用 GPTJModel 时传递的inputs_ids
可以表示的不同 token 的数量。 - n_positions (
int
, 可选, 默认为 2048) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - n_embd (
int
, 可选, 默认为 4096) — 嵌入和隐藏状态的维度。 - n_layer (
int
, 可选, 默认为 28) — Transformer 编码器中隐藏层的数量。 - n_head (
int
, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头的数量。 - rotary_dim (
int
, 可选, 默认为 64) — 应用 Rotary Position Embedding 的嵌入维度数量。 - n_inner (
int
, 可选, 默认为 None) — 内部前馈层维度。None
将其设置为 n_embd 的 4 倍 - activation_function (
str
, 可选, 默认为"gelu_new"
) — 激活函数,可以从列表["relu", "silu", "gelu", "tanh", "gelu_new"]
中选择。 - resid_pdrop (
float
, 可选, 默认为 0.1) — 嵌入、编码器和 pooler 中所有全连接层的 dropout 概率。 - embd_pdrop (
int
, 可选, 默认为 0.1) — 嵌入的 dropout 比率。 - attn_pdrop (
float
, 可选, 默认为 0.1) — 注意力的 dropout 比率。 - layer_norm_epsilon (
float
, 可选, 默认为 1e-5) — 层归一化层中使用的 epsilon 值。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后的 key/values 注意力(并非所有模型都使用)。
这是用于存储 GPTJModel 配置的配置类。它用于根据指定的参数实例化 GPT-J 模型,定义模型架构。使用默认值实例化配置将产生与 GPT-J EleutherAI/gpt-j-6B 架构类似的配置。配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
GPTJModel
class transformers.GPTJModel
< source >( config )
参数
- config (GPTJConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
裸 GPT-J 模型 Transformer 输出原始隐藏状态,顶部没有任何特定的 head。此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None past_key_values: Union = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None cache_position: Optional = None ) → transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列 token 的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding 标记索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被掩盖,
- 0 表示标记已被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 分段标记索引,用于指示输入的第一个和第二个部分。索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_attention_heads,)
或(n_layer, num_attention_heads)
,可选) — 用于 nullify 自注意力模块中所选 head 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 已被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_dim)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入提供的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后input_ids
(那些没有将其过去键值状态提供给此模型的输入),其形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列标记在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。
返回
transformers.modeling_outputs.BaseModelOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPast 或 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包括各种元素,具体取决于配置 (GPTJConfig) 和输入。
-
last_hidden_state (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的输出处的隐藏状态序列。如果使用
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,并且如果config.is_encoder_decoder=True
,则可选地具有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的附加张量。包含预先计算的隐藏状态(自注意力模块中的键和值,以及可选地,如果
config.is_encoder_decoder=True
,则在交叉注意力模块中),这些状态可以用于(请参阅past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出处的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
GPTJModel forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
此示例使用随机模型,因为真实模型都非常大。 要获得正确的结果,您应该使用 EleutherAI/gpt-j-6B 而不是 hf-internal-testing/tiny-random-gptj。 如果在加载该检查点时内存不足,您可以尝试在 from_pretrained
调用中添加 device_map="auto"
。
示例
>>> from transformers import AutoTokenizer, GPTJModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gptj")
>>> model = GPTJModel.from_pretrained("hf-internal-testing/tiny-random-gptj")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
GPTJForCausalLM
class transformers.GPTJForCausalLM
< source >( config )
参数
- config (GPTJConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
带有语言建模 head 的 GPT-J 模型转换器。
此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None past_key_values: Union = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None cache_position: Optional = None ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding 标记索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示标记未被掩盖,
- 0 表示标记已被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 分段标记索引,用于指示输入的第一个和第二个部分。索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_attention_heads,)
或(n_layer, num_attention_heads)
,可选) — 用于 nullify 自注意力模块中所选 head 的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 已被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_dim)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更精细地控制如何将 *input_ids* 索引转换为关联向量,而不是模型的内部嵌入查找矩阵,这将非常有用。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可以用于加速顺序解码。这通常包含模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一次的input_ids
(那些没有将其过去键值状态提供给此模型的 `input_ids`),其形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
,可选) — 索引描述输入序列标记在序列中的位置。 与position_ids
