Transformers 文档

GPT-J

Hugging Face's logo
加入 Hugging Face 社区

并获取增强的文档体验

开始使用

GPT-J

PyTorch TensorFlow Flax FlashAttention

概述

GPT-J 模型由 Ben Wang 和 Aran Komatsuzaki 在 kingoflolz/mesh-transformer-jax 仓库中发布。它是一个类似于 GPT-2 的因果语言模型,使用 the Pile 数据集进行训练。

此模型由 Stella Biderman 贡献。

使用技巧

  • 要在 float32 精度下加载 GPT-J,至少需要 2 倍模型大小的 RAM:1 倍用于初始权重,另 1 倍用于加载检查点。因此,对于 GPT-J,仅加载模型就至少需要 48GB RAM。为了减少 RAM 使用量,有几种选择。可以使用 torch_dtype 参数仅在 CUDA 设备上以半精度初始化模型。还有一个 fp16 分支,其中存储了 fp16 权重,可以用来进一步最小化 RAM 使用量。
>>> from transformers import GPTJForCausalLM
>>> import torch

>>> device = "cuda"
>>> model = GPTJForCausalLM.from_pretrained(
...     "EleutherAI/gpt-j-6B",
...     revision="float16",
...     torch_dtype=torch.float16,
... ).to(device)
  • 该模型应适合在 16GB GPU 上进行推理。对于训练/微调,将需要更多的 GPU RAM。例如,Adam 优化器会创建模型的四个副本:模型、梯度、梯度的平均值和平方平均值。因此,即使使用混合精度,也至少需要 4 倍模型大小的 GPU 内存,因为梯度更新是在 fp32 中进行的。这还不包括激活和数据批次,这将再次需要更多的 GPU RAM。因此,应该探索诸如 DeepSpeed 之类的解决方案来训练/微调模型。另一种选择是使用原始代码库在 TPU 上训练/微调模型,然后将模型转换为 Transformers 格式以进行推理。相关说明可以在此处找到。

  • 虽然嵌入矩阵的大小为 50400,但 GPT-2 tokenizer 仅使用了 50257 个条目。添加这些额外的 token 是为了提高 TPU 的效率。为了避免嵌入矩阵大小和词汇表大小之间的不匹配,GPT-J 的 tokenizer 包含 143 个额外的 token <|extratoken_1|>... <|extratoken_143|>,因此 tokenizer 的 vocab_size 也变为 50400。

使用示例

可以使用 generate() 方法使用 GPT-J 模型生成文本。

>>> from transformers import AutoModelForCausalLM, AutoTokenizer

>>> model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")

>>> prompt = (
...     "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
...     "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
...     "researchers was the fact that the unicorns spoke perfect English."
... )

>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids

>>> gen_tokens = model.generate(
...     input_ids,
...     do_sample=True,
...     temperature=0.9,
...     max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]

...或在 float16 精度下

>>> from transformers import GPTJForCausalLM, AutoTokenizer
>>> import torch

>>> device = "cuda"
>>> model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", torch_dtype=torch.float16).to(device)
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")

>>> prompt = (
...     "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
...     "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
...     "researchers was the fact that the unicorns spoke perfect English."
... )

>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)

>>> gen_tokens = model.generate(
...     input_ids,
...     do_sample=True,
...     temperature=0.9,
...     max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]

资源

以下列出了官方 Hugging Face 和社区 (以 🌎 标示) 资源,帮助您开始使用 GPT-J。如果您有兴趣提交资源并将其收录在此处,请随时开启 Pull Request,我们将进行审核!理想情况下,资源应展示一些新的内容,而不是重复现有资源。

文本生成

文档资源

GPTJConfig

class transformers.GPTJConfig

< >

( vocab_size = 50400 n_positions = 2048 n_embd = 4096 n_layer = 28 n_head = 16 rotary_dim = 64 n_inner = None activation_function = 'gelu_new' resid_pdrop = 0.0 embd_pdrop = 0.0 attn_pdrop = 0.0 layer_norm_epsilon = 1e-05 initializer_range = 0.02 use_cache = True bos_token_id = 50256 eos_token_id = 50256 tie_word_embeddings = False **kwargs )

