Transformers 文档

MobileBERT

Hugging Face's logo
加入 Hugging Face 社区

并获取增强的文档体验

开始使用

MobileBERT

概述

MobileBERT 模型在 MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices 中被提出,作者是 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, 和 Denny Zhou。 这是一个基于 BERT 模型的双向 transformer,它通过多种方法进行了压缩和加速。

论文摘要如下:

自然语言处理 (NLP) 最近通过使用拥有数亿参数的巨型预训练模型取得了巨大的成功。 然而,这些模型模型尺寸庞大且延迟高,因此无法部署到资源受限的移动设备上。在本文中,我们提出了 MobileBERT,用于压缩和加速流行的 BERT 模型。与原始 BERT 一样,MobileBERT 是任务无关的,也就是说,它可以通过简单的微调通用地应用于各种下游 NLP 任务。基本上,MobileBERT 是 BERT_LARGE 的精简版本,同时配备了瓶颈结构,并在自注意力机制和前馈网络之间精心设计了平衡。为了训练 MobileBERT,我们首先训练了一个特别设计的教师模型,一个结合了倒置瓶颈结构的 BERT_LARGE 模型。然后,我们从该教师模型向 MobileBERT 进行知识转移。实证研究表明,MobileBERT 比 BERT_BASE 小 4.3 倍,速度快 5.5 倍,同时在著名的基准测试中取得了有竞争力的结果。在 GLUE 的自然语言推理任务中,MobileBERT 取得了 77.7 的 GLUE 分数(比 BERT_BASE 低 0.6),并在 Pixel 4 手机上实现了 62 毫秒的延迟。在 SQuAD v1.1/v2.0 问题回答任务中,MobileBERT 取得了 90.0/79.2 的 dev F1 分数(比 BERT_BASE 高 1.5/2.1)。

此模型由 vshampor 贡献。 原始代码可以在这里找到。

使用技巧

  • MobileBERT 是一个具有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
  • MobileBERT 类似于 BERT,因此依赖于掩码语言建模 (MLM) 目标。因此,它在预测掩码标记和一般 NLU 方面是高效的,但对于文本生成来说不是最优的。使用因果语言建模 (CLM) 目标训练的模型在这方面更好。

资源

MobileBertConfig

class transformers.MobileBertConfig

< >

( vocab_size = 30522 hidden_size = 512 num_hidden_layers = 24 num_attention_heads = 4 intermediate_size = 512 hidden_act = 'relu' hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 embedding_size = 128 trigram_input = True use_bottleneck = True intra_bottleneck_size = 128 use_bottleneck_attention = False key_query_shared_bottleneck = True num_feedforward_networks = 4 normalization_type = 'no_norm' classifier_activation = True classifier_dropout = None **kwargs )

参数

  • vocab_size (int, 可选, 默认为 30522) — MobileBERT 模型的词汇表大小。 定义了在调用 MobileBertModelTFMobileBertModel 时,通过 inputs_ids 传递的可以被表示的不同 token 的数量。
  • hidden_size (int, 可选, 默认为 512) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 24) — Transformer 编码器中隐藏层的数量。
  • num_attention_heads (int, 可选, 默认为 4) — Transformer 编码器中每个注意力层的注意力头数。
  • intermediate_size (int, 可选, 默认为 512) — Transformer 编码器中“中间”(通常称为前馈)层的维度。
  • hidden_act (strfunction, 可选, 默认为 "relu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果为字符串,则支持 "gelu", "relu", "silu""gelu_new"
  • hidden_dropout_prob (float, 可选, 默认为 0.0) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, 可选, 默认为 0.1) — 注意力概率的 dropout 比率。
  • max_position_embeddings (int, 可选, 默认为 512) — 此模型可能使用的最大序列长度。通常设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 2) — 在调用 MobileBertModelTFMobileBertModel 时,通过 token_type_ids 传递的词汇表大小。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。
  • pad_token_id (int, 可选, 默认为 0) — 在词嵌入中用作填充的 token 的 ID。
  • embedding_size (int, 可选, 默认为 128) — 词嵌入向量的维度。
  • trigram_input (bool, 可选, 默认为 True) — 使用三元语法的卷积作为输入。
  • use_bottleneck (bool, 可选, 默认为 True) — 是否在 BERT 中使用瓶颈层。
  • intra_bottleneck_size (int, 可选, 默认为 128) — 瓶颈层输出的大小。
  • use_bottleneck_attention (bool, 可选, 默认为 False) — 是否使用来自瓶颈层转换的注意力输入。
  • key_query_shared_bottleneck (bool, 可选, 默认为 True) — 是否在瓶颈层中对 query 和 key 使用相同的线性转换。
  • num_feedforward_networks (int, 可选, 默认为 4) — 一个 block 中的 FFN 数量。
  • normalization_type (str, 可选, 默认为 "no_norm") — MobileBERT 中的归一化类型。
  • classifier_dropout (float, 可选) — 分类头的 dropout 比率。

这是一个配置类,用于存储 MobileBertModelTFMobileBertModel 的配置。它用于根据指定的参数实例化 MobileBERT 模型,定义模型架构。使用默认值实例化配置将产生类似于 MobileBERT google/mobilebert-uncased 架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例

>>> from transformers import MobileBertConfig, MobileBertModel

>>> # Initializing a MobileBERT configuration
>>> configuration = MobileBertConfig()

>>> # Initializing a model (with random weights) from the configuration above
>>> model = MobileBertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

MobileBertTokenizer

class transformers.MobileBertTokenizer

< >

( vocab_file do_lower_case = True do_basic_tokenize = True never_split = None unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None clean_up_tokenization_spaces = True **kwargs )

