GPT Neo
概述
GPTNeo 模型由 Sid Black、Stella Biderman、Leo Gao、Phil Wang 和 Connor Leahy 在 EleutherAI/gpt-neo 仓库中发布。它是一个类似于 GPT2 的因果语言模型,在 Pile 数据集上训练。
该架构与 GPT2 类似,不同之处在于 GPT Neo 在每隔一层中使用局部注意力,窗口大小为 256 个 tokens。
此模型由 valhalla 贡献。
使用示例
generate()
方法可用于使用 GPT Neo 模型生成文本。
>>> from transformers import GPTNeoForCausalLM, GPT2Tokenizer
>>> model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> prompt = (
... "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
... "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
... "researchers was the fact that the unicorns spoke perfect English."
... )
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
>>> gen_tokens = model.generate(
... input_ids,
... do_sample=True,
... temperature=0.9,
... max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
结合 GPT-Neo 和 Flash Attention 2
首先,请务必安装最新版本的 Flash Attention 2,以启用滑动窗口注意力机制,并确保您的硬件与 Flash-Attention 2 兼容。更多详细信息请参考此处关于安装的说明。
同时,请务必以半精度加载您的模型(例如 torch.float16
)。
要使用 Flash Attention 2 加载和运行模型,请参考以下代码片段
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-2.7B", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
>>> prompt = "def hello_world():"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"def hello_world():\n >>> run_script("hello.py")\n >>> exit(0)\n<|endoftext|>"
预期加速
下面是一个预期加速图表,比较了使用 EleutherAI/gpt-neo-2.7B
检查点的 transformers 原生实现与 Flash Attention 2 模型版本之间的纯推理时间。 请注意,对于 GPT-Neo,由于最大位置嵌入被限制为 2048,因此无法在非常长的上下文中进行训练/运行 - 但这适用于所有 gpt-neo 模型,而不仅仅是 FA-2。

资源
GPTNeoConfig
class transformers.GPTNeoConfig
< source >( vocab_size = 50257 max_position_embeddings = 2048 hidden_size = 2048 num_layers = 24 attention_types = [[['global', 'local'], 12]] num_heads = 16 intermediate_size = None window_size = 256 activation_function = 'gelu_new' resid_dropout = 0.0 embed_dropout = 0.0 attention_dropout = 0.0 classifier_dropout = 0.1 layer_norm_epsilon = 1e-05 initializer_range = 0.02 use_cache = True bos_token_id = 50256 eos_token_id = 50256 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 50257) — GPT Neo 模型的词汇表大小。定义了在调用 GPTNeoModel 时可以通过inputs_ids
传递的不同 token 的数量。模型的词汇表大小。定义了可以通过传递给 GPTNeoModel 的前向方法的 inputs_ids 表示的不同 token。 - max_position_embeddings (
int
, 可选, 默认为 2048) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - hidden_size (
int
, 可选, 默认为 2048) — 编码器层和池化器层的维度。 - num_layers (
int
, 可选, 默认为 24) — Transformer 编码器中隐藏层的数量。 - attention_types (
List
, 可选, 默认为[[['global', 'local'], 12]]
) — 每个层注意力的类型,格式为List
,例如[[["attention_type"], num_layerss]]
。例如,对于一个 24 层的模型,可以是[[["global"], 24]]
或[[["global", "local"], 12]]
。从["global", "local"]
中选择attention_type
的值。 - num_heads (
int
, 可选, 默认为 16) — Transformer 编码器中每个注意力层的注意力头的数量。 - intermediate_size (
int
, 可选, 默认为 8192) — Transformer 编码器中“中间”(即,前馈)层的维度。 - window_size (
int
, 可选, 默认为 256) — 本地注意力滑动窗口的大小。 - activation_function (
str
或function
, 可选, 默认为"gelu_new"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持"gelu"
、"relu"
、"selu"
和"gelu_new"
。 - resid_dropout (
float
, 可选, 默认为 0.0) — 在注意力模式中使用的残差 dropout。 - embed_dropout (
float
, 可选, 默认为 0.0) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 - attention_dropout (
float
, 可选, 默认为 0.0) — 注意力概率的 dropout 比率。 - classifier_dropout (
float
, 可选, 默认为 0.1) — 在进行 token 分类时使用的参数,用于模型 GPTNeoForTokenClassification。隐藏层的 dropout 比率。 - layer_norm_epsilon (
float
, 可选, 默认为 1e-05) — layer normalization 层使用的 epsilon 值。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后一次的键/值注意力(并非所有模型都使用)。仅当config.is_decoder=True
时相关。 - bos_token_id (
int
, 可选, 默认为 50256) — 词汇表中句子开始 token 的 id。 - eos_token_id (
int
, 可选, 默认为 50256) — 词汇表中句子结束 token 的 id。
这是用于存储 GPTNeoModel 配置的配置类。它用于根据指定的参数实例化 GPT Neo 模型,定义模型架构。使用默认值实例化配置将产生类似于 GPTNeo EleutherAI/gpt-neo-1.3B 架构的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读 PretrainedConfig 的文档。
示例
>>> from transformers import GPTNeoConfig, GPTNeoModel
>>> # Initializing a GPTNeo EleutherAI/gpt-neo-1.3B style configuration
>>> configuration = GPTNeoConfig()
>>> # Initializing a model (with random weights) from the EleutherAI/gpt-neo-1.3B style configuration
>>> model = GPTNeoModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
GPTNeoModel
class transformers.GPTNeoModel
< source >( config )
参数