相反,此张量不受填充的影响。 它用于在正确的位置更新缓存并推断完整序列长度。 - labels (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 用于语言建模的标签。 请注意,标签在模型内部被移动,即您可以设置labels = input_ids
。 索引在[-100, 0, ..., config.vocab_size]
中选择。 所有设置为-100
的标签都将被忽略(屏蔽),损失仅针对[0, ..., config.vocab_size]
中的标签计算。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (GPTJConfig) 和输入。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 语言建模损失(用于预测下一个标记)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头的预测分数(SoftMax 之前每个词汇表标记的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的隐藏状态(自注意力模块中的键和值),可以用于加速顺序解码(请参阅
past_key_values
输入)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出处的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
GPTJForCausalLM 的前向方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
此示例使用随机模型,因为真实模型都非常大。 要获得正确的结果,您应该使用 EleutherAI/gpt-j-6B 而不是 hf-internal-testing/tiny-random-gptj。 如果在加载该检查点时内存不足,您可以尝试在 from_pretrained
调用中添加 device_map="auto"
。
示例
>>> import torch
>>> from transformers import AutoTokenizer, GPTJForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gptj")
>>> model = GPTJForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gptj")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits
GPTJForSequenceClassification
class transformers.GPTJForSequenceClassification
< 源代码 >( config )
参数
- config (GPTJConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
带有序列分类头(线性层)的 GPT-J 模型转换器。
GPTJForSequenceClassification 使用最后一个标记来进行分类,就像其他因果模型(例如 GPT、GPT-2、GPT-Neo)一样。
由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。 如果在配置中定义了 pad_token_id
,它会查找每行中不是填充标记的最后一个标记。 如果未定义 pad_token_id
,它只会获取批处理中每行的最后一个值。 由于当传递 inputs_embeds
而不是 input_ids
时,它无法猜测填充标记,因此它执行相同的操作(获取批处理中每行的最后一个值)。
此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< 源代码 >( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.FloatTensor
,可选) — 掩码,以避免对填充标记索引执行注意力机制。 掩码值在[0, 1]
中选择:- 1 表示标记未被屏蔽,
- 0 表示标记被屏蔽。
- token_type_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 段落标记索引,用于指示输入的第一个和第二个部分。 索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 每个输入序列标记在位置嵌入中的位置索引。 在[0, config.n_positions - 1]
范围内选择。 - head_mask (形状为
(num_attention_heads,)
或(n_layer, num_attention_heads)
的torch.FloatTensor
,可选) — 掩码,用于使自注意力模块的选定头无效。 掩码值在[0, 1]
中选择:- 1 表示头未被屏蔽,
- 0 表示头被屏蔽。
- inputs_embeds (形状为
(batch_size, sequence_length, hidden_dim)
的torch.FloatTensor
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更精细地控制如何将 *input_ids* 索引转换为关联向量,而不是模型的内部嵌入查找矩阵,这将非常有用。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可以用于加速顺序解码。这通常包含模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也称为旧版缓存格式。
模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一次的input_ids
(那些没有将其过去键值状态提供给此模型的 `input_ids`),其形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是纯元组。 - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — 索引,描述输入序列 tokens 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方误差损失),如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutputWithPast
或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。
-
loss (
torch.FloatTensor
of shape(1,)
, optional, 当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,其中每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的隐藏状态(自注意力模块中的键和值),可以用于加速顺序解码(请参阅
past_key_values
输入)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出处的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
GPTJForSequenceClassification 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
此示例使用随机模型,因为真实的模型都非常大。 要获得正确的结果,您应该使用 EleutherAI/gpt-j-6B 而不是 ydshieh/tiny-random-gptj-for-sequence-classification。 如果在加载该检查点时内存不足,您可以尝试在 from_pretrained
调用中添加 device_map="auto"
。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, GPTJForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification")
>>> model = GPTJForSequenceClassification.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTJForSequenceClassification.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, GPTJForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification")
>>> model = GPTJForSequenceClassification.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTJForSequenceClassification.from_pretrained(
... "ydshieh/tiny-random-gptj-for-sequence-classification", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
GPTJForQuestionAnswering
class transformers.GPTJForQuestionAnswering
< source >( config )
参数
- config (GPTJConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法来加载模型权重。
带有跨度分类头的 GPT-J 模型转换器,用于抽取式问答任务,如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列 tokens 的索引。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在 padding token 索引上执行 attention 的掩码。 在[0, 1]