参数

  • vocab_file (str) — 包含词汇表的文件。
  • do_lower_case (bool, optional, defaults to True) — 是否在分词时将输入文本转换为小写。
  • do_basic_tokenize (bool, optional, defaults to True) — 是否在 WordPiece 分词之前执行基础分词。
  • never_split (Iterable, optional) — 在分词过程中永远不会被分割的 token 集合。仅当 do_basic_tokenize=True 时有效。
  • unk_token (str, optional, defaults to "[UNK]") — 未知 token。词汇表中不存在的 token 无法转换为 ID,而是设置为此 token。
  • sep_token (str, optional, defaults to "[SEP]") — 分隔符 token,用于从多个序列构建一个序列时,例如,用于序列分类的两个序列,或者用于问答的文本和问题。它也用作使用特殊 token 构建的序列的最后一个 token。
  • pad_token (str, optional, defaults to "[PAD]") — 用于填充的 token,例如在批量处理不同长度的序列时。
  • cls_token (str, optional, defaults to "[CLS]") — 分类器 token,用于进行序列分类(对整个序列而不是每个 token 进行分类)。当使用特殊 token 构建序列时,它是序列的第一个 token。
  • mask_token (str, optional, defaults to "[MASK]") — 用于遮蔽值的 token。这是在使用掩码语言建模训练此模型时使用的 token。这是模型将尝试预测的 token。
  • tokenize_chinese_chars (bool, optional, defaults to True) — 是否对中文字符进行分词。

    对于日语,这可能应该被禁用(参见此issue)。

  • strip_accents (bool, optional) — 是否去除所有重音符号。如果未指定此选项,则将由 lowercase 的值确定(与原始 MobileBERT 中一样)。
  • clean_up_tokenization_spaces (bool, optional, defaults to True) — 是否在解码后清理空格,清理包括删除潜在的人为痕迹,如多余的空格。

构建 MobileBERT 分词器。基于 WordPiece。

此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

参数

  • token_ids_0 (List[int]) — 将在其中添加特殊 token 的 ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选的第二个 ID 列表。

返回值

List[int]

包含适当特殊 token 的 输入 ID 列表。

通过连接和添加特殊 token,从序列或序列对构建模型输入,以用于序列分类任务。MobileBERT 序列具有以下格式

  • 单个序列: [CLS] X [SEP]
  • 序列对: [CLS] A [SEP] B [SEP]

convert_tokens_to_string

< >

( tokens )

将 token (字符串) 序列转换为单个字符串。

create_token_type_ids_from_sequences

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选的第二个 ID 列表。

返回值

List[int]

根据给定的序列,返回 token type IDs 列表。

从传递的两个序列创建一个掩码,用于序列对分类任务。MobileBERT 序列

对掩码具有以下格式

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1None,则此方法仅返回掩码的第一部分(0)。

get_special_tokens_mask

< >

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选的第二个 ID 列表。
  • already_has_special_tokens (bool, optional, defaults to False) — 指示 token 列表是否已使用模型的特殊 token 格式化。

返回值

List[int]

一个整数列表,范围为 [0, 1]:1 表示特殊 token,0 表示序列 token。

从没有添加特殊 token 的 token 列表中检索序列 ID。当使用分词器的 prepare_for_model 方法添加特殊 token 时,将调用此方法。

MobileBertTokenizerFast

class transformers.MobileBertTokenizerFast

< >

( vocab_file = None tokenizer_file = None do_lower_case = True unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )

参数

  • vocab_file (str) — 包含词汇表的文件。
  • do_lower_case (bool, optional, defaults to True) — 在分词时是否将输入转换为小写。
  • unk_token (str, optional, defaults to "[UNK]") — 未知词标记。词汇表中不存在的词元无法转换为 ID,并将被设置为此标记。
  • sep_token (str, optional, defaults to "[SEP]") — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • pad_token (str, optional, defaults to "[PAD]") — 填充标记,例如在对不同长度的序列进行批处理时使用。
  • cls_token (str, optional, defaults to "[CLS]") — 分类器标记,用于进行序列分类(对整个序列而不是每个词元进行分类)。当使用特殊标记构建时,它是序列的第一个标记。
  • mask_token (str, optional, defaults to "[MASK]") — 掩码标记,用于掩盖值。这是使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
  • clean_text (bool, optional, defaults to True) — 是否在分词之前清理文本,方法是删除任何控制字符并将所有空格替换为经典空格。
  • tokenize_chinese_chars (bool, optional, defaults to True) — 是否标记化中文字符。对于日语,这可能应该被停用(参见 此问题)。
  • strip_accents (bool, optional) — 是否去除所有重音符号。如果未指定此选项,则将由 lowercase 的值确定(与原始 MobileBERT 中一样)。
  • wordpieces_prefix (str, optional, defaults to "##") — 子词的前缀。

构建一个“快速” MobileBERT 分词器(由 HuggingFace 的 tokenizers 库支持)。基于 WordPiece。

此分词器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0 token_ids_1 = None ) List[int]

参数

  • token_ids_0 (List[int]) — 将向其添加特殊标记的 ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选的第二个 ID 列表。

返回值

List[int]

包含适当特殊 token 的 输入 ID 列表。

通过连接和添加特殊 token,从序列或序列对构建模型输入,以用于序列分类任务。MobileBERT 序列具有以下格式

  • 单个序列: [CLS] X [SEP]
  • 序列对: [CLS] A [SEP] B [SEP]

create_token_type_ids_from_sequences

< >

( token_ids_0: List token_ids_1: Optional = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选的第二个 ID 列表。

返回值

List[int]

根据给定的序列,返回 token type IDs 列表。

从传递的两个序列创建一个掩码,用于序列对分类任务。MobileBERT 序列

对掩码具有以下格式

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1None,则此方法仅返回掩码的第一部分(0)。

MobileBert 特定的输出

class transformers.models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutput

< >

( loss: Optional = None prediction_logits: FloatTensor = None seq_relationship_logits: FloatTensor = None hidden_states: Optional = None attentions: Optional = None )