- config (GPTNeoConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
裸 GPT Neo 模型 Transformer 输出原始隐藏状态,顶部没有任何特定的 head。
此模型继承自 PreTrainedModel。请查阅超类文档,以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None past_key_values: Union = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None cache_position: Optional = None ) → transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (形状为
(batch_size, input_ids_length)
的torch.LongTensor
) —input_ids_length
=sequence_length
,如果past_key_values
为None
,否则为past_key_values[0][0].shape[-2]
(输入过去键值状态的sequence_length
)。词汇表中输入序列标记的索引。如果使用
past_key_values
,则只有未计算过去的input_ids
应作为input_ids
传递。索引可以使用 AutoTokenizer 获得。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
, 可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的input_ids
),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - attention_mask (形状为
(batch_size, sequence_length)
的torch.FloatTensor
, 可选) — 掩码,用于避免对填充标记索引执行注意力机制。 掩码值在[0, 1]
中选择:- 1 表示标记未被掩码,
- 0 表示标记被掩码。
- token_type_ids (形状为
(batch_size, input_ids_length)
的torch.LongTensor
, 可选) — 段落标记索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于句子 A 标记,
- 1 对应于句子 B 标记。
- position_ids (形状为
(batch_size, sequence_length)
的torch.LongTensor
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (形状为
(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
, 可选) — 用于使自注意力模块的选定头无效的掩码。 掩码值在[0, 1]
中选择:- 1 表示头未被掩码,
- 0 表示头被掩码。
- inputs_embeds (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更精确地控制如何将input_ids
索引转换为关联向量,这将非常有用。如果使用
past_key_values
,则可以选择仅输入最后一个inputs_embeds
(请参阅past_key_values
)。 - use_cache (
bool
, 可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (形状为
(sequence_length)
的torch.LongTensor
, 可选) — 描述输入序列标记在序列中位置的索引。 与position_ids
相反,此张量不受填充的影响。 它用于在正确的位置更新缓存,并推断完整的序列长度。
返回值
transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),其中包括各种元素,具体取决于配置 (GPTNeoConfig) 和输入。
-
last_hidden_state (形状为
(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
) — 模型最后一层的输出处的隐藏状态序列。如果使用
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组具有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,并且可选地,如果config.is_encoder_decoder=True
,则还有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外张量。包含预先计算的隐藏状态(自注意力模块中的键和值,以及可选地,如果
config.is_encoder_decoder=True
,则包含交叉注意力模块中的键和值),这些状态可以用于(请参阅past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则每个嵌入层的输出 + 每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
且config.add_cross_attention=True
时或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
GPTNeoModel forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, GPTNeoModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = GPTNeoModel.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
GPTNeoForCausalLM
class transformers.GPTNeoForCausalLM
< source >( config )
参数
- config (GPTNeoConfig) — 带有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
GPT Neo 模型转换器,顶部带有语言建模头(权重与输入嵌入绑定的线性层)。
此模型继承自 PreTrainedModel。请查阅超类文档,以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None past_key_values: Union = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None cache_position: Optional = None ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, input_ids_length)
) — 如果past_key_values
为None
,则input_ids_length
=sequence_length
;否则input_ids_length
=past_key_values[0][0].shape[-2]
(输入过去键值状态的sequence_length
)。 词汇表中输入序列 tokens 的索引。如果使用了
past_key_values
,则只有那些没有计算过 past 的input_ids
应该作为input_ids
传入。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
- past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可以用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也被称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果没有传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一次的input_ids
(那些没有将其过去键值状态提供给此模型的input_ids
),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行注意力的掩码。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, input_ids_length)
,可选) — Segment token indices 用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 sentence A token,
- 1 对应于 sentence B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于 nullify 自注意力模块中选定 heads 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更好地控制如何将input_ids
索引转换为关联向量,这将非常有用。如果使用了
past_key_values
,则可以选择仅输入最后的inputs_embeds
