Transformers 文档
GPT-Neo
并获得增强的文档体验
开始使用
GPT-Neo
GPT-Neo 是 GPT-2 和 GPT-3 模型的开源替代品,使用 Mesh TensorFlow 为 TPU 构建。GPT-Neo 在每隔一层中使用局部注意力以提高效率。它在 Pile 上进行训练,Pile 是一个包含 22 个高质量小型数据集的多元数据集。
您可以在 EleutherAI 组织下找到所有原始 GPT-Neo 检查点。
单击右侧边栏中的 GPT-Neo 模型,了解如何将 GPT Neo 应用于不同语言任务的更多示例。
下面的示例演示了如何使用 Pipeline 或 AutoModel,以及从命令行生成文本。
import torch
from transformers import pipeline
pipeline = pipeline(task="text-generation", model="EleutherAI/gpt-neo-1.3B", torch_dtype=torch.float16, device=0)
pipeline("Hello, I'm a language model")
量化通过以较低精度表示权重来减少大型模型的内存负担。有关更多可用量化后端,请参阅量化概述。
以下示例使用 bitsandbytes 仅将权重量化为 4 位。
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-2.7B",
quantization_config=quantization_config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
inputs = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
注意事项
- 在右侧填充输入,因为 GPT-Neo 使用绝对位置嵌入。
GPTNeoConfig
class transformers.GPTNeoConfig
< source >( vocab_size = 50257 max_position_embeddings = 2048 hidden_size = 2048 num_layers = 24 attention_types = [[['global', 'local'], 12]] num_heads = 16 intermediate_size = None window_size = 256 activation_function = 'gelu_new' resid_dropout = 0.0 embed_dropout = 0.0 attention_dropout = 0.0 classifier_dropout = 0.1 layer_norm_epsilon = 1e-05 initializer_range = 0.02 use_cache = True bos_token_id = 50256 eos_token_id = 50256 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 50257) — GPT Neo 模型的词汇表大小。定义了调用 GPTNeoModel 时传入的inputs_ids
可以表示的不同词元数量。模型的词汇表大小。定义了传入 GPTNeoModel 的前向方法的 inputs_ids 可以表示的不同词元。 - max_position_embeddings (
int
, 可选, 默认为 2048) — 该模型可能使用的最大序列长度。通常设置为一个较大的值以备不时之需(例如,512、1024 或 2048)。 - hidden_size (
int
, 可选, 默认为 2048) — 编码器层和池化层的维度。 - num_layers (
int
, 可选, 默认为 24) — Transformer 编码器中的隐藏层数量。 - attention_types (
List
, 可选, 默认为[[['global', 'local'], 12]]
) — Transformer 编码器中每层的注意力类型,格式如下:[[["attention_type"], num_layerss]]
,例如,对于一个 24 层的模型,可以是[[["global"], 24]]
或[[["global", "local"], 12]]
。attention_type
的值可从["global", "local"]
中选择。 - num_heads (
int
, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数量。 - intermediate_size (
int
, 可选, 默认为 8192) — Transformer 编码器中“中间”(即,前馈)层的维度。 - window_size (
int
, 可选, 默认为 256) — 用于局部注意力的滑动窗口大小。 - activation_function (
str
或function
, 可选, 默认为"gelu_new"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
、"relu"
、"selu"
和"gelu_new"
。 - resid_dropout (
float
, 可选, 默认为 0.0) — 注意力模式中使用的残差 dropout。 - embed_dropout (
float
, 可选, 默认为 0.0) — 嵌入、编码器和池化器中所有全连接层的 dropout 概率。 - attention_dropout (
float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。 - classifier_dropout (
float
, 可选, 默认为 0.1) — 在进行词元分类时使用的参数,用于模型 GPTNeoForTokenClassification。隐藏层的 dropout 比率。 - layer_norm_epsilon (
float
, 可选, 默认为 1e-05) — 层归一化层使用的 epsilon 值。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - bos_token_id (
int
, 可选, 默认为 50256) — 词汇表中句子开头词元的 ID。 - eos_token_id (
int
, 可选, 默认为 50256) — 词汇表中句子结束词元的 ID。
这是用于存储 GPTNeoModel 配置的配置类。它用于根据指定参数实例化 GPT Neo 模型,定义模型架构。使用默认值实例化配置将生成与 GPTNeo EleutherAI/gpt-neo-1.3B 架构类似的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import GPTNeoConfig, GPTNeoModel
>>> # Initializing a GPTNeo EleutherAI/gpt-neo-1.3B style configuration
>>> configuration = GPTNeoConfig()
>>> # Initializing a model (with random weights) from the EleutherAI/gpt-neo-1.3B style configuration
>>> model = GPTNeoModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
GPTNeoModel
class transformers.GPTNeoModel
< source >( config )
参数
- config (GPTNeoModel) — 包含模型所有参数的模型配置类。使用配置文件初始化并不会加载与模型相关的权重,只加载配置。请查阅 from_pretrained() 方法以加载模型权重。
GPT Neo 模型仅输出原始隐藏状态,不带任何特定头部。
此模型继承自 PreTrainedModel。查阅超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档以获取所有与一般使用和行为相关的事项。
前向传播
< source >( input_ids: typing.Optional[torch.Tensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, tuple[torch.FloatTensor], NoneType] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) → transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, input_ids_length)
的torch.LongTensor
) —input_ids_length
= 如果past_key_values
为None
则为sequence_length
,否则为past_key_values[0][0].shape[-2]
(输入 past 键值状态的sequence_length
)。词汇表中输入序列词元的索引。如果使用了
past_key_values