中选择的掩码值:- 1 表示 tokens 未被掩蔽,
- 0 表示 tokens 已被掩蔽。
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 段落 token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围[0, config.n_positions - 1]
中选择。 - head_mask (
torch.FloatTensor
of shape(num_attention_heads,)
or(n_layer, num_attention_heads)
, optional) — 用于 nullify 自注意力模块的选定头的掩码。 在[0, 1]
中选择的掩码值:- 1 表示 head 未被掩蔽,
- 0 表示 head 已被掩蔽。
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_dim)
, optional) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。 - past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, optional) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入提供的缓存格式相同的缓存格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,则用户可以选择仅输入最后input_ids
(那些没有将其过去键值状态提供给此模型的)形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - output_attentions (
bool
, optional) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回 ModelOutput 而不是纯元组。 - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — 索引,描述输入序列 tokens 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。 - start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算 token 分类损失的已标记跨度开始位置(索引)的标签。 位置被限制在序列的长度 (sequence_length
) 内。 序列之外的位置不计入损失计算。 - end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算 token 分类损失的已标记跨度结束位置(索引)的标签。 位置被限制在序列的长度 (sequence_length
) 内。 序列之外的位置不计入损失计算。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor
的元组 (如果传入 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵损失之和。 -
start_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度起始得分(SoftMax 之前)。 -
end_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度结束得分(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层输出的元组),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出处的隐藏状态,以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
GPTJForQuestionAnswering 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
此示例使用随机模型,因为真实模型都非常大。 要获得正确的结果,您应该使用 EleutherAI/gpt-j-6B 而不是 hf-internal-testing/tiny-random-gptj。 如果在加载该检查点时内存不足,您可以尝试在 from_pretrained
调用中添加 device_map="auto"
。
示例
>>> from transformers import AutoTokenizer, GPTJForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gptj")
>>> model = GPTJForQuestionAnswering.from_pretrained("hf-internal-testing/tiny-random-gptj")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
TFGPTJModel
class transformers.TFGPTJModel
< source >( config *inputs **kwargs )
参数
- config (GPTJConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
裸 GPT-J 模型 Transformer 输出原始隐藏状态,顶部没有任何特定的 head。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit()
等方法时,事情应该对您“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用三种可能性来收集第一个位置参数中的所有输入张量
- 一个仅包含
input_ids
且不包含其他内容的张量:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个输入张量,与文档字符串中给出的输入名称关联:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFBaseModelOutputWithPast 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
,如果past
为None
,否则为past[0].shape[-2]
(输入过去键值状态的sequence_length
)。词汇表中输入序列 token 的索引。如果使用
past
,则只应将未计算过去的输入 ID 作为input_ids
传递。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- past_key_values (
List[tf.Tensor]
,长度为config.n_layers
) — 包含模型计算的预计算隐藏状态(attention 模块中的键和值)(参见下面的past
输出)。可用于加速顺序解码。已将其过去状态提供给此模型的 token id 不应作为输入 id 传递,因为它们已被计算出来。 - attention_mask (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 token 未被掩盖,
- 0 表示 token 被掩盖。
- token_type_ids (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length)
,可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使 self-attention 模块的选定 head 无效的掩码。掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — (可选)您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参阅返回张量下的attentions
。此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。 - training (
bool
,可选,默认为False
) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。 - use_cache (
bool
,可选,默认为True
) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past
)。在训练期间设置为False
,在生成期间设置为True
返回
transformers.modeling_tf_outputs.TFBaseModelOutputWithPast 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPast 或一个 tf.Tensor
的元组 (如果传入 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。
-
last_hidden_state (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的输出处的隐藏状态序列。如果使用
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
List[tf.Tensor]
,可选,当传入use_cache=True
或当config.use_cache=True
时返回) —tf.Tensor
列表,长度为config.n_layers
,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含预计算的隐藏状态(attention 模块中的键和值),可以用于(请参阅
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传入output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及初始嵌入输出处的隐藏状态。