参数

  • vocab_size (int, 可选,默认为 50400) — GPT-J 模型的词汇表大小。定义了在调用 GPTJModel 时传递的 inputs_ids 可以表示的不同 token 的数量。
  • n_positions (int, 可选,默认为 2048) — 此模型可能使用的最大序列长度。通常为了以防万一,将其设置为较大的值(例如,512 或 1024 或 2048)。
  • n_embd (int, 可选,默认为 4096) — 嵌入和隐藏状态的维度。
  • n_layer (int, 可选,默认为 28) — Transformer 编码器中隐藏层的数量。
  • n_head (int, 可选,默认为 16) — Transformer 编码器中每个注意力层的注意力头的数量。
  • rotary_dim (int, 可选,默认为 64) — 旋转位置嵌入应用于的嵌入维度数量。
  • n_inner (int, 可选,默认为 None) — 内部前馈层的维度。None 将其设置为 n_embd 的 4 倍
  • activation_function (str, 可选,默认为 "gelu_new") — 激活函数,可从列表 ["relu", "silu", "gelu", "tanh", "gelu_new"] 中选择。
  • resid_pdrop (float, 可选,默认为 0.1) — 嵌入、编码器和池化器中所有全连接层的 dropout 概率。
  • embd_pdrop (int, 可选,默认为 0.1) — 嵌入的 dropout 比率。
  • attn_pdrop (float, 可选,默认为 0.1) — 注意力的 dropout 比率。
  • layer_norm_epsilon (float, 可选,默认为 1e-5) — 层归一化层中使用的 epsilon 值。
  • initializer_range (float, 可选,默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • use_cache (bool, 可选,默认为 True) — 模型是否应返回上次的键/值注意力(并非所有模型都使用)。

这是用于存储 GPTJModel 配置的配置类。它用于根据指定的参数实例化 GPT-J 模型,从而定义模型架构。使用默认值实例化配置将产生与 GPT-J EleutherAI/gpt-j-6B 架构类似的配置。配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。

示例

>>> from transformers import GPTJModel, GPTJConfig

>>> # Initializing a GPT-J 6B configuration
>>> configuration = GPTJConfig()

>>> # Initializing a model from the configuration
>>> model = GPTJModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
Pytorch
隐藏 Pytorch 内容

GPTJModel

class transformers.GPTJModel

< >

( config )

参数

  • config (GPTJConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

裸 GPT-J 模型 Transformer 输出原始隐藏状态,顶部没有任何特定的 head。此模型是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.Tensor]], NoneType] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.BaseModelOutputWithPast or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 tokens 未被掩盖
    • 0 表示 tokens 被掩盖

    什么是 attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), 可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), 可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围 [0, config.n_positions - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor of shape (num_attention_heads,) or (n_layer, num_attention_heads), 可选) — 用于 nullify self-attention 模块中选定 head 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩盖
    • 0 表示 head 被掩盖
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_dim), 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • past_key_values (Cachetuple(tuple(torch.FloatTensor)), 可选) — 预先计算的隐藏状态(self-attention 模块和 cross-attention 模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv cache 指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量。 这也称为旧版缓存格式。

    模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,则用户可以选择仅输入形状为 (batch_size, 1) 的最后一个 input_ids(那些没有将其过去键值状态提供给此模型的 input_ids),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (torch.LongTensor of shape (sequence_length), 可选) — 索引,描述输入序列 tokens 在序列中的位置。 与 position_ids 相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。

返回

transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPasttorch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — 模型最后一层的输出端的 hidden states 序列。

    如果使用 past_key_values,则仅输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个 hidden state。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选,当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且可选地,如果 config.is_encoder_decoder=True,则包含 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(self-attention 模块中的键和值,以及可选地,如果 config.is_encoder_decoder=True,则包含 cross-attention 模块中的键和值),这些状态可用于加速顺序解码(请参阅 past_key_values 输入)。

  • hidden_states (tuple(torch.FloatTensor), 可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层的输出的元组),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 hidden states,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 attention 权重,用于计算 self-attention heads 中的加权平均值。

GPTJModel forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

此示例使用随机模型,因为真实模型都非常大。 要获得正确的结果,您应该使用 EleutherAI/gpt-j-6B 而不是 hf-internal-testing/tiny-random-gptj。 如果在加载该检查点时内存不足,您可以尝试在 from_pretrained 调用中添加 device_map="auto"

示例

>>> from transformers import AutoTokenizer, GPTJModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gptj")
>>> model = GPTJModel.from_pretrained("hf-internal-testing/tiny-random-gptj")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

GPTJForCausalLM

class transformers.GPTJForCausalLM

< >

( config )

参数

  • config (GPTJConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

带有语言建模头的 GPT-J 模型 transformer。

此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch Module,并参阅 PyTorch 文档以获取与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.Tensor]], NoneType] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **kwargs ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获得。 参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 tokens 未被掩盖
    • 0 表示 tokens 被掩盖