,则只有那些未计算 past 的input_ids
才应作为input_ids
传入。索引可以通过 AutoTokenizer 获取。详细信息请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- past_key_values (
Union[~cache_utils.Cache, tuple[torch.FloatTensor], NoneType]
) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码前期返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也被称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果没有传入
past_key_values
,将返回传统缓存格式。如果使用
past_key_values
,用户可以选择只输入最后一个input_ids
(那些没有将它们的 past 键值状态提供给该模型的输入),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
, 可选) — 掩码,用于避免在填充词元索引上执行注意力。掩码值在[0, 1]
中选择:- 1 表示 未被掩码 的词元,
- 0 表示 被掩码 的词元。
- token_type_ids (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 片段 token 索引,用于指示输入的第一个和第二个部分。索引值在[0, 1]
范围内选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 输入序列中每个 token 在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (形状为
(num_heads,)
或(num_layers, num_heads)
的torch.Tensor
,可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值在[0, 1]
范围内选择:- 1 表示头部未被遮蔽,
- 0 表示头部被遮蔽。
- inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.Tensor
,可选) — 可选地,你可以选择直接传入嵌入表示,而不是传入input_ids
。如果你想对如何将input_ids
索引转换为关联向量有比模型内部嵌入查找矩阵更多的控制,这会很有用。 - use_cache (
bool
,可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码 (参见past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。更多详细信息请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。更多详细信息请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
,可选) — 指示输入序列 token 在序列中的位置的索引。与position_ids
不同,此张量不受填充影响。它用于在正确位置更新缓存并推断完整的序列长度。
返回
transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一个 torch.FloatTensor
元组 (如果传入 return_dict=False
或 config.return_dict=False
),包含根据配置 (GPTNeoConfig) 和输入而变化的各种元素。
-
last_hidden_state (
torch.FloatTensor
, 形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。如果使用了
past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
Cache
,可选,当传入use_cache=True
或config.use_cache=True
时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(自注意力块中的键和值,如果
config.is_encoder_decoder=True
,则可选地包含交叉注意力块中的键和值),可用于(参见past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传入output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则一个用于嵌入层的输出,加上每个层的一个输出)。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传入output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传入output_attentions=True
和config.add_cross_attention=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均。
GPTNeoModel 的 forward 方法,重写了 __call__
特殊方法。
尽管前向传播的实现需要在该函数中定义,但在此之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默忽略它们。
GPTNeoForCausalLM
class transformers.GPTNeoForCausalLM
< source >( config )
参数
- config (GPTNeoForCausalLM) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法来加载模型权重。
GPT Neo 模型 transformer,顶部带有一个语言建模头(权重与输入嵌入绑定的线性层)。
此模型继承自 PreTrainedModel。查阅超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档以获取所有与一般使用和行为相关的事项。
前向传播
< source >( input_ids: typing.Optional[torch.Tensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, tuple[torch.FloatTensor], NoneType] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **kwargs ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, input_ids_length)
的torch.LongTensor
) —input_ids_length
= 如果past_key_values
为None
,则为sequence_length
,否则为past_key_values[0][0].shape[-2]
(输入 past key value 状态的sequence_length
)。词汇表中输入序列 token 的索引。如果使用了
past_key_values
,则只有那些尚未计算过 past 的input_ids
应作为input_ids
传入。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- past_key_values (
Union[~cache_utils.Cache, tuple[torch.FloatTensor], NoneType]
) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv cache 指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也被称为传统缓存格式。
模型将输出与输入相同的缓存格式。如果未传入
past_key_values
,将返回传统缓存格式。如果使用
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有将其 past key value 状态提供给此模型的input_ids
),而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - attention_mask (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 用于避免对填充 token 索引执行注意力的掩码。掩码值在[0, 1]
范围内选择:- 1 表示 token 未被遮蔽,
- 0 表示 token 被遮蔽。
- token_type_ids (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 片段 token 索引,用于指示输入的第一个和第二个部分。索引值在[0, 1]