参数

  • loss (optional, returned when labels is provided, torch.FloatTensor of shape (1,)) — 总损失,为掩码语言建模损失和下一句预测(分类)损失之和。
  • prediction_logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇表标记的分数)。
  • seq_relationship_logits (torch.FloatTensor of shape (batch_size, 2)) — 下一句预测(分类)头的预测分数(SoftMax 之前的 True/False 延续的分数)。
  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — torch.FloatTensor 的元组(每个层的输出对应一个,再加上嵌入输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出的隐藏状态,加上初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 的元组 (每一层一个)。

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

MobileBertForPreTraining 的输出类型。

class transformers.models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutput

< >

( loss: tf.Tensor | None = None prediction_logits: tf.Tensor = None seq_relationship_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )

参数

  • prediction_logits (形状为 (batch_size, sequence_length, config.vocab_size)tf.Tensor) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • seq_relationship_logits (形状为 (batch_size, 2)tf.Tensor) — 下一句预测(分类)头的预测分数(SoftMax 之前 True/False 延续的分数)。
  • hidden_states (tuple(tf.Tensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 的元组 (对于嵌入的输出 + 每一层的输出各一个)。

    模型在每一层输出的隐藏状态,加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 的元组 (每一层一个)。

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFMobileBertForPreTraining 的输出类型。

Pytorch
隐藏 Pytorch 内容

MobileBertModel

class transformers.MobileBertModel

< >

( config add_pooling_layer = True )

参数

  • config (MobileBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

裸 MobileBert 模型 Transformer,输出原始隐藏状态,顶部没有任何特定的 head。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

https://arxiv.org/pdf/2004.02984.pdf

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_hidden_states: Optional = None output_attentions: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列标记的索引。

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (形状为 (batch_size, sequence_length)torch.FloatTensor, 可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩蔽
    • 0 表示标记已被掩蔽

    什么是注意力掩码?

  • token_type_ids (形状为 (batch_size, sequence_length)torch.LongTensor, 可选) — 分段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于句子 A 标记,
    • 1 对应于句子 B 标记。

    什么是标记类型 ID?

  • position_ids (形状为 (batch_size, sequence_length)torch.LongTensor, 可选) — 位置嵌入中每个输入序列标记的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (形状为 (num_heads,)(num_layers, num_heads)torch.FloatTensor, 可选) — 用于使自注意力模块的选定 head 无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩蔽
    • 0 表示 head 已被掩蔽
  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor, 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。

返回值

transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPooling 或一个 torch.FloatTensor 元组 (如果传递 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • last_hidden_state (形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor) — 模型最后一层的输出处的隐藏状态序列。

  • pooler_output (形状为 (batch_size, hidden_size)torch.FloatTensor) — 序列的第一个标记(分类标记)的最后一层隐藏状态,在经过用于辅助预训练任务的层进一步处理之后。例如,对于 BERT 系列模型,这将返回分类标记,该标记在经过线性层和 tanh 激活函数处理后返回。线性层权重通过预训练期间的下一句预测(分类)目标进行训练。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 的元组 (对于嵌入的输出,如果模型具有嵌入层,则为 1 个,+ 每一层的输出为 1 个)。

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 的元组 (每一层一个)。

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

MobileBertModel forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MobileBertModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = MobileBertModel.from_pretrained("google/mobilebert-uncased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

MobileBertForPreTraining

class transformers.MobileBertForPreTraining

< >

( config )

参数

  • config (MobileBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

MobileBert 模型,顶部带有两个 head,就像预训练期间所做的那样:一个 masked language modeling head 和一个 next sentence prediction (classification) head。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None next_sentence_label: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor, 形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    可以使用 AutoTokenizer 获得索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor, 形状为 (batch_size, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 未被遮盖
    • 0 表示 tokens 已被遮盖

    什么是 attention masks?

  • token_type_ids (torch.LongTensor, 形状为 (batch_size, sequence_length), 可选) — Segment token 索引以指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token type IDs?

  • position_ids (torch.LongTensor, 形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor, 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于 nullify self-attention 模块的选定 heads 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 未被遮盖
    • 0 表示 head 已被遮盖
  • inputs_embeds (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size), 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您想要比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回 tensors 下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回 tensors 下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通 tuple。
  • labels (torch.LongTensor, 形状为 (batch_size, sequence_length), 可选) — 用于计算 masked language modeling loss 的标签。 索引应在 [-100, 0, ..., config.vocab_size] 中(参见 input_ids 文档字符串) 索引设置为 -100 的 tokens 将被忽略(masked),loss 仅针对标签在 [0, ..., config.vocab_size] 中的 tokens 计算
  • next_sentence_label (torch.LongTensor, 形状为 (batch_size,), 可选) — 用于计算下一个序列预测(分类)loss 的标签。 输入应为序列对(参见 input_ids 文档字符串) 索引应在 [0, 1] 中:

    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是随机序列。

返回值

transformers.models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutputtuple(torch.FloatTensor)

一个 transformers.models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutputtorch.FloatTensor 的 tuple (如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (可选, 当提供 labels 时返回, torch.FloatTensor, 形状为 (1,)) — 总 loss,为 masked language modeling loss 和下一个序列预测(分类)loss 的总和。

  • prediction_logits (torch.FloatTensor, 形状为 (batch_size, sequence_length, config.vocab_size)) — language modeling head 的预测得分(SoftMax 之前每个词汇表 token 的得分)。

  • seq_relationship_logits (torch.FloatTensor, 形状为 (batch_size, 2)) — 下一个序列预测(分类)head 的预测得分(SoftMax 之前 True/False 延续的得分)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的 tuple(embeddings 的输出一个,每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 的元组 (每一层一个)。

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

MobileBertForPreTraining forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MobileBertForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased")

>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)
>>> # Batch size 1
>>> outputs = model(input_ids)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

MobileBertForMaskedLM

class transformers.MobileBertForMaskedLM

< >

( config )

参数

  • config (MobileBertConfig) — 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型关联的权重,仅加载配置。 查看 from_pretrained() 方法以加载模型权重。

带有位于顶部的 language modeling head 的 MobileBert 模型。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor, 形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    可以使用 AutoTokenizer 获得索引。 有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor, 形状为 (batch_size, sequence_length), 可选) — 用于避免在 padding token 索引上执行 attention 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 tokens 未被遮盖
    • 0 表示 tokens 已被遮盖

    什么是 attention masks?