    什么是 attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), 可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), 可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围 [0, config.n_positions - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor,形状为 (num_attention_heads,)(n_layer, num_attention_heads)可选) — 用于置零自注意力模块中所选的头的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示头是未被掩蔽的
    • 0 表示头是被掩蔽的
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_dim)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • past_key_values (Cachetuple(tuple(torch.FloatTensor))可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,其中每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量。 这也称为旧版缓存格式。

    模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,则用户可以选择仅输入最后 input_ids(那些没有将其过去键值状态提供给此模型的输入),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 索引,描述输入序列 token 在序列中的位置。 与 position_ids 相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于语言建模的标签。 请注意,标签在模型内部已移位,即您可以设置 labels = input_ids。 索引在 [-100, 0, ..., config.vocab_size] 中选择。 所有设置为 -100 的标签都将被忽略(掩蔽),损失仅针对 [0, ..., config.vocab_size] 中的标签计算。

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPasttorch.FloatTensor 的元组(如果传递 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个 token 预测)。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇表 token 的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,其中每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)

    包含预先计算的隐藏状态(自注意力模块中的键和值),可以用于(请参阅 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层的输出的元组),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 hidden states,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 attention 权重,用于计算 self-attention heads 中的加权平均值。

GPTJForCausalLM 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

此示例使用随机模型,因为真实模型都非常大。 要获得正确的结果,您应该使用 EleutherAI/gpt-j-6B 而不是 hf-internal-testing/tiny-random-gptj。 如果在加载该检查点时内存不足,您可以尝试在 from_pretrained 调用中添加 device_map="auto"

示例

>>> import torch
>>> from transformers import AutoTokenizer, GPTJForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gptj")
>>> model = GPTJForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gptj")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits

GPTJForSequenceClassification

class transformers.GPTJForSequenceClassification

< >

( config )

参数

  • config (GPTJConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法来加载模型权重。

带有序列分类头的 GPT-J 模型转换器(线性层)。

GPTJForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型(例如 GPT、GPT-2、GPT-Neo)一样。

由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。 如果在配置中定义了 pad_token_id,它将在每行中找到最后一个不是 padding token 的 token。 如果未定义 pad_token_id,它将简单地获取批处理中每行的最后一个值。 由于当传递 inputs_embeds 而不是 input_ids 时,它无法猜测 padding token,因此它执行相同的操作(获取批处理中每行的最后一个值)。

此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch Module,并参阅 PyTorch 文档以获取与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。

    可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding token 索引上执行注意力的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 token 是未被掩蔽的
    • 0 表示 token 是被掩蔽的

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 分段 token 索引,用于指示输入的第一个和第二个部分。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 token 在位置嵌入中的位置索引。 在范围 [0, config.n_positions - 1] 中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_attention_heads,)(n_layer, num_attention_heads)可选) — 用于置零自注意力模块中所选的头的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示头是未被掩蔽的
    • 0 表示头是被掩蔽的
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_dim)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • past_key_values (Cachetuple(tuple(torch.FloatTensor))可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,其中每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量。 这也称为旧版缓存格式。

    模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递 past_key_values,则将返回旧版缓存格式。

    如果使用 past_key_values,则用户可以选择仅输入最后 input_ids(那些没有将其过去键值状态提供给此模型的输入),形状为 (batch_size, 1),而不是所有形状为 (batch_size, sequence_length)input_ids

  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (torch.LongTensor,形状为 (sequence_length)可选) — 索引,描述输入序列 token 在序列中的位置。 与 position_ids 相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。
  • labels (torch.LongTensor, 形状为 (batch_size,), 可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方损失);如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutputWithPasttorch.FloatTensor 元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。

  • loss (torch.FloatTensor, 形状为 (1,), 可选, 当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (torch.FloatTensor, 形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,其中每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)

    包含预先计算的隐藏状态(自注意力模块中的键和值),可以用于(请参阅 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层的输出的元组),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 hidden states,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 attention 权重,用于计算 self-attention heads 中的加权平均值。

GPTJForSequenceClassification 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

此示例使用随机模型,因为真实模型都非常大。要获得正确的结果,您应该使用 EleutherAI/gpt-j-6B 而不是 ydshieh/tiny-random-gptj-for-sequence-classification。如果您在加载该检查点时遇到内存不足的问题,您可以尝试在 from_pretrained 调用中添加 device_map="auto"