(请参阅past_key_values
)。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的 attentions 张量。 有关更多详细信息,请参见返回的张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回的张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描述输入序列 tokens 在序列中位置的索引。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整的序列长度。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于语言建模的标签。 请注意,标签在模型内部已移位,即您可以设置labels = input_ids
。 索引在[-100, 0, ..., config.vocab_size]
中选择。 所有设置为-100
的标签都将被忽略(掩盖),损失仅针对[0, ..., config.vocab_size]
中的标签计算。
返回值
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (GPTNeoConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个 token 预测)。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表 token 的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则每个嵌入层的输出 + 每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的交叉注意力权重,用于计算交叉注意力 heads 中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) —torch.FloatTensor
元组的元组,长度为config.n_layers
,每个元组包含自注意力的缓存键、值状态以及交叉注意力层(如果模型在 encoder-decoder 设置中使用)。 仅当config.is_decoder = True
时才相关。包含预先计算的隐藏状态(注意力模块中的键和值),可以用于加速顺序解码(请参阅
past_key_values
输入)。
GPTNeoForCausalLM
forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> import torch
>>> from transformers import AutoTokenizer, GPTNeoForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits
GPTNeoForQuestionAnswering
class transformers.GPTNeoForQuestionAnswering
< source >( config )
参数
- config (GPTNeoConfig) — 具有模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
GPT-Neo 模型转换器,顶部带有一个跨度分类 head,用于执行抽取式问答任务,例如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
此模型继承自 PreTrainedModel。请查阅超类文档,以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, input_ids_length)
) — 如果past_key_values
为None
,则input_ids_length
=sequence_length
;否则input_ids_length
=past_key_values[0][0].shape[-2]
(输入过去键值状态的sequence_length
)。 词汇表中输入序列 tokens 的索引。如果使用了
past_key_values
,则只有那些没有计算过 past 的input_ids
应该作为input_ids
传入。索引可以使用 AutoTokenizer 获得。 请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以了解详细信息。
- past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可以用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。 这也被称为旧版缓存格式。
模型将输出与作为输入馈送的缓存格式相同的格式。 如果没有传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一次的input_ids
(那些没有将其过去键值状态提供给此模型的input_ids
),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行注意力的掩码。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, input_ids_length)
,可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定 head 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩蔽,
- 0 表示 head 被掩蔽。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 或者,您可以选择直接传递嵌入表示而不是传递input_ids
。 如果您想要比模型的内部嵌入查找矩阵更精细地控制如何将input_ids
索引转换为关联向量,这将非常有用。如果使用
past_key_values
,则可以选择仅输入最后的inputs_embeds
(参见past_key_values
)。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并且可以用于加速解码 (参见past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 描述输入序列 token 在序列中的位置的索引。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。 - start_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算 token 分类损失的带标签跨度的起始位置(索引)的标签。 位置被限制在序列的长度 (sequence_length
) 内。 序列之外的位置不计入损失计算。 - end_positions (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算 token 分类损失的带标签跨度的结束位置(索引)的标签。 位置被限制在序列的长度 (sequence_length
) 内。 序列之外的位置不计入损失计算。
返回值
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),其中包含各种元素,具体取决于配置 (GPTNeoConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵损失之和。 -
start_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度起始得分(在 SoftMax 之前)。 -
end_logits (
torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度结束得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则每个嵌入层的输出 + 每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
GPTNeoForQuestionAnswering forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
此示例使用随机模型,因为真实模型都非常大。 要获得正确的结果,您应该使用 EleutherAI/gpt-neo-1.3B 而不是 EleutherAI/gpt-neo-1.3B。 如果在加载该检查点时内存不足,您可以尝试在 from_pretrained
调用中添加 device_map="auto"
。
示例
>>> from transformers import AutoTokenizer, GPTNeoForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = GPTNeoForQuestionAnswering.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
GPTNeoForSequenceClassification
class transformers.GPTNeoForSequenceClassification
< source >( config )
参数