  • token_type_ids (torch.LongTensor, 形状为 (batch_size, sequence_length), 可选) — Segment token 索引以指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token type IDs?

  • position_ids (torch.LongTensor, 形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列 tokens 的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor, 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于 nullify self-attention 模块的选定 heads 的 Mask。 Mask 值在 [0, 1] 中选择:

    • 1 表示 head 未被遮盖
    • 0 表示 head 已被遮盖
  • inputs_embeds (torch.FloatTensor, 形状为 (batch_size, sequence_length, hidden_size), 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您想要比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参见返回 tensors 下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回 tensors 下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组 (plain tuple)。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 中 (参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 中的标记计算。

返回值

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个 torch.FloatTensor 元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时) ,包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 掩码语言建模 (MLM) 损失。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数 (SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 的元组 (对于嵌入的输出,如果模型具有嵌入层,则为 1 个,+ 每一层的输出为 1 个)。

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 的元组 (每一层一个)。

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

MobileBertForMaskedLM 前向传播方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MobileBertForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = MobileBertForMaskedLM.from_pretrained("google/mobilebert-uncased")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'paris'

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.57

MobileBertForNextSentencePrediction

class transformers.MobileBertForNextSentencePrediction

< >

( config )

参数

  • config (MobileBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。

带有 next sentence prediction (classification) 头部的 MobileBert 模型。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。 请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详细信息。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,用于避免在填充标记索引上执行注意力机制。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 段落标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头无效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头未被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回的张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回的张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组 (plain tuple)。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算下一句预测(分类)损失的标签。输入应为序列对(参见 input_ids 文档字符串)。索引应在 [0, 1] 中。

    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是随机序列。

返回值

transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个 torch.FloatTensor 元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时) ,包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 next_sentence_label 时返回) — 下一句预测(分类)损失。

  • logits (torch.FloatTensor,形状为 (batch_size, 2)) — 下一句预测(分类)头的预测分数(SoftMax 之前 True/False 延续的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 的元组 (对于嵌入的输出,如果模型具有嵌入层,则为 1 个,+ 每一层的输出为 1 个)。

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 的元组 (每一层一个)。

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

MobileBertForNextSentencePrediction 前向传播方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MobileBertForNextSentencePrediction
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = MobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")

>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> loss = outputs.loss
>>> logits = outputs.logits

MobileBertForSequenceClassification

class transformers.MobileBertForSequenceClassification

< >

( config )

参数

  • config (MobileBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。

带有序列分类/回归头部的 MobileBert 模型转换器 (位于池化输出顶部的线性层),例如用于 GLUE 任务。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。 请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详细信息。

    什么是输入 IDs?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 掩码,用于避免在填充标记索引上执行注意力机制。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 段落标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 IDs?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置空自注意力模块中选定头的掩码。掩码值应在 [0, 1] 中选择:

    • 1 表示头不被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方误差损失);如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回值

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (torch.FloatTensor,形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 的元组 (对于嵌入的输出,如果模型具有嵌入层,则为 1 个,+ 每一层的输出为 1 个)。

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 的元组 (每一层一个)。

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

MobileBertForSequenceClassification 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, MobileBertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("lordtt13/emo-mobilebert")
>>> model = MobileBertForSequenceClassification.from_pretrained("lordtt13/emo-mobilebert")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'others'

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MobileBertForSequenceClassification.from_pretrained("lordtt13/emo-mobilebert", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
4.72

多标签分类示例

>>> import torch
>>> from transformers import AutoTokenizer, MobileBertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("lordtt13/emo-mobilebert")
>>> model = MobileBertForSequenceClassification.from_pretrained("lordtt13/emo-mobilebert", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MobileBertForSequenceClassification.from_pretrained(
...     "lordtt13/emo-mobilebert", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

MobileBertForMultipleChoice

class transformers.MobileBertForMultipleChoice

< >

( config )

参数

  • config (MobileBertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

MobileBert 模型,顶部带有多项选择分类头(池化输出顶部的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 避免对 padding 标记索引执行注意力机制的掩码。掩码值应在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记已被掩码

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引应在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, num_choices, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。应在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于置空自注意力模块中选定头的掩码。掩码值应在 [0, 1] 中选择:

    • 1 表示头不被掩码
    • 0 表示头被掩码
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, num_choices, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices-1] 中,其中 num_choices 是输入张量第二个维度的大小。(请参阅上面的 input_ids

返回值

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor,形状为 (batch_size, num_choices)) — num_choices 是输入张量的第二个维度。(请参阅上面的 input_ids)。

    分类得分(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 的元组 (对于嵌入的输出,如果模型具有嵌入层,则为 1 个,+ 每一层的输出为 1 个)。

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 的元组 (每一层一个)。

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

MobileBertForMultipleChoice 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MobileBertForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = MobileBertForMultipleChoice.from_pretrained("google/mobilebert-uncased")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

MobileBertForTokenClassification

class transformers.MobileBertForTokenClassification

< >

( config )