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, GPTJForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification")
>>> model = GPTJForSequenceClassification.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTJForSequenceClassification.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, GPTJForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification")
>>> model = GPTJForSequenceClassification.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTJForSequenceClassification.from_pretrained(
...     "ydshieh/tiny-random-gptj-for-sequence-classification", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

GPTJForQuestionAnswering

class transformers.GPTJForQuestionAnswering

< >

( config )

参数

  • config (GPTJConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

带有 span 分类头的 GPT-J 模型 Transformer,用于抽取式问答任务,如 SQuAD(在隐藏状态输出之上添加线性层,以计算 span start logitsspan end logits)。

此模型是 PyTorch torch.nn.Module 子类。 将其用作常规 PyTorch Module,并参阅 PyTorch 文档以获取与常规用法和行为相关的所有事项。

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor, 形状为 (batch_size, sequence_length)) — 词汇表中输入序列 token 的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor, 形状为 (batch_size, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 token 未被掩码
    • 0 表示 token 被掩码

    什么是 attention 掩码?

  • token_type_ids (torch.LongTensor, 形状为 (batch_size, sequence_length), 可选) — 用于指示输入的第一部分和第二部分的片段 token 索引。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 IDs?

  • position_ids (torch.LongTensor, 形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围 [0, config.n_positions - 1] 中选择。

    什么是位置 IDs?

  • head_mask (torch.FloatTensor, 形状为 (num_attention_heads,)(n_layer, num_attention_heads), 可选) — 用于使自注意力模块的选定头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_dim), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望更好地控制如何将 input_ids 索引转换为关联的向量,而不是模型的内部嵌入查找矩阵,这将非常有用。
  • past_key_values (Cachetuple(tuple(torch.FloatTensor)), 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的 past_key_values,当 use_cache=Trueconfig.use_cache=True 时。

    允许两种格式:

    • Cache 实例,请参阅我们的 kv 缓存指南
    • 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组具有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)。这也称为传统缓存格式。

    模型将输出与作为输入馈送的缓存格式相同的缓存格式。如果未传递 past_key_values,则将返回传统缓存格式。

    如果使用 past_key_values,则用户可以选择仅输入形状为 (batch_size, 1) 的最后一个 input_ids(那些没有将其 past key value 状态提供给此模型的输入),而不是形状为 (batch_size, sequence_length) 的所有 input_ids

  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attentions 张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • cache_position (torch.LongTensor, 形状为 (sequence_length), 可选) — 描述输入序列 token 在序列中位置的索引。与 position_ids 相反,此张量不受 padding 的影响。它用于更新缓存中的正确位置并推断完整序列长度。
  • start_positions (torch.LongTensor, 形状为 (batch_size,), 可选) — 用于计算 token 分类损失的标签 span 开始位置(索引)。位置被限制在序列的长度 (sequence_length) 内。序列之外的位置不计入损失计算。
  • end_positions (torch.LongTensor, 形状为 (batch_size,), 可选) — 用于计算 token 分类损失的标签 span 结束位置(索引)。位置被限制在序列的长度 (sequence_length) 内。序列之外的位置不计入损失计算。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutputtorch.FloatTensor 元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。

  • loss (torch.FloatTensor, 形状为 (1,), 可选, 当提供 labels 时返回) — 总 span 抽取损失是开始和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor, 形状为 (batch_size, sequence_length)) — Span 开始分数(在 SoftMax 之前)。

  • end_logits (torch.FloatTensor, 形状为 (batch_size, sequence_length)) — Span 结束分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(如果模型具有嵌入层,则为嵌入输出的元组 + 每个层的输出的元组),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出端的 hidden states,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 attention 权重,用于计算 self-attention heads 中的加权平均值。

GPTJForQuestionAnswering 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

此示例使用随机模型,因为真实模型都非常大。 要获得正确的结果,您应该使用 EleutherAI/gpt-j-6B 而不是 hf-internal-testing/tiny-random-gptj。 如果在加载该检查点时内存不足,您可以尝试在 from_pretrained 调用中添加 device_map="auto"

示例

>>> from transformers import AutoTokenizer, GPTJForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gptj")
>>> model = GPTJForQuestionAnswering.from_pretrained("hf-internal-testing/tiny-random-gptj")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
TensorFlow
隐藏 TensorFlow 内容

TFGPTJModel

class transformers.TFGPTJModel

< >

( config *inputs **kwargs )