范围内选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (形状为
(batch_size, sequence_length)
的torch.Tensor
,可选) — 输入序列中每个 token 在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (形状为
(num_heads,)
或(num_layers, num_heads)
的torch.Tensor
,可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值在[0, 1]
范围内选择:- 1 表示头部未被遮蔽,
- 0 表示头部被遮蔽。
- inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.Tensor
,可选) — 可选地,你可以选择直接传入嵌入表示,而不是传入input_ids
。如果你想对如何将input_ids
索引转换为关联向量有比模型内部嵌入查找矩阵更多的控制,这会很有用。 - labels (形状为
(batch_size, input_ids_length)
的torch.LongTensor
,可选) — 用于语言建模的标签。请注意,标签在模型内部会进行偏移,即您可以设置labels = input_ids
。索引值在[-100, 0, ..., config.vocab_size]
范围内选择。所有设置为-100
的标签将被忽略(遮蔽),损失只针对[0, ..., config.vocab_size]
范围内的标签进行计算。 - use_cache (
bool
,可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码 (参见past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。更多详细信息请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。更多详细信息请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
,可选) — 指示输入序列 token 在序列中的位置的索引。与position_ids
不同,此张量不受填充影响。它用于在正确位置更新缓存并推断完整的序列长度。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
元组 (如果传入 return_dict=False
或 config.return_dict=False
),包含根据配置 (GPTNeoConfig) 和输入而变化的各种元素。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
) — 语言建模头部的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传入output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则一个用于嵌入层的输出,加上每个层的一个输出)。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传入output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传入output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均。
-
past_key_values (
Cache
,可选,当传入use_cache=True
或config.use_cache=True
时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南。包含预先计算的隐藏状态(注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。
GPTNeoForCausalLM 的 forward 方法,重写了 __call__
特殊方法。
尽管前向传播的实现需要在该函数中定义,但在此之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默忽略它们。
GPTNeoForQuestionAnswering
class transformers.GPTNeoForQuestionAnswering
< source >( config )
参数
- config (GPTNeoForQuestionAnswering) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法来加载模型权重。
Gpt Neo transformer,顶部带有一个用于抽取式问答任务(如 SQuAD)的 span 分类头(在隐藏状态输出之上有一个线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 PreTrainedModel。查阅超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档以获取所有与一般使用和行为相关的事项。
前向传播
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, input_ids_length)
的torch.LongTensor
) —input_ids_length
= 如果past_key_values
为None
,则为sequence_length
,否则为past_key_values[0][0].shape[-2]
(输入 past key value 状态的sequence_length
)。词汇表中输入序列 token 的索引。如果使用了
past_key_values
,则只有那些尚未计算过 past 的input_ids
应作为input_ids
传入。索引可以使用 AutoTokenizer 获取。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (形状为
(batch_size, sequence_length)
的torch.FloatTensor
,可选) — 用于避免对填充 token 索引执行注意力的掩码。掩码值在[0, 1]
范围内选择:- 1 表示 token 未被遮蔽,
- 0 表示 token 被遮蔽。
- token_type_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 片段 token 索引,用于指示输入的第一个和第二个部分。索引值在[0, 1]
范围内选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
,可选) — 输入序列中每个 token 在位置嵌入中的位置索引。在[0, config.n_positions - 1]
范围内选择。 - head_mask (形状为
(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值在[0, 1]
范围内选择:- 1 表示头部未被遮蔽,
- 0 表示头部被遮蔽。
- inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 可选地,你可以选择直接传入嵌入表示,而不是传入input_ids
。如果你想对如何将input_ids
索引转换为关联向量有比模型内部嵌入查找矩阵更多的控制,这会很有用。 - start_positions (形状为
(batch_size,)
的torch.LongTensor
,可选) — 用于计算 token 分类损失的标注 span 起始位置(索引)的标签。位置被限制在序列长度 (sequence_length
) 内。序列之外的位置不计入损失计算。 - end_positions (形状为
(batch_size,)
的torch.LongTensor
,可选) — 用于计算 token 分类损失的标注 span 结束位置(索引)的标签。位置被限制在序列长度 (sequence_length
) 内。序列之外的位置不计入损失计算。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。更多详细信息请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。更多详细信息请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor
元组 (如果传入 return_dict=False
或 config.return_dict=False
),包含根据配置 (GPTNeoConfig) 和输入而变化的各种元素。
-
loss (
torch.FloatTensor
of shape(1,)
, 可选, 当提供labels
时返回) — 总范围提取损失是起始位置和结束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 范围起始分数(SoftMax 之前)。 -