参数

  • config (MobileBertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

MobileBert 模型,顶部带有标记分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: 可选 = 无 attention_mask: 可选 = 无 token_type_ids: 可选 = 无 position_ids: 可选 = 无 head_mask: 可选 = 无 inputs_embeds: 可选 = 无 labels: 可选 = 无 output_attentions: 可选 = 无 output_hidden_states: 可选 = 无 return_dict: 可选 = 无 ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列令牌的索引。

    索引可以使用 AutoTokenizer 获得。 参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length), 可选) — 掩码,用于避免对填充令牌索引执行注意力。 掩码值在 [0, 1] 中选择:

    • 1 表示令牌未被屏蔽
    • 0 表示令牌已被屏蔽

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 分段令牌索引,用于指示输入的第一个和第二个部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 令牌,
    • 1 对应于 句子 B 令牌。

    什么是令牌类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列令牌的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads), 可选) — 掩码,用于使自注意力模块的选定头无效。 掩码值在 [0, 1] 中选择:

    • 1 表示头未被屏蔽
    • 0 表示头已被屏蔽
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 用于计算令牌分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。

返回值

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,), 可选, 当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor,形状为 (batch_size, sequence_length, config.num_labels)) — 分类得分(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 的元组 (对于嵌入的输出,如果模型具有嵌入层,则为 1 个,+ 每一层的输出为 1 个)。

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 的元组 (每一层一个)。

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

MobileBertForTokenClassification forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MobileBertForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("mrm8488/mobilebert-finetuned-ner")
>>> model = MobileBertForTokenClassification.from_pretrained("mrm8488/mobilebert-finetuned-ner")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.03

MobileBertForQuestionAnswering

class transformers.MobileBertForQuestionAnswering

< >

( config )

参数

  • config (MobileBertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

MobileBert 模型,顶部带有跨度分类头,用于抽取式问答任务,如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logitsspan end logits)。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝 head 等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参阅 PyTorch 文档,了解与常规用法和行为相关的所有事项。

forward

< >

( input_ids: 可选 = 无 attention_mask: 可选 = 无 token_type_ids: 可选 = 无 position_ids: 可选 = 无 head_mask: 可选 = 无 inputs_embeds: 可选 = 无 start_positions: 可选 = 无 end_positions: 可选 = 无 output_attentions: 可选 = 无 output_hidden_states: 可选 = 无 return_dict: 可选 = 无 ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列令牌的索引。

    索引可以使用 AutoTokenizer 获得。 参见 PreTrainedTokenizer.encode()PreTrainedTokenizer.call() 以了解详情。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length), 可选) — 掩码,用于避免对填充令牌索引执行注意力。 掩码值在 [0, 1] 中选择:

    • 1 表示令牌未被屏蔽
    • 0 表示令牌已被屏蔽

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 分段令牌索引,用于指示输入的第一个和第二个部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 令牌,
    • 1 对应于 句子 B 令牌。

    什么是令牌类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length), 可选) — 位置嵌入中每个输入序列令牌的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads), 可选) — 掩码,用于使自注意力模块的选定头无效。 掩码值在 [0, 1] 中选择:

    • 1 表示头未被屏蔽
    • 0 表示头已被屏蔽
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • start_positions (torch.LongTensor,形状为 (batch_size,), 可选) — 用于计算令牌分类损失的标记跨度开始位置(索引)的标签。位置被限制在序列的长度(sequence_length)内。序列之外的位置不计入损失计算。
  • end_positions (torch.LongTensor,形状为 (batch_size,), 可选) — 用于计算令牌分类损失的标记跨度结束位置(索引)的标签。位置被限制在序列的长度(sequence_length)内。序列之外的位置不计入损失计算。

返回值

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) — 总跨度提取损失是起始和结束位置的交叉熵损失之和。

  • start_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — Span-start 分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor,形状为 (batch_size, sequence_length)) — Span-end 分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 的元组 (对于嵌入的输出,如果模型具有嵌入层,则为 1 个,+ 每一层的输出为 1 个)。

    模型在每一层输出的隐藏状态,加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 的元组 (每一层一个)。

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

MobileBertForQuestionAnswering 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, MobileBertForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("csarron/mobilebert-uncased-squad-v2")
>>> model = MobileBertForQuestionAnswering.from_pretrained("csarron/mobilebert-uncased-squad-v2")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
'a nice puppet'

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([12])
>>> target_end_index = torch.tensor([13])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
3.98
TensorFlow
隐藏 TensorFlow 内容

TFMobileBertModel

class transformers.TFMobileBertModel

< >

( config *inputs **kwargs )

参数

  • config (MobileBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

裸 MobileBert 模型 Transformer,输出原始隐藏状态,顶部没有任何特定的 head。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种格式作为输入

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,可以使用三种可能性来收集第一个位置参数中的所有输入张量

  • 仅包含 input_ids 且不包含其他内容的单个张量:model(input_ids)
  • 具有可变长度的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingtuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    可以使用 AutoTokenizer 获取索引。 请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode() 了解详细信息。

    什么是 input IDs?

  • attention_mask (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 掩码,用于避免在 padding token 索引上执行 attention。 掩码值在 [0, 1] 中选择:

    • 1 表示 tokens 未被掩码
    • 0 表示 tokens 已被掩码

    什么是 attention masks?

  • token_type_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — Segment token 索引,用于指示输入的第一部分和第二部分。 索引在 [0, 1] 中选择:

    • 0 对应于 sentence A token,
    • 1 对应于 sentence B token。

    什么是 token type IDs?