参数

  • config (GPTJConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

纯 GPT-J 模型 Transformer,输出原始隐藏状态,顶部没有任何特定的头部。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪裁头部等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档,了解与一般用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入都作为关键字参数(如 PyTorch 模型),或
  • 所有输入都作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit() 等方法时,对于您来说,事情应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用三种可能性来收集第一个位置参数中的所有输入张量

  • 仅使用 input_ids 且不包含其他内容的单个张量:model(input_ids)
  • 包含一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 包含一个或多个输入张量的字典,这些张量与文档字符串中给出的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFBaseModelOutputWithPast or tuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, input_ids_length)) — input_ids_length = sequence_length 如果 pastNone,否则为 past[0].shape[-2] (输入 past 键值状态的 sequence_length)。 词汇表中输入序列 tokens 的索引。

    如果使用 past,则只有未计算 past 的输入 ID 应作为 input_ids 传递。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 IDs?

  • past_key_values (长度为 config.n_layersList[tf.Tensor]) — 包含模型计算的预先计算的隐藏状态(attention 模块中的键和值)(请参阅下面的 past 输出)。 可用于加速顺序解码。 已将其 past 提供给此模型的 token IDs 不应作为 input IDs 传递,因为它们已被计算。
  • attention_mask (tf.TensorNumpy array,形状为 (batch_size, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 tokens 未被掩盖
    • 0 表示 tokens 已被掩盖

    什么是 attention 掩码?

  • token_type_ids (tf.TensorNumpy array,形状为 (batch_size, sequence_length), 可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 IDs?

  • position_ids (tf.TensorNumpy array,形状为 (batch_size, sequence_length), 可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于 nullify 自注意力模块的选定 head 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩盖
    • 0 表示 head 已被掩盖
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states。 此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通的 tuple。 此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。
  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。
  • use_cache (bool, 可选, 默认为 True) — 如果设置为 True,则返回 past_key_values 键值状态,并可用于加速解码(请参阅 past)。 在训练期间设置为 False,在生成期间设置为 True

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPasttuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPasttf.Tensor 的 tuple (如果传递了 return_dict=False 或当 config.return_dict=False 时),包括各种元素,具体取决于配置 (GPTJConfig) 和输入。

  • last_hidden_state (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层的输出处的隐藏状态序列。

    如果使用 past_key_values,则仅输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个 hidden state。

  • past_key_values (List[tf.Tensor], 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个 tensor 的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head))。

    包含预先计算的隐藏状态(attention 模块中的键和值),可用于(请参阅 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(tf.Tensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的 Tuple (embeddings 的输出 + 每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的 Tuple (每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 attention 权重,用于计算 self-attention heads 中的加权平均值。

The TFGPTJModel forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFGPTJModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> model = TFGPTJModel.from_pretrained("EleutherAI/gpt-j-6B")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFGPTJForCausalLM

class transformers.TFGPTJForCausalLM

< >

( config *inputs **kwargs )

参数

  • config (GPTJConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

带有语言建模头的 GPT-J 模型 transformer。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪裁头部等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档,了解与一般用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入都作为关键字参数(如 PyTorch 模型),或
  • 所有输入都作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit() 等方法时,对于您来说,事情应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用三种可能性来收集第一个位置参数中的所有输入张量

  • 仅使用 input_ids 且不包含其他内容的单个张量:model(input_ids)
  • 包含一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 包含一个或多个输入张量的字典,这些张量与文档字符串中给出的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None labels: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFCausalLMOutputWithPasttuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, input_ids_length)) — input_ids_length = sequence_length 如果 pastNone,否则为 past[0].shape[-2] (输入 past 键值状态的 sequence_length)。 词汇表中输入序列 tokens 的索引。

    如果使用 past,则只有未计算 past 的输入 ID 应作为 input_ids 传递。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 IDs?

  • past_key_values (长度为 config.n_layersList[tf.Tensor]) — 包含模型计算的预先计算的隐藏状态(attention 模块中的键和值)(请参阅下面的 past 输出)。 可用于加速顺序解码。 已将其 past 提供给此模型的 token IDs 不应作为 input IDs 传递,因为它们已被计算。
  • attention_mask (tf.TensorNumpy array,形状为 (batch_size, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。 掩码值在 [0, 1] 中选择:

    • 1 表示 tokens 未被掩盖
    • 0 表示 tokens 已被掩盖

    什么是 attention 掩码?

  • token_type_ids (tf.TensorNumpy array,形状为 (batch_size, sequence_length), 可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 IDs?