- config (GPTNeoConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。
带有序列分类 head (线性层) 的 GPTNeo 模型转换器。
GPTNeoForSequenceClassification 使用最后一个 token 来进行分类,就像其他因果模型 (例如 GPT-1) 一样。
由于它对最后一个 token 进行分类,因此它需要知道最后一个 token 的位置。 如果在配置中定义了 pad_token_id
,它会在每行中找到最后一个不是 padding token 的 token。 如果未定义 pad_token_id
,它只需获取批次中每行的最后一个值。 由于当传递 inputs_embeds
而不是 input_ids
时,它无法猜测 padding token,因此它执行相同的操作(获取批次中每行的最后一个值)。
此模型继承自 PreTrainedModel。请查阅超类文档,以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: Optional = None past_key_values: Union = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
如果past_key_values
为None
,否则为past_key_values[0][0].shape[-2]
(输入 past key value 状态的sequence_length
)。 词汇表中输入序列 token 的索引。如果使用
past_key_values
,则只有未计算其 past 的input_ids
应作为input_ids
传递。索引可以使用 AutoTokenizer 获取。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
- 长度为
config.n_layers
的tuple(tuple(torch.FloatTensor))
元组,其中每个元组都有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
) 的张量。 这也称为旧版缓存格式。
模型将输出与作为输入提供的缓存格式相同的格式。 如果未传递
past_key_values
,则将返回旧版缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后的input_ids
(那些未将其 past key value 状态提供给此模型的input_ids
),形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的input_ids
。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在 padding token 索引上执行注意力的掩码。 掩码值在[0, 1]
中选择:- 1 表示 token 未被掩蔽,
- 0 表示 token 被掩蔽。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, input_ids_length)
,可选) — 分段 token 索引,用于指示输入的第一部分和第二部分。 索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 token 在位置嵌入中的位置索引。 在范围[0, config.max_position_embeddings - 1]
中选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于置空自注意力模块中选定 head 的掩码。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩蔽,
- 0 表示 head 被掩蔽。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将input_ids
索引转换为关联的向量,这将非常有用。如果使用
past_key_values
,则可以选择仅输入最后一个inputs_embeds
(请参阅past_key_values
)。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列 tokens 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。 - labels (
torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方误差损失)。 如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回值
transformers.modeling_outputs.SequenceClassifierOutputWithPast
或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutputWithPast
或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GPTNeoConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) —tuple(torch.FloatTensor)
的元组,长度为config.n_layers
,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)包含预先计算的隐藏状态(自注意力模块中的键和值),可以用于(请参阅
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则每个嵌入层的输出 + 每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
的 GPTNeoForSequenceClassification forward 方法,覆盖了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
单标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, GPTNeoForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = GPTNeoForSequenceClassification.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTNeoForSequenceClassification.from_pretrained("EleutherAI/gpt-neo-1.3B", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
多标签分类示例
>>> import torch
>>> from transformers import AutoTokenizer, GPTNeoForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = GPTNeoForSequenceClassification.from_pretrained("EleutherAI/gpt-neo-1.3B", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTNeoForSequenceClassification.from_pretrained(
... "EleutherAI/gpt-neo-1.3B", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
GPTNeoForTokenClassification
class transformers.GPTNeoForTokenClassification
< source >( config )
参数
- config (GPTNeoConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法来加载模型权重。
GPT Neo 模型,顶部带有一个 token 分类头(在隐藏状态输出之上的线性层),例如用于命名实体识别 (NER) 任务。
此模型继承自 PreTrainedModel。请查阅超类文档,以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。
此模型也是 PyTorch torch.nn.Module 子类。请将其用作常规 PyTorch 模块,并参阅 PyTorch 文档以了解与通用用法和行为相关的所有事项。
forward
< source >( input_ids: 可选 = None past_key_values: 联合 = None attention_mask: 可选 = None token_type_ids: 可选 = None position_ids: 可选 = None head_mask: 可选 = None inputs_embeds: 可选 = None labels: 可选 = None use_cache: 可选 = None output_attentions: 可选 = None output_hidden_states: 可选 = None return_dict: 可选 = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