  • position_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列 tokens 在位置嵌入中的位置索引。 在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 掩码,用于使 self-attention 模块的选定 head 失效。 掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩码
    • 0 表示 head 已被掩码
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望比模型的内部嵌入查找矩阵更好地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attentions 张量。 有关更多详细信息,请参见返回张量下的 attentions。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值代替。
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参见返回张量下的 hidden_states。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值代替。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。 此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(某些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。

返回值

transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • last_hidden_state (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层的输出处的 hidden-states 序列。

  • pooler_output (tf.Tensor,形状为 (batch_size, hidden_size)) — 序列的第一个 token(分类 token)的最后一层 hidden-state,通过线性层和 Tanh 激活函数进一步处理。 线性层权重是在预训练期间从下一句预测(分类)目标中训练出来的。

    此输出通常不是输入的语义内容的良好摘要,对于整个输入序列,您通常最好使用 hidden-states 序列的平均值或池化。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFMobileBertModel 的 forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFMobileBertModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = TFMobileBertModel.from_pretrained("google/mobilebert-uncased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFMobileBertForPreTraining

class transformers.TFMobileBertForPreTraining

< >

( config *inputs **kwargs )

参数

  • config (MobileBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

MobileBert 模型,顶部带有两个 head,就像预训练期间所做的那样:一个 masked language modeling head 和一个 next sentence prediction (classification) head。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种格式作为输入

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,可以使用三种可能性来收集第一个位置参数中的所有输入张量

  • 仅包含 input_ids 且不包含其他内容的单个张量:model(input_ids)
  • 具有可变长度的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None next_sentence_label: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutputtuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    可以使用 AutoTokenizer 获取索引。 请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode() 了解详细信息。

    什么是 input IDs?

  • attention_mask (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding 标记索引上执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是 attention mask?

  • token_type_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是 token type IDs?

  • position_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify 自注意力模块的选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩码
    • 0 表示 head 被掩码
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention tensors。有关更多详细信息,请参见返回的 tensors 下的 attentions。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。有关更多详细信息,请参见返回的 tensors 下的 hidden_states。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通的 tuple。此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。

返回值

transformers.models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutputtuple(tf.Tensor)

一个 transformers.models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutput 或一个 tf.Tensor 的 tuple(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • prediction_logits (tf.Tensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表标记的分数)。

  • seq_relationship_logits (tf.Tensor,形状为 (batch_size, 2)) — 下一个句子预测(分类)head 的预测分数(SoftMax 之前 True/False 延续的分数)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFMobileBertForPreTraining 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFMobileBertForPreTraining

>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased")
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_scores, seq_relationship_scores = outputs[:2]

TFMobileBertForMaskedLM

class transformers.TFMobileBertForMaskedLM

< >

( config *inputs **kwargs )

参数

  • config (MobileBertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

带有位于顶部的 language modeling head 的 MobileBert 模型。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种格式作为输入

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,可以使用三种可能性来收集第一个位置参数中的所有输入张量

  • 仅包含 input_ids 且不包含其他内容的单个张量:model(input_ids)
  • 具有可变长度的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFMaskedLMOutputtuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参见 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是 input IDs?

  • attention_mask (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在 padding 标记索引上执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩码
    • 0 表示标记被掩码

    什么是 attention mask?

  • token_type_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 片段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是 token type IDs?

  • position_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 位置嵌入中每个输入序列标记的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于 nullify 自注意力模块的选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩码
    • 0 表示 head 被掩码
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention tensors。有关更多详细信息,请参见返回的 tensors 下的 attentions。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的 hidden states。有关更多详细信息,请参见返回的 tensors 下的 hidden_states。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通的 tuple。此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。
  • labels (tf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于计算 masked language modeling loss 的标签。索引应在 [-100, 0, ..., config.vocab_size] 中(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),loss 仅针对带有标签的标记计算

返回值

transformers.modeling_tf_outputs.TFMaskedLMOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个 tf.Tensor 的 tuple(如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (tf.Tensor,形状为 (n,)可选,其中 n 是未掩码标签的数量,当提供 labels 时返回) — Masked language modeling (MLM) loss。

  • logits (tf.Tensor,形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模 head 的预测分数(SoftMax 之前每个词汇表标记的分数)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFMobileBertForMaskedLM 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFMobileBertForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = TFMobileBertForMaskedLM.from_pretrained("google/mobilebert-uncased")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> tokenizer.decode(predicted_token_id)
'paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(float(outputs.loss), 2)
0.57

TFMobileBertForNextSentencePrediction

class transformers.TFMobileBertForNextSentencePrediction

< >

( config *inputs **kwargs )

参数

  • config (MobileBertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

带有 next sentence prediction (classification) 头部的 MobileBert 模型。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种格式作为输入

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,可以使用三种可能性来收集第一个位置参数中的所有输入张量

  • 仅包含 input_ids 且不包含其他内容的单个张量:model(input_ids)
  • 具有可变长度的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None next_sentence_label: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFNextSentencePredictorOutputtuple(tf.Tensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)Numpy arraytf.Tensor) — 输入序列词汇表中 tokens 的索引。

    索引可以通过 AutoTokenizer 获得。 详情请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 IDs?

  • attention_mask (形状为 (batch_size, sequence_length)Numpy arraytf.Tensor, 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 tokens 未被掩盖
    • 0 表示 tokens 已被掩盖

    什么是注意力掩码?

  • token_type_ids (形状为 (batch_size, sequence_length)Numpy arraytf.Tensor, 可选) — Segment token 索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 IDs?