-
attentions (
tuple(tf.Tensor)
,可选,当传入output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
TFGPTJModel 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFGPTJModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> model = TFGPTJModel.from_pretrained("EleutherAI/gpt-j-6B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFGPTJForCausalLM
class transformers.TFGPTJForCausalLM
< source >( config *inputs **kwargs )
参数
- config (GPTJConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有语言建模 head 的 GPT-J 模型转换器。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit()
等方法时,事情应该对您“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用三种可能性来收集第一个位置参数中的所有输入张量
- 一个仅包含
input_ids
且不包含其他内容的张量:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个输入张量,与文档字符串中给出的输入名称关联:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None labels: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFCausalLMOutputWithPast 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
如果past
为None
,否则为past[0].shape[-2]
(输入过去键值状态的sequence_length
)。词汇表中输入序列 tokens 的索引。如果使用
past
,则只有未计算过去的输入 IDs 应作为input_ids
传递。索引可以使用 AutoTokenizer 获取。 参见 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode() 获取详细信息。
- past_key_values (
List[tf.Tensor]
,长度为config.n_layers
) — 包含模型计算的预先计算的隐藏状态(注意力块中的键和值)(请参阅下面的past
输出)。 可用于加速顺序解码。 已经为其提供 past 的 token ids 不应作为 input ids 传递,因为它们已被计算。 - attention_mask (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行注意力的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被 masked,
- 0 表示 tokens 被 masked。
- token_type_ids (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length)
, 可选) — 用于指示输入的第一部分和第二部分的片段 token 索引。索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列 token 在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于 nullify 自注意力模块的选定 heads 的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 head 未被 masked,
- 0 表示 head 被 masked。
- inputs_embeds (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力 tensors。 有关更多详细信息,请参阅返回的 tensors 下的attentions
。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回的 tensors 下的hidden_states
。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。 - training (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(某些模块(如 dropout 模块)在训练和评估之间具有不同的行为)。 - labels (
np.ndarray
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 用于语言建模的标签。请注意,标签在模型内部已移动,即您可以设置labels = input_ids
。索引在[-100, 0, ..., config.vocab_size]
中选择。所有设置为-100
的标签都将被忽略(masked),损失仅针对[0, ..., config.vocab_size]
中的标签计算。
返回
transformers.modeling_tf_outputs.TFCausalLMOutputWithPast 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithPast 或 tf.Tensor
的元组 (如果传递 return_dict=False
或当 config.return_dict=False
时) ,包含各种元素,具体取决于配置 (GPTJConfig) 和输入。
-
loss (
tf.Tensor
,形状为(n,)
, 可选, 当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (
tf.Tensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
past_key_values (
List[tf.Tensor]
,可选,当传入use_cache=True
或当config.use_cache=True
时返回) —tf.Tensor
列表,长度为config.n_layers
,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含预计算的隐藏状态(attention 模块中的键和值),可以用于(请参阅
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传入output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及初始嵌入输出处的隐藏状态。
-
attentions (
tuple(tf.Tensor)
,可选,当传入output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
TFGPTJForCausalLM forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFGPTJForCausalLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits
TFGPTJForSequenceClassification
class transformers.TFGPTJForSequenceClassification
< source >( config *inputs **kwargs )
参数
- config (GPTJConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
带有序列分类头(线性层)的 GPT-J 模型转换器。
GPTJForSequenceClassification 使用最后一个标记来进行分类,就像其他因果模型(例如 GPT、GPT-2、GPT-Neo)一样。
由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。 如果在配置中定义了 pad_token_id
,它会查找每行中不是填充标记的最后一个标记。 如果未定义 pad_token_id
,它只会获取批处理中每行的最后一个值。 由于当传递 inputs_embeds
而不是 input_ids
时,它无法猜测填充标记,因此它执行相同的操作(获取批处理中每行的最后一个值)。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit()
等方法时,事情应该对您“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用三种可能性来收集第一个位置参数中的所有输入张量
- 一个仅包含
input_ids
且不包含其他内容的张量:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个输入张量,与文档字符串中给出的输入名称关联:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None labels: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFSequenceClassifierOutputWithPast 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
如果past
为None
,否则为past[0].shape[-2]
(输入过去键值状态的sequence_length
)。词汇表中输入序列 tokens 的索引。如果使用
past
,则只有未计算过去的输入 IDs 应作为input_ids