  • position_ids (tf.TensorNumpy array,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置零自注意力模块中选定头的掩码。在 [0, 1] 中选择掩码值:

    • 1 表示头是未被掩蔽的
    • 0 表示头是被掩蔽的
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions。此参数只能在即时模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states。此参数只能在即时模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是纯元组。此参数可以在即时模式下使用,在图模式下该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(某些模块(如 dropout 模块)在训练和评估之间具有不同的行为)。
  • labels (np.ndarraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 语言建模的标签。请注意,标签在模型内部已移位,即您可以设置 labels = input_ids。索引在 [-100, 0, ..., config.vocab_size] 中选择。所有设置为 -100 的标签都将被忽略(掩蔽),损失仅针对 [0, ..., config.vocab_size] 中的标签计算。

返回

transformers.modeling_tf_outputs.TFCausalLMOutputWithPasttuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithPast 或一个 tf.Tensor 元组(如果传递 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。

  • loss (tf.Tensor,形状为 (n,)可选,当提供 labels 时返回) — 语言建模损失(用于预测下一个标记)。

  • logits (tf.Tensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇表标记的分数)。

  • past_key_values (List[tf.Tensor], 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个 tensor 的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head))。

    包含预先计算的隐藏状态(attention 模块中的键和值),可用于(请参阅 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(tf.Tensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的 Tuple (embeddings 的输出 + 每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的 Tuple (每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 attention 权重,用于计算 self-attention heads 中的加权平均值。

TFGPTJForCausalLM 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFGPTJForCausalLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFGPTJForSequenceClassification

class transformers.TFGPTJForSequenceClassification

< >

( config *inputs **kwargs )

参数

  • config (GPTJConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

带有序列分类头的 GPT-J 模型转换器(线性层)。

GPTJForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型(例如 GPT、GPT-2、GPT-Neo)一样。

由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。 如果在配置中定义了 pad_token_id,它将在每行中找到最后一个不是 padding token 的 token。 如果未定义 pad_token_id,它将简单地获取批处理中每行的最后一个值。 由于当传递 inputs_embeds 而不是 input_ids 时,它无法猜测 padding token,因此它执行相同的操作(获取批处理中每行的最后一个值)。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪裁头部等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档,了解与一般用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入都作为关键字参数(如 PyTorch 模型),或
  • 所有输入都作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit() 等方法时,对于您来说,事情应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用三种可能性来收集第一个位置参数中的所有输入张量

  • 仅使用 input_ids 且不包含其他内容的单个张量:model(input_ids)
  • 包含一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 包含一个或多个输入张量的字典,这些张量与文档字符串中给出的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None labels: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFSequenceClassifierOutputWithPasttuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, input_ids_length)) — 如果 pastNone,则 input_ids_length = sequence_length,否则为 past[0].shape[-2](输入过去键值状态的 sequence_length)。词汇表中输入序列标记的索引。

    如果使用 past,则只有未计算其过去的输入 ID 应作为 input_ids 传递。

    索引可以使用 AutoTokenizer 获取。 有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 ID?

  • past_key_values (List[tf.Tensor],长度为 config.n_layers) — 包含模型计算的预先计算的隐藏状态(注意力块中的键和值)(请参阅下面的 past 输出)。可用于加速顺序解码。已将其过去状态提供给此模型的标记 ID 不应作为输入 ID 传递,因为它们已被计算。
  • attention_mask (tf.TensorNumpy array,形状为 (batch_size, sequence_length)可选) — 用于避免对填充标记索引执行注意力的掩码。在 [0, 1] 中选择掩码值:

    • 1 表示标记未被掩蔽
    • 0 表示标记被掩蔽

    什么是注意力掩码?

  • token_type_ids (tf.TensorNumpy array,形状为 (batch_size, sequence_length)可选) — 分段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A 标记,
    • 1 对应于句子 B 标记。

    什么是标记类型 ID?