end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — 范围结束分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传入output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则一个用于嵌入层的输出,加上每个层的一个输出)。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传入output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
GPTNeoForQuestionAnswering 的 forward 方法,它会覆盖 __call__
特殊方法。
尽管前向传播的实现需要在该函数中定义,但在此之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默忽略它们。
示例
>>> from transformers import AutoTokenizer, GPTNeoForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = GPTNeoForQuestionAnswering.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
...
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
...
GPTNeoForSequenceClassification
class transformers.GPTNeoForSequenceClassification
< source >( config )
参数
- config (GPTNeoForSequenceClassification) — 模型的配置类,包含模型的所有参数。使用配置文件初始化并不会加载与模型相关的权重,只会加载配置。要加载模型权重,请查看 from_pretrained() 方法。
GPTNeo 模型 Transformer,顶部带有一个序列分类头(线性层)。
GPTNeoForSequenceClassification 使用最后一个 token 进行分类,与其他因果模型(如 GPT-1)相同。
由于它对最后一个 token 进行分类,因此需要知道最后一个 token 的位置。如果在配置中定义了 pad_token_id
,它会在每一行中找到不是填充 token 的最后一个 token。如果没有定义 pad_token_id
,它会简单地取批次中每一行的最后一个值。由于在传入 inputs_embeds
而不是 input_ids
时无法猜测填充 token,因此它会执行相同的操作(取批次中每一行的最后一个值)。
此模型继承自 PreTrainedModel。查阅超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档以获取所有与一般使用和行为相关的事项。
前向传播
< source >( input_ids: typing.Optional[torch.Tensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, tuple[torch.FloatTensor], NoneType] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, input_ids_length)
) — 如果past_key_values
为None
,则input_ids_length
=sequence_length
;否则为past_key_values[0][0].shape[-2]
(输入过去键值状态的sequence_length
)。词汇表中输入序列 token 的索引。如果使用了
past_key_values
,则只有未计算过过去值的input_ids
应作为input_ids
传入。索引可以通过 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- past_key_values (
Union[~cache_utils.Cache, tuple[torch.FloatTensor], NoneType]
) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧式缓存格式。
模型将输出与输入相同的缓存格式。如果没有传入
past_key_values
,将返回旧式缓存格式。如果使用
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的)而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - attention_mask (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充 token 索引执行注意力操作的掩码。掩码值选择在[0, 1]
之间:- 1 表示 未被掩盖 的 token,
- 0 表示 被掩盖 的 token。
- token_type_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一部分和第二部分的段 token 索引。索引选择范围为[0, 1]
:- 0 对应于 句子 A 的 token,
- 1 对应于 句子 B 的 token。
- position_ids (
torch.Tensor
,形状为(batch_size, sequence_length)
,可选) — 输入序列中每个 token 在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。 - head_mask (
torch.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择范围为[0, 1]
:- 1 表示头部 未被掩盖,
- 0 表示头部 被掩盖。
- inputs_embeds (
torch.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 此外,您可以选择直接传入嵌入表示,而不是传入input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将很有用。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
之间。如果config.num_labels == 1
,则计算回归损失(均方误差损失);如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。详情请参阅返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。详情请参阅返回张量中的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯元组。
返回
transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutputWithPast
或一个 torch.FloatTensor
元组(如果传入 return_dict=False
或当 config.return_dict=False
时),根据配置(GPTNeoConfig)和输入包含各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。 -
logits (形状为
(batch_size, config.num_labels)
的torch.FloatTensor
) — 分类(如果 config.num_labels==1,则为回归)分数(SoftMax 之前)。 -
past_key_values (
Cache
,可选,当传入use_cache=True
或config.use_cache=True
时返回) — 这是一个 Cache 实例。有关更多详细信息,请参阅我们的 kv 缓存指南。包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传入output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则一个用于嵌入层的输出,加上每个层的一个输出)。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传入output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
GPTNeoForSequenceClassification 的 forward 方法,它会覆盖 __call__
特殊方法。
尽管前向传播的实现需要在该函数中定义,但在此之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, GPTNeoForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = GPTNeoForSequenceClassification.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
...