传递。索引可以使用 AutoTokenizer 获取。 参见 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode() 获取详细信息。
- past_key_values (
List[tf.Tensor]
,长度为config.n_layers
) — 包含模型计算的预先计算的隐藏状态(注意力块中的键和值)(请参阅下面的past
输出)。 可用于加速顺序解码。 已经为其提供 past 的 token ids 不应作为 input ids 传递,因为它们已被计算。 - attention_mask (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length)
, 可选) — 用于避免在 padding token 索引上执行注意力的 Mask。Mask 值在[0, 1]
中选择:- 1 表示 tokens 未被 masked,
- 0 表示 tokens 被 masked。
- token_type_ids (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length)
, 可选) — 用于指示输入的第一部分和第二部分的片段 token 索引。索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头是未被掩盖的,
- 0 表示头是被掩盖的。
- inputs_embeds (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。此参数只能在即时模式下使用,在图模式下将使用配置中的值。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在即时模式下使用,在图模式下将使用配置中的值。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在即时模式下使用,在图模式下,该值将始终设置为 True。 - training (
bool
,可选,默认为False
) — 是否在训练模式下使用模型(诸如 dropout 模块之类的一些模块在训练和评估之间具有不同的行为)。 - labels (
np.ndarray
或tf.Tensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方误差损失);如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回
transformers.modeling_tf_outputs.TFSequenceClassifierOutputWithPast 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutputWithPast 或一个 tf.Tensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (GPTJConfig) 和输入。
-
loss (
tf.Tensor
,形状为(batch_size, )
,可选,当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
tf.Tensor
,形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
past_key_values (
List[tf.Tensor]
,可选,当传入use_cache=True
或当config.use_cache=True
时返回) —tf.Tensor
列表,长度为config.n_layers
,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含预计算的隐藏状态(attention 模块中的键和值),可以用于(请参阅
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传入output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及初始嵌入输出处的隐藏状态。
-
attentions (
tuple(tf.Tensor)
,可选,当传入output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
TFGPTJForSequenceClassification 前向方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFGPTJForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> model = TFGPTJForSequenceClassification.from_pretrained("EleutherAI/gpt-j-6B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFGPTJForSequenceClassification.from_pretrained("EleutherAI/gpt-j-6B", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
TFGPTJForQuestionAnswering
class transformers.TFGPTJForQuestionAnswering
< source >( config *inputs **kwargs )
参数
- config (GPTJConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
带有跨度分类头的 GPT-J 模型转换器,用于抽取式问答任务,如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档,了解与常规用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种输入格式
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit()
等方法时,事情应该对您“正常工作” - 只需以 model.fit()
支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()
和 predict()
)之外使用第二种格式,例如在使用 Keras Functional
API 创建您自己的层或模型时,您可以使用三种可能性来收集第一个位置参数中的所有输入张量
- 一个仅包含
input_ids
且不包含其他内容的张量:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个输入张量,与文档字符串中给出的输入名称关联:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
< source >( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
如果past
为None
,否则为past[0].shape[-2]
(输入过去键值状态的sequence_length
)。词汇表中输入序列标记的索引。如果使用
past
,则仅应将未计算其过去的输入 ID 作为input_ids
传递。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。
- past_key_values (
List[tf.Tensor]
,长度为config.n_layers
) — 包含模型计算的预先计算的隐藏状态(注意力块中的键和值)(请参见下面的past
输出)。可用于加速顺序解码。已将其过去提供给此模型的标记 ID 不应作为输入 ID 传递,因为它们已被计算出来。 - attention_mask (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length)
,可选) — 掩码,以避免在填充标记索引上执行注意力机制。掩码值在[0, 1]
中选择:- 1 表示标记未被掩盖,
- 0 表示标记被掩盖。
- token_type_ids (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length)
,可选) — 分段标记索引,用于指示输入的第一个和第二个部分。索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头是未被掩盖的,
- 0 表示头是被掩盖的。
- inputs_embeds (
tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将input_ids
索引转换为关联的向量,这将非常有用。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。此参数只能在即时模式下使用,在图模式下将使用配置中的值。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在即时模式下使用,在图模式下将使用配置中的值。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在即时模式下使用,在图模式下,该值将始终设置为 True。 - training (
bool
,可选,默认为False
) — 是否在训练模式下使用模型(诸如 dropout 模块之类的一些模块在训练和评估之间具有不同的行为)。 - start_positions (
np.ndarray
或tf.Tensor
,形状为(batch_size,)
,可选) — 用于计算标记分类损失的标记跨度起点的标签(索引)。位置被限制为序列的长度 (sequence_length
)。序列之外的位置不计入损失计算。 - end_positions (
np.ndarray
或tf.Tensor
,形状为(batch_size,)
,可选) — 用于计算标记分类损失的标记跨度终点的标签(索引)。位置被限制为序列的长度 (sequence_length
)。序列之外的位置不计入损失计算。