,形状为(batch_size, input_ids_length)
) — 如果past_key_values
为None
,则input_ids_length
=sequence_length
,否则为past_key_values[0][0].shape[-2]
(输入过去键值状态的sequence_length
)。 词汇表中输入序列 tokens 的索引。如果使用
past_key_values
,则只有尚未计算过去的input_ids
应作为input_ids
传递。可以使用 AutoTokenizer 获取索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
- past_key_values (
Cache
或tuple(tuple(torch.FloatTensor))
,可选) — 预先计算的隐藏状态(自注意力模块和交叉注意力模块中的键和值),可用于加速顺序解码。 这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- Cache 实例,请参阅我们的 kv 缓存指南;
tuple(torch.FloatTensor)
的元组,长度为config.n_layers
,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。 这也称为传统缓存格式。
模型将输出与输入相同的缓存格式。 如果未传递
past_key_values
,则将返回传统缓存格式。如果使用
past_key_values
,用户可以选择仅输入最后一个input_ids
(那些没有将其过去的键值状态提供给此模型的input_ids
),形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - attention_mask (
torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免对 padding token 索引执行注意力的掩码。 掩码值在[0, 1]
中选择:- 1 表示 tokens 未被掩盖,
- 0 表示 tokens 被掩盖。
- token_type_ids (
torch.LongTensor
,形状为(batch_size, input_ids_length)
,可选) — 分段 token 索引,用于指示输入的第一个和第二个部分。 索引在[0, 1]
中选择:- 0 对应于 句子 A token,
- 1 对应于 句子 B token。
- position_ids (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在[0, config.max_position_embeddings - 1]
范围内选择。 - head_mask (
torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定 head 无效的掩码。 掩码值在[0, 1]
中选择:- 1 表示 head 未被掩盖,
- 0 表示 head 被掩盖。
- inputs_embeds (
torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将input_ids
索引转换为关联的向量,这将非常有用。如果使用
past_key_values
,则可以选择仅输入最后一个inputs_embeds
(请参阅past_key_values
)。 - use_cache (
bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。 - output_attentions (
bool
,可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的attentions
。 - output_hidden_states (
bool
,可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
,可选) — 是否返回 ModelOutput 而不是普通元组。 - cache_position (
torch.LongTensor
,形状为(sequence_length)
,可选) — 索引,描述输入序列 tokens 在序列中的位置。 与position_ids
相反,此张量不受 padding 的影响。 它用于在正确的位置更新缓存并推断完整序列长度。 - labels (
torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算序列分类/回归损失的标签。 索引应在[0, ..., config.num_labels - 1]
中。 如果config.num_labels == 1
,则计算回归损失(均方误差损失)。 如果config.num_labels > 1
,则计算分类损失(交叉熵损失)。
返回值
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GPTNeoConfig) 和输入。
-
loss (
torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型具有嵌入层,则每个嵌入层的输出 + 每层的输出一个),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态,加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
`GPTNeoForTokenClassification` 的 forward 方法重写了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, GPTNeoForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125m")
>>> model = GPTNeoForTokenClassification.from_pretrained("EleutherAI/gpt-neo-125m")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.25
FlaxGPTNeoModel
类 transformers.FlaxGPTNeoModel
< 源码 >( config: GPTNeoConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (`GPTNeoConfig`) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 `from_pretrained()` 方法来加载模型权重。
- dtype (`jax.numpy.dtype`,*可选*,默认为 `jax.numpy.float32`) — 计算的数据类型。可以是 `jax.numpy.float32`、`jax.numpy.float16` (在 GPU 上) 和 `jax.numpy.bfloat16` (在 TPU 上) 之一。
这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。**请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。**
裸 GPTNeo 模型 Transformer,输出原始的隐藏状态,顶部没有任何特定的 head。
此模型继承自 `FlaxPreTrainedModel`。查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 Flax Linen `flax.nn.Module` 子类。将其用作常规 Flax Module,并参阅 Flax 文档以了解与一般用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源码 >( input_ids attention_mask = None position_ids = None params: dict = None past_key_values: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
。词汇表中输入序列 tokens 的索引。索引可以使用 `AutoTokenizer` 获得。有关详细信息,请参阅 `PreTrainedTokenizer.encode()` 和 `PreTrainedTokenizer.__call__()`。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,*可选*) — 避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 未被掩码 的 tokens,
- 0 表示 被掩码 的 tokens。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,*可选*) — 每个输入序列 tokens 在位置 embeddings 中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - past_key_values (
Dict[str, np.ndarray]