  • position_ids (形状为 (batch_size, sequence_length)Numpy arraytf.Tensor, 可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (形状为 (num_heads,)(num_layers, num_heads)Numpy arraytf.Tensor, 可选) — 用于 nullify 自注意力模块中选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩盖
    • 0 表示 head 已被掩盖
  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)tf.Tensor, 可选) — 可选地,您可以选择直接传递嵌入表示而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有 attention 层的 attentions tensors。 有关更多详细信息,请参阅返回的 tensors 下的 attentions。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的 hidden states。 有关更多详细信息,请参阅返回的 tensors 下的 hidden_states。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通的 tuple。 此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。
  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。

返回值

transformers.modeling_tf_outputs.TFNextSentencePredictorOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFNextSentencePredictorOutput 或一个 tf.Tensor 的 tuple (如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (形状为 (n,)tf.Tensor, 可选, 其中 n 是非掩码标签的数量,当提供 next_sentence_label 时返回) — 下一句预测损失。

  • logits (形状为 (batch_size, 2)tf.Tensor) — 下一句预测(分类) head 的预测分数(SoftMax 之前 True/False 延续的分数)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFMobileBertForNextSentencePrediction forward 方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFMobileBertForNextSentencePrediction

>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = TFMobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf")

>>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0]

TFMobileBertForSequenceClassification

class transformers.TFMobileBertForSequenceClassification

< >

( config *inputs **kwargs )

参数

  • config (MobileBertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法来加载模型权重。

带有序列分类/回归头部的 MobileBert 模型转换器 (位于池化输出顶部的线性层),例如用于 GLUE 任务。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种格式作为输入

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,可以使用三种可能性来收集第一个位置参数中的所有输入张量

  • 仅包含 input_ids 且不包含其他内容的单个张量:model(input_ids)
  • 具有可变长度的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFSequenceClassifierOutputtuple(tf.Tensor)

参数

  • input_ids (形状为 (batch_size, sequence_length)Numpy arraytf.Tensor) — 输入序列词汇表中 tokens 的索引。

    索引可以通过 AutoTokenizer 获得。 详情请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 IDs?

  • attention_mask (形状为 (batch_size, sequence_length)Numpy arraytf.Tensor, 可选) — 用于避免在 padding token 索引上执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 tokens 未被掩盖
    • 0 表示 tokens 已被掩盖

    什么是注意力掩码?

  • token_type_ids (形状为 (batch_size, sequence_length)Numpy arraytf.Tensor, 可选) — Segment token 索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 IDs?

  • position_ids (形状为 (batch_size, sequence_length)Numpy arraytf.Tensor, 可选) — 位置嵌入中每个输入序列 token 的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 不被屏蔽
    • 0 表示 head 被屏蔽
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size), 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的 attentions。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的 hidden_states。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是纯元组。 此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。
  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。
  • labels (tf.Tensor,形状为 (batch_size,), 可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方损失)。如果 config.num_labels > 1,则计算分类损失(交叉熵损失)。

返回值

transformers.modeling_tf_outputs.TFSequenceClassifierOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个 tf.Tensor 元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (tf.Tensor,形状为 (batch_size, ), 可选,当提供 labels 时返回) — 分类损失(如果 config.num_labels==1,则为回归损失)。

  • logits (tf.Tensor,形状为 (batch_size, config.num_labels)) — 分类(如果 config.num_labels==1,则为回归)分数(在 SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFMobileBertForSequenceClassification 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFMobileBertForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("vumichien/emo-mobilebert")
>>> model = TFMobileBertForSequenceClassification.from_pretrained("vumichien/emo-mobilebert")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'others'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFMobileBertForSequenceClassification.from_pretrained("vumichien/emo-mobilebert", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(float(loss), 2)
4.72

TFMobileBertForMultipleChoice

class transformers.TFMobileBertForMultipleChoice

< >

( config *inputs **kwargs )

参数

  • config (MobileBertConfig) — 带有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

MobileBert 模型,顶部带有多项选择分类头(池化输出顶部的线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种格式作为输入

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,可以使用三种可能性来收集第一个位置参数中的所有输入张量

  • 仅包含 input_ids 且不包含其他内容的单个张量:model(input_ids)
  • 具有可变长度的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFMultipleChoiceModelOutputtuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, num_choices, sequence_length)) — 词汇表中输入序列 tokens 的索引。

    可以使用 AutoTokenizer 获得索引。 有关详细信息,请参见 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 IDs?

  • attention_mask (Numpy arraytf.Tensor,形状为 (batch_size, num_choices, sequence_length), 可选) — 掩码,以避免在 padding token 索引上执行注意力机制。掩码值在 [0, 1] 中选择:

    • 1 表示 tokens 不被掩码
    • 0 表示 tokens 被掩码

    什么是注意力掩码?

  • token_type_ids (Numpy arraytf.Tensor,形状为 (batch_size, num_choices, sequence_length), 可选) — Segment token 索引以指示输入的第一个和第二个部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A token,
    • 1 对应于 句子 B token。

    什么是 token 类型 IDs?

  • position_ids (Numpy arraytf.Tensor,形状为 (batch_size, num_choices, sequence_length), 可选) — 位置嵌入中每个输入序列 tokens 的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是位置 IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定 head 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 不被屏蔽
    • 0 表示 head 被屏蔽
  • inputs_embeds (tf.Tensor,形状为 (batch_size, num_choices, sequence_length, hidden_size), 可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精细地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参见返回张量下的 attentions。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参见返回张量下的 hidden_states。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是纯元组。 此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。
  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。
  • labels (tf.Tensor,形状为 (batch_size,), 可选) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices] 中,其中 num_choices 是输入张量的第二个维度的大小。(请参阅上面的 input_ids

返回值

transformers.modeling_tf_outputs.TFMultipleChoiceModelOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一个 tf.Tensor 元组 (如果传递了 return_dict=False 或当 config.return_dict=False 时),其中包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (tf.Tensor,形状为 (batch_size, ), 可选,当提供 labels 时返回) — 分类损失。

  • logits (tf.Tensor,形状为 (batch_size, num_choices)) — num_choices 是输入张量的第二个维度。(请参阅上面的input_ids)。

    分类得分(在 SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFMobileBertForMultipleChoice 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFMobileBertForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = TFMobileBertForMultipleChoice.from_pretrained("google/mobilebert-uncased")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFMobileBertForTokenClassification

class transformers.TFMobileBertForTokenClassification

< >

( config *inputs **kwargs )

参数

  • config (MobileBertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

MobileBert 模型,顶部带有标记分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别 (NER) 任务。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种格式作为输入

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,可以使用三种可能性来收集第一个位置参数中的所有输入张量

  • 仅包含 input_ids 且不包含其他内容的单个张量:model(input_ids)
  • 具有可变长度的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 IDs?