返回
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个 tf.Tensor
的元组(如果传递了 return_dict=False
,或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。
-
loss (
tf.Tensor
,形状为(batch_size, )
,可选,当提供了start_positions
和end_positions
时返回) — 总跨度提取损失是起始和结束位置的交叉熵损失之和。 -
start_logits (
tf.Tensor
,形状为(batch_size, sequence_length)
) — 跨度起始得分(在 SoftMax 之前)。 -
end_logits (
tf.Tensor
,形状为(batch_size, sequence_length)
) — 跨度结束得分(在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传入output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及初始嵌入输出处的隐藏状态。
-
attentions (
tuple(tf.Tensor)
,可选,当传入output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
TFGPTJForQuestionAnswering 的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, TFGPTJForQuestionAnswering
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> model = TFGPTJForQuestionAnswering.from_pretrained("EleutherAI/gpt-j-6B")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
FlaxGPTJModel
class transformers.FlaxGPTJModel
< source >( config: GPTJConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (GPTJConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选,默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
裸 GPTJ 模型 Transformer 输出原始隐藏状态,顶部没有任何特定的 head。
此模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 Flax Linen flax.nn.Module 子类。将其用作常规 Flax Module,并参考 Flax 文档以了解与通用用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None position_ids = None params: dict = None past_key_values: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
。词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 了解详情。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 避免在 padding 标记索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - past_key_values (
Dict[str, np.ndarray]
,可选,由init_cache
返回或在传递先前的past_key_values
时返回) — 预先计算的隐藏状态字典(attention 模块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为 [batch_size, max_length]。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
,或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。
-
logits (
jnp.ndarray
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测得分(SoftMax 之前每个词汇表标记的得分)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(embeddings 的输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及初始嵌入输出处的隐藏状态。
-
attentions (
tuple(jnp.ndarray)
,可选,当传递了output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
FlaxGPTJPreTrainedModel
的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxGPTJModel
>>> tokenizer = AutoTokenizer.from_pretrained("gptj")
>>> model = FlaxGPTJModel.from_pretrained("gptj")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxGPTJForCausalLM
class transformers.FlaxGPTJForCausalLM
< source >( config: GPTJConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (GPTJConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
- dtype (
jax.numpy.dtype
, 可选,默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
带有语言建模 head 的 GPTJ 模型 Transformer。
此模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 Flax Linen flax.nn.Module 子类。将其用作常规 Flax Module,并参考 Flax 文档以了解与通用用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None position_ids = None params: dict = None past_key_values: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
。词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 了解详情。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding 标记索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 位置嵌入中每个输入序列标记的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - past_key_values (
Dict[str, np.ndarray]
,可选,由init_cache
返回或在传递之前的past_key_values
时返回) — 预先计算的隐藏状态字典(attention 模块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为 [batch_size, max_length]。 - output_attentions (
bool
,可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
,或者当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。
-
logits (
jnp.ndarray
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测得分(SoftMax 之前每个词汇表标记的得分)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
的元组(embeddings 的输出一个,每层输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出以及初始嵌入输出处的隐藏状态。
-
attentions (
tuple(jnp.ndarray)
,可选,当传递了output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。attention softmax 之后的 Attention 权重,用于计算自注意力 head 中的加权平均值。
FlaxGPTJPreTrainedModel
的 forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数内定义,但应该在之后调用 Module
实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxGPTJForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("gptj")
>>> model = FlaxGPTJForCausalLM.from_pretrained("gptj")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]