,*可选*,由init_cache
返回或在传递之前的past_key_values
时返回) — 预先计算的隐藏状态字典(attention 块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为 *[batch_size, max_length]*。 - output_attentions (
bool
,*可选*) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回的 tensors 下的attentions
。 - output_hidden_states (
bool
,*可选*) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回的 tensors 下的hidden_states
。 - return_dict (
bool
,*可选*) — 是否返回 `ModelOutput` 而不是普通 tuple。
返回值
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
一个 `transformers.modeling_flax_outputs.FlaxBaseModelOutput` 或一个 `torch.FloatTensor` 的 tuple (如果传递了 `return_dict=False` 或当 `config.return_dict=False` 时),其中包含取决于配置 (`GPTNeoConfig`) 和输入的各种元素。
-
last_hidden_state (`jnp.ndarray`,形状为
(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
hidden_states (`tuple(jnp.ndarray)`,*可选*,当传递 `output_hidden_states=True` 或当 `config.output_hidden_states=True` 时返回) — `jnp.ndarray` 的 tuple (embeddings 输出一个,每层输出一个),形状为
(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始 embedding 输出。
-
attentions (`tuple(jnp.ndarray)`,*可选*,当传递 `output_attentions=True` 或当 `config.output_attentions=True` 时返回) — `jnp.ndarray` 的 tuple (每层一个),形状为
(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
`FlaxGPTNeoPreTrainedModel` 的 forward 方法重写了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxGPTNeoModel
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = FlaxGPTNeoModel.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxGPTNeoForCausalLM
类 transformers.FlaxGPTNeoForCausalLM
< 源码 >( config: GPTNeoConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
- config (`GPTNeoConfig`) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 `from_pretrained()` 方法来加载模型权重。
- dtype (`jax.numpy.dtype`,*可选*,默认为 `jax.numpy.float32`) — 计算的数据类型。可以是 `jax.numpy.float32`、`jax.numpy.float16` (在 GPU 上) 和 `jax.numpy.bfloat16` (在 TPU 上) 之一。
这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。**请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。**
带有语言建模 head 的 GPTNeo 模型 Transformer(线性层,其权重与输入嵌入绑定)。
此模型继承自 `FlaxPreTrainedModel`。查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。
此模型也是 Flax Linen `flax.nn.Module` 子类。将其用作常规 Flax Module,并参阅 Flax 文档以了解与一般用法和行为相关的所有事项。
最后,此模型支持固有的 JAX 功能,例如
__call__
< 源码 >( input_ids attention_mask = None position_ids = None params: dict = None past_key_values: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
,形状为(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
。词汇表中输入序列 tokens 的索引。索引可以使用 `AutoTokenizer` 获得。有关详细信息,请参阅 `PreTrainedTokenizer.encode()` 和 `PreTrainedTokenizer.__call__()`。
- attention_mask (
numpy.ndarray
,形状为(batch_size, sequence_length)
,*可选*) — 避免在 padding token 索引上执行 attention 的掩码。掩码值在[0, 1]
中选择:- 1 表示 未被掩码 的 tokens,
- 0 表示 被掩码 的 tokens。
- position_ids (
numpy.ndarray
,形状为(batch_size, sequence_length)
,*可选*) — 每个输入序列 tokens 在位置 embeddings 中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 - past_key_values (
Dict[str, np.ndarray]
,*可选*,由init_cache
返回或在传递之前的past_key_values
时返回) — 预先计算的隐藏状态字典(attention 块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为 *[batch_size, max_length]*。 - output_attentions (
bool
,*可选*) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回的 tensors 下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个 torch.FloatTensor
的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置 (GPTNeoConfig) 和输入。
-
logits (
jnp.ndarray
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states (`tuple(jnp.ndarray)`,*可选*,当传递 `output_hidden_states=True` 或当 `config.output_hidden_states=True` 时返回) — `jnp.ndarray` 的 tuple (embeddings 输出一个,每层输出一个),形状为
(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态,加上初始 embedding 输出。
-
attentions (`tuple(jnp.ndarray)`,*可选*,当传递 `output_attentions=True` 或当 `config.output_attentions=True` 时返回) — `jnp.ndarray` 的 tuple (每层一个),形状为
(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
`FlaxGPTNeoPreTrainedModel` 的 forward 方法重写了 __call__
特殊方法。
尽管 forward 传递的配方需要在该函数中定义,但之后应该调用 Module
实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会静默地忽略它们。
示例
>>> from transformers import AutoTokenizer, FlaxGPTNeoForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> model = FlaxGPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]