  • position_ids (tf.TensorNumpy array,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置零自注意力模块中选定头的掩码。在 [0, 1] 中选择掩码值:

    • 1 表示头是未被掩蔽的
    • 0 表示头是被掩蔽的
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions。此参数只能在即时模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states。此参数只能在即时模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是纯元组。此参数可以在即时模式下使用,在图模式下该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(某些模块(如 dropout 模块)在训练和评估之间具有不同的行为)。
  • labels (np.ndarraytf.Tensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方损失)。如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_tf_outputs.TFSequenceClassifierOutputWithPasttuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutputWithPast 或一个 tf.Tensor 元组(如果传递 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。

  • loss (tf.Tensor,形状为 (batch_size, )可选,当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (tf.Tensor,形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)分数(SoftMax 之前)。

  • past_key_values (List[tf.Tensor], 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个 tensor 的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head))。

    包含预先计算的隐藏状态(attention 模块中的键和值),可用于(请参阅 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(tf.Tensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的 Tuple (embeddings 的输出 + 每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的 Tuple (每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 attention 权重,用于计算 self-attention heads 中的加权平均值。

The TFGPTJForSequenceClassification 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFGPTJForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> model = TFGPTJForSequenceClassification.from_pretrained("EleutherAI/gpt-j-6B")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFGPTJForSequenceClassification.from_pretrained("EleutherAI/gpt-j-6B", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss

TFGPTJForQuestionAnswering

class transformers.TFGPTJForQuestionAnswering

< >

( config *inputs **kwargs )

参数

  • config (GPTJConfig) — 带有模型所有参数的**模型配置类**。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

带有 span 分类头的 GPT-J 模型 Transformer,用于抽取式问答任务,如 SQuAD(在隐藏状态输出之上添加线性层,以计算 span start logitsspan end logits)。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪裁头部等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档,了解与一般用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种输入格式

  • 所有输入都作为关键字参数(如 PyTorch 模型),或
  • 所有输入都作为第一个位置参数中的列表、元组或字典。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用 model.fit() 等方法时,对于您来说,事情应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,您可以使用三种可能性来收集第一个位置参数中的所有输入张量

  • 仅使用 input_ids 且不包含其他内容的单个张量:model(input_ids)
  • 包含一个或多个输入张量的可变长度列表,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 包含一个或多个输入张量的字典,这些张量与文档字符串中给出的输入名称相关联:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutputtuple(tf.Tensor)

参数

  • input_ids (形状为 (batch_size, input_ids_length)Numpy arraytf.Tensor) — 如果 pastNone,则 input_ids_length = sequence_length,否则 input_ids_length = past[0].shape[-2] (输入过去键值状态的 sequence_length)。词汇表中输入序列 tokens 的索引。

    如果使用 past,则只有未计算过去状态的输入 ID 应作为 input_ids 传递。

    索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 IDs?

  • past_key_values (长度为 config.n_layersList[tf.Tensor]) — 包含模型计算的预先计算的隐藏状态(注意力块中的键和值)(请参阅下面的 past 输出)。 可用于加速顺序解码。 已将过去状态提供给此模型的 token ids 不应作为 input ids 传递,因为它们已被计算过。
  • attention_mask (形状为 (batch_size, sequence_length)tf.TensorNumpy array, 可选) — 用于避免在 padding token 索引上执行注意力的掩码。 Mask values 在 [0, 1] 中选择:

    • 1 表示 tokens **未被掩盖**,
    • 0 表示 tokens **被掩盖**。

    什么是注意力掩码?

  • token_type_ids (形状为 (batch_size, sequence_length)tf.TensorNumpy array, 可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 IDs?

  • position_ids (形状为 (batch_size, sequence_length)tf.TensorNumpy array, 可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (形状为 (num_heads,)(num_layers, num_heads)Numpy arraytf.Tensor, 可选) — 用于置空 self-attention 模块的选定 head 的掩码。 Mask values 在 [0, 1] 中选择:

    • 1 表示 head **未被掩盖**,
    • 0 表示 head **被掩盖**。
  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)tf.Tensor, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的 attentions。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。 此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。
  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。
  • start_positions (形状为 (batch_size,)np.ndarraytf.Tensor, 可选) — 用于计算 token 分类损失的标记跨度开始位置(索引)的标签。 位置被限制在序列的长度 (sequence_length) 内。 序列之外的位置不计入损失计算。
  • end_positions (形状为 (batch_size,)np.ndarraytf.Tensor, 可选) — 用于计算 token 分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列的长度 (sequence_length) 内。 序列之外的位置不计入损失计算。

返回

transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。

  • loss (形状为 (batch_size, )tf.Tensor, 可选, 当提供 start_positionsend_positions 时返回) — 总跨度提取损失是开始和结束位置的交叉熵之和。

  • start_logits (形状为 (batch_size, sequence_length)tf.Tensor) — 跨度开始得分(SoftMax 之前)。

  • end_logits (形状为 (batch_size, sequence_length)tf.Tensor) — 跨度结束得分(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 的 Tuple (embeddings 的输出 + 每个层的输出各一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 的 Tuple (每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 attention 权重,用于计算 self-attention heads 中的加权平均值。