  • attention_mask (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩蔽
    • 0 表示标记被掩蔽

    什么是 attention 掩码?

  • token_type_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 段落标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是 token type IDs?

  • position_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定 head 失效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩蔽
    • 0 表示 head 被掩蔽
  • inputs_embeds (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更精确地控制如何将 input_ids 索引转换为关联的向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有 attention 层的 attention 张量。 有关更多详细信息,请参阅返回张量下的 attentions。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states。此参数只能在 eager 模式下使用,在 graph 模式下将使用 config 中的值。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在 eager 模式下使用,在 graph 模式下,该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(某些模块(如 dropout 模块)在训练和评估之间具有不同的行为)。
  • labels (tf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于计算标记分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。

返回值

transformers.modeling_tf_outputs.TFTokenClassifierOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包括各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (tf.Tensor,形状为 (n,)可选,当提供 labels 时返回,其中 n 是未掩蔽标签的数量) — 分类损失。

  • logits (tf.Tensor,形状为 (batch_size, sequence_length, config.num_labels)) — 分类得分(在 SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFMobileBertForTokenClassification 前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFMobileBertForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("vumichien/mobilebert-finetuned-ner")
>>> model = TFMobileBertForTokenClassification.from_pretrained("vumichien/mobilebert-finetuned-ner")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )

>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_tokens_classes
['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']
>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)
>>> round(float(loss), 2)
0.03

TFMobileBertForQuestionAnswering

class transformers.TFMobileBertForQuestionAnswering

< >

( config *inputs **kwargs )

参数

  • config (MobileBertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

MobileBert 模型,顶部带有跨度分类头,用于抽取式问答任务,如 SQuAD(隐藏状态输出顶部的线性层,用于计算 span start logitsspan end logits)。

此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、剪枝头等)。

此模型也是 keras.Model 子类。将其用作常规 TF 2.0 Keras 模型,并参阅 TF 2.0 文档以了解与通用用法和行为相关的所有事项。

transformers 中的 TensorFlow 模型和层接受两种格式作为输入

  • 将所有输入作为关键字参数(如 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时首选此格式。 由于这种支持,当使用 model.fit() 等方法时,一切都应该“正常工作” - 只需以 model.fit() 支持的任何格式传递您的输入和标签即可! 但是,如果您想在 Keras 方法(如 fit()predict())之外使用第二种格式,例如在使用 Keras Functional API 创建您自己的层或模型时,可以使用三种可能性来收集第一个位置参数中的所有输入张量

  • 仅包含 input_ids 且不包含其他内容的单个张量:model(input_ids)
  • 具有可变长度的列表,其中包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 字典,其中包含一个或多个与文档字符串中给出的输入名称关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用 子类化 创建模型和层时,您无需担心这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

< >

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)

参数

  • input_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入 IDs?

  • attention_mask (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行 attention 的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示标记未被掩蔽
    • 0 表示标记被掩蔽

    什么是 attention 掩码?

  • token_type_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 段落标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是 token type IDs?

  • position_ids (Numpy arraytf.Tensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (Numpy arraytf.Tensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定 head 失效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示 head 未被掩蔽
    • 0 表示 head 被掩蔽
  • inputs_embeds (形状为 (batch_size, sequence_length, hidden_size)tf.Tensor可选) — (可选)您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望比模型的内部嵌入查找矩阵更灵活地控制如何将 input_ids 索引转换为关联向量,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。 有关更多详细信息,请参阅返回张量下的 attentions。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。 有关更多详细信息,请参阅返回张量下的 hidden_states。 此参数只能在 eager 模式下使用,在 graph 模式下将使用配置中的值。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。 此参数可以在 eager 模式下使用,在 graph 模式下该值将始终设置为 True。
  • training (bool可选,默认为 False) — 是否在训练模式下使用模型(dropout 模块等某些模块在训练和评估之间具有不同的行为)。
  • start_positions (形状为 (batch_size,)tf.Tensor可选) — 用于计算 token 分类损失的标签跨度起始位置(索引)。 位置被限制在序列的长度 (`sequence_length`) 内。 序列之外的位置不计入损失计算。
  • end_positions (形状为 (batch_size,)tf.Tensor可选) — 用于计算 token 分类损失的标签跨度结束位置(索引)。 位置被限制在序列的长度 (`sequence_length`) 内。 序列之外的位置不计入损失计算。

返回值

transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置 (MobileBertConfig) 和输入。

  • loss (形状为 (batch_size, )tf.Tensor可选,当提供 start_positionsend_positions 时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。

  • start_logits (形状为 (batch_size, sequence_length)tf.Tensor) — 跨度起始得分(SoftMax 之前)。

  • end_logits (形状为 (batch_size, sequence_length)tf.Tensor) — 跨度结束得分(SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(embeddings 的输出一个,每层的输出一个),形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出端的 Hidden-states 加上初始 embedding 输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

The TFMobileBertForQuestionAnswering 的前向方法,覆盖了 __call__ 特殊方法。

尽管 forward 传递的配方需要在该函数中定义,但应在此之后调用 Module 实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例

>>> from transformers import AutoTokenizer, TFMobileBertForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("vumichien/mobilebert-uncased-squad-v2")
>>> model = TFMobileBertForQuestionAnswering.from_pretrained("vumichien/mobilebert-uncased-squad-v2")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
'a nice puppet'
>>> # target is "nice puppet"
>>> target_start_index = tf.constant([12])
>>> target_end_index = tf.constant([13])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)
>>> round(float(loss), 2)
3.98
< > 在 GitHub 上更新