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTNeoForSequenceClassification.from_pretrained("EleutherAI/gpt-neo-1.3B", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, GPTNeoForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = GPTNeoForSequenceClassification.from_pretrained("EleutherAI/gpt-neo-1.3B", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTNeoForSequenceClassification.from_pretrained(
... "EleutherAI/gpt-neo-1.3B", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
GPTNeoForTokenClassification
class transformers.GPTNeoForTokenClassification
< source >( config )
参数
- config (GPTNeoForTokenClassification) — 模型的配置类,包含模型的所有参数。使用配置文件初始化并不会加载与模型相关的权重,只会加载配置。要加载模型权重,请查看 from_pretrained() 方法。
Gpt Neo Transformer,顶部带有一个 token 分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别(NER)任务。
此模型继承自 PreTrainedModel。查阅超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等)。
此模型也是 PyTorch torch.nn.Module 子类。将其作为常规 PyTorch 模块使用,并参考 PyTorch 文档以获取所有与一般使用和行为相关的事项。
前向传播
< source >( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, tuple[tuple[torch.Tensor]], NoneType] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, input_ids_length)
) — 如果past_key_values
为None
,则input_ids_length
=sequence_length
;否则为past_key_values[0][0].shape[-2]
(输入过去键值状态的sequence_length
)。词汇表中输入序列 token 的索引。如果使用了
past_key_values
,则只有未计算过过去值的input_ids
应作为input_ids
传入。索引可以通过 AutoTokenizer 获取。详情请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- past_key_values (
Union[~cache_utils.Cache, tuple[tuple[torch.Tensor]], NoneType]
) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码上一阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也称为旧式缓存格式。
模型将输出与输入相同的缓存格式。如果没有传入
past_key_values
,将返回旧式缓存格式。如果使用
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的)而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充 token 索引执行注意力操作的掩码。掩码值选择在[0, 1]
之间:- 1 表示 未被掩盖 的 token,
- 0 表示 被掩盖 的 token。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于指示输入的第一部分和第二部分的段 token 索引。索引选择范围为[0, 1]
:- 0 对应于 句子 A 的 token,
- 1 对应于 句子 B 的 token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 输入序列中每个 token 在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部无效的掩码。掩码值选择范围为[0, 1]
:- 1 表示头部 未被掩盖,
- 0 表示头部 被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 此外,您可以选择直接传入嵌入表示,而不是传入input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将很有用。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
之间。如果config.num_labels == 1
,则计算回归损失(均方误差损失);如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。详情请参阅返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。详情请参阅返回张量中的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是纯元组。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传入 return_dict=False
或当 config.return_dict=False
时),根据配置(GPTNeoConfig)和输入包含各种元素。
-
loss (形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回) — 分类损失。 -
logits (形状为
(batch_size, sequence_length, config.num_labels)
的torch.FloatTensor
) — 分类分数(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传入output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则一个用于嵌入层的输出,加上每个层的一个输出)。模型在每个层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传入output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
GPTNeoForTokenClassification 的 forward 方法,它会覆盖 __call__
特殊方法。
尽管前向传播的实现需要在该函数中定义,但在此之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默忽略它们。
示例
>>> from transformers import AutoTokenizer, GPTNeoForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = GPTNeoForTokenClassification.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
...