The TFGPTJForQuestionAnswering 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFGPTJForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> model = TFGPTJForQuestionAnswering.from_pretrained("EleutherAI/gpt-j-6B")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)
JAX
隐藏 JAX 内容

FlaxGPTJModel

class transformers.FlaxGPTJModel

< >

( config: GPTJConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (GPTJConfig) — 带有模型所有参数的**模型配置类**。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。 可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的数据类型,不会影响模型参数的数据类型。

    如果您希望更改模型参数的数据类型,请参阅 to_fp16()to_bf16()

裸 GPTJ 模型 Transformer,输出原始隐藏状态,顶部没有任何特定的头部。

此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。

此模型也是 Flax Linen flax.nn.Module 子类。 将其用作常规 Flax 模块,并参考 Flax 文档了解与通用用法和行为相关的所有事项。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None position_ids = None params: dict = None past_key_values: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为 (batch_size, input_ids_length)) — input_ids_length = sequence_length。 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获取。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (numpy.ndarray,形状为 (batch_size, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 未被 Mask 的 tokens,
    • 0 表示 已被 Mask 的 tokens。

    什么是 attention mask?

  • position_ids (numpy.ndarray,形状为 (batch_size, sequence_length), 可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。
  • past_key_values (Dict[str, np.ndarray], 可选, 由 init_cache 返回或在传递之前的 past_key_values 时返回) — 预先计算的隐藏状态字典(attention 块中的键和值),可用于快速自回归解码。 预先计算的键和值隐藏状态的形状为 [batch_size, max_length]
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutputtorch.FloatTensor 的元组(如果传递 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。

  • logits (jnp.ndarray,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇表 token 的分数)。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(embeddings 的输出一个,每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,加上初始 embedding 输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 attention 权重,用于计算 self-attention heads 中的加权平均值。

FlaxGPTJPreTrainedModel 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxGPTJModel

>>> tokenizer = AutoTokenizer.from_pretrained("gptj")
>>> model = FlaxGPTJModel.from_pretrained("gptj")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxGPTJForCausalLM

class transformers.FlaxGPTJForCausalLM

< >

( config: GPTJConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (GPTJConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。 可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。 如果指定,所有计算都将使用给定的 dtype 执行。

    请注意,这仅指定计算的数据类型,不会影响模型参数的数据类型。

    如果您希望更改模型参数的数据类型,请参阅 to_fp16()to_bf16()

带有语言建模头的 GPTJ 模型 Transformer。

此模型继承自 FlaxPreTrainedModel。 查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头部等)。

此模型也是 Flax Linen flax.nn.Module 子类。 将其用作常规 Flax 模块,并参考 Flax 文档了解与通用用法和行为相关的所有事项。

最后,此模型支持固有的 JAX 功能,例如

__call__

< >

( input_ids attention_mask = None position_ids = None params: dict = None past_key_values: dict = None dropout_rng: <function PRNGKey at 0x7f787eb14310> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为 (batch_size, input_ids_length)) — input_ids_length = sequence_length。 词汇表中输入序列 tokens 的索引。

    索引可以使用 AutoTokenizer 获取。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (numpy.ndarray,形状为 (batch_size, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 未被 Mask 的 tokens,
    • 0 表示 已被 Mask 的 tokens。

    什么是 attention mask?

  • position_ids (numpy.ndarray,形状为 (batch_size, sequence_length), 可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。
  • past_key_values (Dict[str, np.ndarray], 可选, 由 init_cache 返回或在传递之前的 past_key_values 时返回) — 预先计算的隐藏状态字典(attention 块中的键和值),可用于快速自回归解码。 预先计算的键和值隐藏状态的形状为 [batch_size, max_length]
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutputtorch.FloatTensor 的元组(如果传递 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (GPTJConfig) 和输入。

  • logits (jnp.ndarray,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇表 token 的分数)。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — jnp.ndarray 的元组(embeddings 的输出一个,每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态,加上初始 embedding 输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — jnp.ndarray 的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    attention softmax 之后的 attention 权重,用于计算 self-attention heads 中的加权平均值。

FlaxGPTJPreTrainedModel 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward pass 的配方需要在该函数中定义,但应该在之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。

示例

>>> from transformers import AutoTokenizer, FlaxGPTJForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("gptj")
>>> model = FlaxGPTJForCausalLM.from_pretrained("gptj")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]
< > 在 GitHub 上更新