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
...
FlaxGPTNeoModel
class transformers.FlaxGPTNeoModel
< source >( config: GPTNeoConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (GPTNeoConfig) — 模型的配置类,包含模型的所有参数。使用配置文件初始化并不会加载与模型相关的权重,只会加载配置。要加载模型权重,请查看 from_pretrained() 方法。
- dtype (
jax.numpy.dtype
, 可选, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算都将以给定的
dtype
执行。请注意,这仅指定了计算的数据类型,不影响模型参数的数据类型。
裸 GPTNeo 模型 Transformer,输出原始隐藏状态,顶部没有任何特定头部。
此模型继承自 FlaxPreTrainedModel。有关库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等),请查看超类文档。
此模型也是 Flax Linen flax.nn.Module 子类。将其作为常规 Flax 模块使用,并参考 Flax 文档中所有与通用用法和行为相关的事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None position_ids = None params: typing.Optional[dict] = None past_key_values: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
。词汇表中输入序列 token 的索引。索引可以使用 AutoTokenizer 获取。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充 token 索引执行注意力操作的掩码。掩码值选择范围为[0, 1]
:- 1 表示未被掩盖的 token,
- 0 表示被掩盖的 token。
- position_ids (
numpy.ndarray
,形状为(batch_size, input_ids_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 - past_key_values (
dict[str, np.ndarray]
,可选,由init_cache
返回或在传递先前的past_key_values
时返回) — 预计算的隐藏状态(注意力块中的键和值)字典,可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length]。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。更多详细信息请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。更多详细信息请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),包含根据配置 (GPTNeoConfig) 和输入而变化的各种元素。
-
last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的jnp.ndarray
) — 模型最后一层输出的隐藏状态序列。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
元组(一个用于嵌入输出 + 每个层的一个输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
元组(每个层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxGPTNeoPreTrainedModel
前向方法,覆盖 __call__
特殊方法。
尽管前向传播的实现需要在该函数中定义,但在此之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxGPTNeoModel
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = FlaxGPTNeoModel.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxGPTNeoForCausalLM
class transformers.FlaxGPTNeoForCausalLM
< source >( config: GPTNeoConfig input_shape: tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (GPTNeoConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。请查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
,可选,默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
GPTNeo 模型 Transformer,顶部带有一个语言建模头(权重与输入嵌入绑定的线性层)。
此模型继承自 FlaxPreTrainedModel。有关库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头部等),请查看超类文档。
此模型也是 Flax Linen flax.nn.Module 子类。将其作为常规 Flax 模块使用,并参考 Flax 文档中所有与通用用法和行为相关的事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< source >( input_ids attention_mask = None position_ids = None params: typing.Optional[dict] = None past_key_values: typing.Optional[dict] = None dropout_rng: <function PRNGKey at 0x7effc7ad3a30> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
。词汇表中输入序列 token 的索引。索引可以使用 AutoTokenizer 获取。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 用于避免对填充 token 索引执行注意力操作的掩码。掩码值选择范围为[0, 1]
:- 1 表示未被掩盖的 token,
- 0 表示被掩盖的 token。
- position_ids (
numpy.ndarray
,形状为(batch_size, input_ids_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 - past_key_values (
dict[str, np.ndarray]
,可选,由init_cache
返回或在传递先前的past_key_values
时返回) — 预计算的隐藏状态(注意力块中的键和值)字典,可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length]。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。更多详细信息请参见返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。更多详细信息请参见返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通的元组。
返回
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),包含根据配置 (GPTNeoConfig) 和输入而变化的各种元素。
-
logits (形状为
(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
) — 语言建模头的预测分数(SoftMax 之前每个词汇 token 的分数)。 -
hidden_states (
tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —jnp.ndarray
元组(一个用于嵌入输出 + 每个层的一个输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每个层输出的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —jnp.ndarray
元组(每个层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxGPTNeoPreTrainedModel
前向方法,覆盖 __call__
特殊方法。
尽管前向传播的实现需要在该函数中定义,但在此之后应调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者则静默忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxGPTNeoForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = FlaxGPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]